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Understanding the navigational behaviour of website visitors is a significant factor of success in the emerg-
ing business models of electronic commerce and even mobile commerce. However, Web traversal patterns
obtained by traditional Web usage mining approaches are ineffective for the content management of web-
sites. They do not provide the big picture of the intentions of the visitors. The Web navigation patterns,
termed throughout-surfing patterns (TSPs) as defined in this paper, are a superset of Web traversal pat-
terns that effectively display the trends toward the next visited Web pages in a browsing session. TSPs
are more expressive for understanding the purposes of website visitors. In this paper, we first introduce
the concept of throughout-surfing patterns and then present an efficient method for mining the patterns.
We propose a compact graph structure, termed a path traversal graph, to record information about the nav-
igation paths of website visitors. The graph contains the frequent surfing paths that are required for mining
TSPs. In addition, we devised a graph traverse algorithm based on the proposed graph structure to discover
the TSPs. The experimental results show the proposed mining method is highly efficient to discover TSPs.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Mining Web navigation patterns is useful in practice, and the
extracted patterns can be used to predict and understand visitors’
browsing behaviour and intentions. It is helpful in improving user
experience, website configuration, and the efficiency and effective-
ness of e-commerce. Website operators can apply Web navigation
patterns to analyze and forecast user motivation, and thus provide
better recommendations and personalized services for their cus-
tomers (Arotariteia & Mitra, 2004; El-Ramly and Stroulia; 2004;
Pierrakos, Paliouras, Papatheodorou, & Spyropoulos, 2003; Schafer,
Konstan, & Riedl, 2001).

A Web navigation pattern referred to as a Web access pattern
(also known as clickstream) is a path through one or more Web
pages in a website that is extracted from the access logs of the
Web server. A series of Web pages in a website requested by a vis-
itor in a single visit is referred to as a session. The process of discov-
ering patterns from access logs is known as Web usage mining or
Web log mining (Pei, Han, Mortazavi-Asl, & Zhu, 2000). Given a
set of sessions, the support of a Web access pattern is defined as
the ratio of the sessions containing the pattern to all sessions. A
Web access pattern is frequent if the support of the pattern is not
less than the user-specified minimum support threshold. A Web
access pattern is maximal if it is not contained in other Web access
ll rights reserved.
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patterns. Lee and Yen (2007) defined the qualified traversal
sequences: A Web access pattern P = hp1, p2, . . ., pni is referred to
as a Web traversal pattern (WTP) if P is frequent and there is a
hyperlink from pi to pi+1 where 1 6 i < n. Web traversal patterns
represent the consecutive click sequences on websites.

However, the structure of the website is rarely considered in the
processes of Web usage mining. The Web pages located close to the
home page have higher support counts than those located further
away; in addition, the hub pages also have high support counts. It
is frustrating that one cannot realize a visitor’s purpose or inten-
tion by evaluating those segmented navigation patterns discovered
by conventional Web usage mining methods. A single Web
traversal pattern cannot provide the big picture of user navigation
behaviour. It is hard to predict the navigation paths or user inten-
tion by those separate patterns. For example, suppose the Web tra-
versal patterns obtained by the traditional sequential pattern
mining methods would be ha, c, ei, hc, e, fi, he, f, ii, and hf, i, ki.
Although the mining results shown above provide frequent surfing
patterns, it is difficult to realize the visitor’s purpose (surfing the
website along the path ha, c, e, f, i, ki, which is created by linking
ha, c, ei, hc, e, fi, he, f, ii, and hf, i, ki, for a specific purpose) by evalu-
ating those segmented patterns.

Consider the following scenario on a government website. PH,
PGI, PGBI, PBP, PBR, and PDOC represents the Web pages of the ‘‘home
page’’, ‘‘Government Information,’’ ‘‘General Budget Information,’’
‘‘Budgeting Processes,’’ ‘‘Budgeting Regulation,’’ and the requested
document. Assume that the traditional Web mining approaches
discover three WTPs: (1) hPH, PGBI, PBP, PBR, PDOCi; (2) hPH, PGI, PGBIi;
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(3) hPGI, PGBI, PBPi. It means that the website visitors often browse
the website from the home page and go along the paths
hPH, PGBI, PBP, PBR, PDOCi or hPH, PGI, PGBIi, or the visitors directly link
to PGI from other Web pages and then surf the website along the
path hPGI, PGBI, PBPi. The visitors may be interested in downloading
the document PDOC according to the subpattern hPGBI, PBP, PBR, PDOCi
of the first WTP. Therefore, we can recommend PDOC to the visitors
or provide a list of personalized interesting hyperlinks to the visi-
tors when they surf the website along the paths hPH, PGBI, PBP,
PBR, PDOCi, hPH, PGI, PGBIi, or hPGI, PGBI, PBPi. Obviously we can provide
the same services if both paths hPH, PGBI, PBP, PBR, PDOCi and
hPH, PGI, PGBI, PBP, PBR, PDOCi are found.

The throughout-surfing pattern (TSP) proposed in this paper,
such as the aforementioned pattern hPH, PGI, PGBI, PBP, PBR, PDOCi,
proves more effective to predict one-step forward visit to the next
Web page. For example, we can predict that the website visitor
would visit PGBI if he arrives at PGI from PH, and then he would visit
PBP according to the throughout-surfing pattern. However, in the
previous scenario, we can only forecast that the visitor would reach
PGBI by the fragmental Web access pattern hPH, PGI, PGBIi, and then
we need to search the other Web access pattern hPGI, PGBI, PBPi for
the prediction of the next visited Web page. Website operators
can efficiently reconfigure the personalized website structure and
rearrange the contents of the website according to the through-
out-surfing patterns. It is helpful for content management and pro-
viding Web 2.0 services in e-commerce.

In this paper, we propose an efficient mining approach to dis-
cover the throughout-surfing patterns. The concept of the maximal
forward references proposed by Chen, Park, and Yu (1998) is em-
ployed and the throughout-surfing patterns are mined from the
maximal forward references. First, we devise a compact structure
called the path traversal graph to portray the tracks of Web naviga-
tion. Second, we come up with an efficient graph traverse algorithm
to discover the throughout-surfing patterns. The proposed mining
approach does not generate the candidate patterns and it scans the
database only once. Therefore, it is more efficient than the conven-
tional sequential pattern mining algorithms.

The contributions of this paper are described as follows.

� The concept of TSP is introduced, which are efficient and effec-
tive to provide a big picture of the navigation paths for under-
standing the purposes of website visitors.
� A compact graph is devised to store the information of Web

navigation paths. The information of Web browsing and hyper-
links between Web pages are kept in the graph. The edges in the
path traversal graph record both incoming and outgoing hyper-
links and the via-links hold ‘‘from-to-via’’ information in the
graph that are necessary to predict where a visitor will go at
any vertex by the vertex he comes from.
� We propose a graph traverse algorithm to find TSPs efficiently.

A depth-first search (DFS) mechanism is adopted to traverse the
path traversal graph.

The rest of this paper is organized as follows. Section 2 de-
scribes the related work on Web usage mining. Section 3 displays
the structure of the proposed path traversal graph and its construc-
tion algorithm. Also, a graph traverse algorithm based on the path
traversal graph is introduced in this section. In Section 4, the re-
sults of series performance evaluations are given. Finally, conclu-
sions are made in Section 5.

2. Related work

There are numerous studies on the navigation behaviour of
website visitors. Most are conducted by the techniques of mining
Web access patterns, such as improving the access efficiency of
Web pages by the adaptive website system, reorganizing a website
dynamically, identifying the target group of Web visitors, strength-
ening the performance of Web searches, and predicting user
behaviour patterns in mobile Web systems (Arayaa, Silvab, & We-
ber, 2004; Chen et al., 1998; Choa & Kimb, 2004; Kazienko & Adam-
ski, 2007; Lee & Shiu, 2004; Tseng & Lin, 2006). Research efforts to
discover Web access patterns focus on three main paradigms (Fac-
ca & Lanzi, 2005): association rules, sequential patterns, and clus-
tering (Abraham & Ramos, 2003; Ezeife & Lu, 2005; Giudici &
Castelo, 2001; Huang, Cercone, & An, 2002; Liu & Kešelj, 2006;
Zhou, Hui, & Fong, 2006).

Borges and Levene (1999) modeled user navigation sessions as a
hypertext probabilistic language generated by a hypertext probabi-
listic grammar (HPG). The higher probability generated strings cor-
respond to the users preferred trails. Pei et al. (2000) devised a data
structure of WAP-tree (Web access pattern tree) for efficient min-
ing of Web access patterns. Ezeife and Lu (2005) proposed a posi-
tion coded technique to construct the Pre-Order Linked WAP-tree.
The mining method using the WAP-tree alleviates both problems
of scanning the database repeatedly and generating tremendous
candidate sequences. However, to use the conditional search strat-
egies in WAP-tree-based mining algorithms, it requires recon-
structing a large number of intermediate conditional WAP-trees
during mining processes, which is rather costly (Zhou et al.,
2006). In addition, the serious problem of performance degradation
arises when the capacity of the main memory cannot hold the en-
tire structure of the WAP-tree. Xing and Shen (2004) introduced
the concept of preference with viewing time and selective intention
for mining Web navigation patterns. The proposed method uses a
data structure of user access matrix to store user navigation paths
and the algorithm uses a DFS technique to obtain user preferred
navigation paths. Tao, Hong, and Su (2007) addressed another
interesting topic of Web usage mining with intentional browsing
data (IBD). IBD is a category of on-line browsing actions, such as
‘‘copy’’, ‘‘scroll’’, or ‘‘save as,’’ which is not recorded in Web log files.
To make IBD available like Web log files, they proposed an on-line
data collection mechanism for capturing IBD.

Algorithms for mining sequential patterns are common in Web
navigation pattern mining (Agrawal & Srikant, 1995; Lee & Wang,
2003; Lin & Lee, 2005; Masseglia, Poncelet, & Teisseire, 2009; Pei
et al., 2004). Apriori algorithm (Agrawal & Srikant, 1995) intro-
duces a level-wise iterative search to discover all maximal frequent
sequential patterns. PrefixSpan (Pei et al., 2004) splits the original
database into small portions of projected databases in which each
projection contains sequences with the same prefix. The prefix ex-
tends one element further while the database is projected one
more time. To improve the efficiency of mining long sequential
patterns, the concept of mining frequent closed sequences is de-
rived (Wang, Han, & Li, 2007; Yan, Han, & Afshar, 2003). The fre-
quent closed sequences are regarded as a pattern closure of all
frequent sequential patterns. This proves more efficient to discern
the pattern closure instead of all frequent patterns; however, it
consumes a lot of memory and leads to a huge search space for pat-
tern closure checking.

Yen and Chen (2001) adopted a graph-based approach to mine
both association rules and sequential patterns. As mentioned in
their conclusions, the graph structure may not fit in the main
memory when the database is very large. In general, the database
is huge and the algorithm is inadequate. Li, Lee, and Shan (2006)
presented an incremental mining algorithm, termed DSM-PLW,
to find the maximal reference sequences in one database scan.
The process of mining patterns is proceeding on the SP-forest in
the main memory. The space upper bound of O(2k) where k is
the number of frequent references will obscure the method as k
is greater than 30. Lee and Yen (2007) used the lattice structure
to store the previous mining results for incremental Web traversal



Table 1
Web browsing sessions.

Session_ID Web browsing session

S01 ha, c, e, f, i, ki
S02 ha, b, c, e, f, h, ki
S03 ha, c, e, g, f, i, ki
S04 ha, d, e, f, i, ji
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<a, b>, <a, c>, <a, d> 

<a, b, c>, <a, b, e> 

<a, c, e>, <b, c, e> 

<a, d, e> 

<c, e, f>, <c, e, g>, <d, e, f> 

<e, f, h>, <e, f, i>, <g, f, i> 

<e, g, f> 
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patterns. The patterns may be obtained rapidly when the database
or the website structure is updated. Again, as stated in their con-
clusions, the size of the lattice structure may become too large to
be loaded into the main memory.

The former mining algorithms suffer from either repetitive data-
base scan or high memory load. For algorithms with a single data-
base scan, they build special data structures to store the sequences
in the database. However, it is impracticable to hold all sequences
of the database in the data structure. On the contrary, our scheme
for mining TSPs is realistic, in which the memory is loaded with
the hyperlink structure of the website instead of the sequence data-
base. Nevertheless, the TSPs are not the same as maximal frequent
sequences or closed sequential patterns. The graph traverse algo-
rithm proposed in this study is not directly comparable to those
of mining sequential patterns, closed sequences, and Web traversal
patterns. As we pay attention to the tracks of website visitors, the
proposed method provides an efficient and effective way to realize
what targets the visitors may reach and how they are achieved.

3. Path traversal graph and graph traverse mining

When user activities on a website are recorded in Web server
logs, the data collected in the log files are further processed to cre-
ate Web browsing sessions for pattern mining tasks. It is common
to generate Web browsing sessions for mining Web navigation pat-
terns. In this study, a set of Web browsing sessions based on the
maximal forward references (Chen et al., 1998) is the primary in-
put to the mining method.

To avoid scanning databases repeatedly as well as generating a
huge amounts of candidate sequences, in this paper we propose a
graph traverse approach to discover TSP. First, we devise a graph
structure to retain the user navigation information. The informa-
tion of Web browsing sessions is collected in the proposed path tra-
versal graph. Then, the graph traverse algorithm is performed on
the graph to find TSP. In Section 3.1, we present the path traversal
graph and the construction algorithm. The graph traverse algo-
rithm is given in Section 3.2.

3.1. Construction of path traversal graph

We can abstractly view a website as a set of documents con-
nected with hyperlinks, and the website can be naturally repre-
sented by a directed graph with vertices and edges corresponding
to the documents and the hyperlinks respectively. In the application
of mining throughout-surfing patterns, as we predict where a visitor
will go at any node, we need to know first where the visitor comes
from. Accordingly, the concept of via-links is introduced in this pa-
per to record the ‘‘from-to-via’’ information in the proposed graph,
which is unique to the mining of throughout-surfing patterns.
Therefore, we propose a novel data structure called path traversal
graph consisting of a set of vertices, edges, and via-links to store
the information from Web browsing sessions. The compact struc-
ture of the path traversal graph can help improve the efficiency of
mining throughout-surfing patterns. The edge, via-link, and path
traversal graph are formally defined as follows.

Definition 1. An edge hv1, v2i in a path traversal graph is a Web
navigation path from vertex v1 to vertex v2, where v1 and v2

represent two connected Web pages. An edge is frequent if the
support of the edge is not less than the minimum support
threshold.
j k 

h 

i 

<f, h, k> 

<f, i, j>, <f, i, k> 

: edge  : via-link 

Fig. 1. The initial path traversal graph.
Definition 2. A via-link hv1, v2, v3i in a path traversal graph is a
Web navigation path from vertex v1 to vertex v3 by vertex v2.
hv1, v2, v3i consists of both edges hv1, v2i and hv2, v3i. A via-link is
frequent if its support is not below the minimum support.
While a website visitor is browsing the Web page v2, we can
predict that the visitor will probably surf the Web page v3 by the
frequent via-link hv1, v2, v3i if he came from v1.

Definition 3. A path traversal graph G comprises a set of vertices v1,
v2, . . ., vn, a set of edges hvs, vti, and a set of via-links hvi, vj, vki,
where 1 6 s, t, i, j, k 6 n, s – t, i – j, j – k. A path traversal graph G is
frequent if the edges and via-links contained in G are all frequent.

For efficiency of implementation, the information of edges and
via-links are associated with the vertices while constructing the
data structure of the path traversal graph. For example, an edge
hb, di associated with vertex b indicates a Web navigation path
from vertex b–d, and a via-link ha, b, ci associated with vertex b
suggests that there is a path from vertex a–c via b.

While the path traversal graph is constructed, each Web brows-
ing session, such as hv1, v2, . . ., vni, is decomposed to sets of edges
hv1, v2i, hv2, v3i, . . . , hvn�1, vni and via-links hv1, v2, v3i,
hv2, v3, v4i, . . ., hvn�2, vn�1, vni, and then the edges and via-links are
recorded on the path traversal graph. For example, the Web brows-
ing session ha, c, e, f, i, ki in Table 1 can be decomposed to five edges
ha, ci, hc, ei, he, fi, hf, ii, and hi, ki plus four via-links ha, c, ei, hc, e, fi,
he, f, ii, and hf, i, ki. Based on the edge ha, ci, vertex a and c are cre-
ated and connected with the edge ha, ci in the path traversal graph.
Then, vertex e and edge hc, ei are created and vertices a, c, and e are
connected with via-link ha, c, ei. The following vertices are created
and connected in the similar way.

Fig. 1 depicts the path traversal graph corresponding to the four
Web browsing sessions in Table 1 where the notations and

represent edges and via-links respectively. For simplicity, the
edges of the vertices except vertex a are omitted. Suppose the min-
imum support is 50%. After all the edges and via-links with sup-
ports below the minimum support are removed and those
vertices unconnected by any edge or via-link are deleted, the
remainder is the frequent path traversal graph. Fig. 2 shows the
frequent path traversal graph of Fig. 1.

Given a set of Web browsing sessions D and a user specified
minimum support n, the algorithm to construct the frequent path
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Fig. 2. The frequent path traversal graph.
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traversal graph is shown in Fig. 3. Each Web browsing session in D
is retrieved and decomposed into edges and via-links, and then the
edges and via-links are added to the path traversal graph G from
steps (2) to (25). The edges and via-links with supports below n
are deleted from G in steps (26) to (33).

3.2. Graph traverse algorithm for mining throughout-surfing patterns

In this section, we present and analyze the graph traverse algo-
rithm for mining throughout-surfing patterns. The algorithm dis-
covers all throughout-surfing patterns by selecting suitable
starting edges and traversing frequent path traversal graph in
DFS order. Definition 4 formally defines the throughout-surfing
pattern.

Definition 4. A throughout-surfing pattern (TSP) P = hv1, v2, . . . , vni
is a Web navigation pattern composed of one starting edge hv1, v2i
and (n � 2) via-links hv1, v2, v3i, hv2, v3, v4i,. . ., and hvn�2, vn�1, vni,
where hv1, v2i, hv1, v2, v3i, hv2, v3, v4i,. . ., and hvn�2, vn�1, vni are all
frequent. P0 = hvi, vi+1, . . ., vji, where 1 6 i < j 6 n, is called a subpat-
tern of P, denoted by P0# P.
Theorem 1. For any Web traversal pattern WTP, there is a TSP con-
taining WTP, denoted as WTP # TSP. That is, the set of throughout-
surfing patterns is a pattern closure of all Web traversal patterns.
Proof. Assume not all WTPs are contained in TSPs. There is a Web
traversal pattern PW = hp1, p2, . . ., pni which is not contained in any
throughout-surfing pattern. By definition, PW is frequent, and
therefore any subpattern of PW, hpi, pi+1, pi+2i where 1 6 i 6 n � 2,
is frequent. That is, hp1, p2, p3i, hp2, p3, p4i,. . ., and hpn�2, pn�1, pni
are all frequent. By Definitions 1– 4, we can find a TSP PT that
passes through the via-links hv1, v2, v3i, hv2, v3, v4i,. . ., and
hvn�2, vn�1, vni where hv1, v2, v3i, hv2, v3, v4i,. . ., and hvn�2, vn�1, vni
in the frequent path traversal graph is constructed by hp1, p2, p3i,
hp2, p3, p4i, . . ., and hpn�2, pn�1, pni, respectively. Then, PW # PT .
The derived outcome is contradictory to the assumption. Therefore,
Theorem 1 is established. h

As shown in Definition 4, a TSP joins pieces of Web traversal
patterns and we cannot ensure that all TSPs are frequent and max-
imal Web traversal patterns, but all the subpatterns of TSPs con-
sisting of three consecutive vertices are frequent. Therefore,
mining TSPs is a new paradigm for one-step forward prediction.
According to any via-link hvi, vi+1, vi+2i in TSP = hv1, v2, . . . , vni,
1 6 i 6 n � 2, we can effectively foresee the possible destination
(vi+2) of the website visitor by the last two visited pages (vi and
vi+1) while he or she surfs the website.
Definition 5. A TSP PT = hv1, v2, . . . , vni is cyclic if there exists a
subpattern p ¼ hv i�1;v ii � PT , and vi�1 = vn�1, vi = vn, 1 < i < n, 3 < n;
otherwise PT is termed acyclic. PT is fully cyclic if i = 2, and it is
partially cyclic if i > 2.

It will incur a cyclic TSP if the outgoing edge hvj, vki of a via-link
hvi, vj, vki has been traced while generating this TSP. For example,
suppose that the TSP is ha, b, c, d, ei at the current creating stage
and the following frequent via-links are hd, e, ki, he, k, ci, and
hk, c, di. The TSP is extended to be ha, b, c, d, e, k, c, di and then the
cycle hc, d, e, k, c, d, e, k,. . .i is encountered.

To discover an acyclic or partially cyclic TSP beginning at v1,
we traverse the navigation path starting at v1 in the frequent path
traversal graph and trace to v2 by starting edge hv1, v2i. At v2, we
find a via-link hv1, v2, v3i and go forward to v3, and then pass to
v4. The follow-up via-links are traced and the TSP hv1, v2, . . ., vni
will be obtained. On the condition of mining fully cyclic TSPs,
we cannot find a starting edge hvj, vki that is not contained in
any via-link hvi, vj, vki of the TSP. Because the TSP is circular, the
process of mining fully cyclic TSPs can proceed at any via-link
of the TSP. Therefore, the task of mining TSPs is split into two
stages. All acyclic or partially cyclic TSPs are discovered in the
first stage and the remainders are fully cyclic which are found
in the second stage. The graph traverse algorithm for mining TSPs
is shown in Figs. 4(a) and 4(b).

In stage one, a vertex in the frequent path traversal graph is se-
lected in step (g1) as the candidate for the starting vertex of a TSP.
If the selected vertex has any edge that is not contained in any via-
links, that is, it is the starting vertex of some acyclic or partially
cyclic TSPs, the mining process is proceeding to trace the edge
and the follow-up via-links by calling the function trace() in step
(g8).

The function trace() adopts a DFS approach to traverse the fre-
quent path traversal graph. It uses two stacks for non-recursive
operations. The UntracedStack is used to store the unselected verti-
ces when trace() traces some throughout-surfing patterns with the
same prefix. The other stack, BacktrackStack, is used to store the in-
dex values of vertices in throughout-surfing patterns that indicate
the number of vertices backtracked in the depth-first search. In
step (t1), trace() pushes the second vertex of the starting edge on
UntracedStack and then pop it for further processing in step (t5).
After attaching the popped vertex w to eTSP in step (t6), the via-
links of w are checked if they are the follow-up paths of eTSP in
steps (t9) and (t10). If there are k via-links hx, w, yji, 1 6 j 6 k,
where x is the preceding vertex of w in eTSP, yj are pushed on
UntracedStack for further processing. In addition, if k P 2, the index
value i of w in eTSP is pushed on BacktrackStack (k � 1) times in
steps (t16)–(t19). It means that w is a diverging vertex in eTSP
and there are (k � 1) throughout-surfing patterns with the same
prefix of length i.

In step (t20), there are no added via-links by which eTSP can be
extended, and therefore eTSP is ended at w. eTSP is outputted into
the output buffer outPattern in step (t21). Then, in steps (t22) and
(t23), an index value i in BacktrackStack is popped for backtracking
eTSP if the BacktrackStack is not empty and the prefix of eTSP with
length i is reused as a new TSP. Besides, the successive via-links
and vertices of w along eTSP are marked untraced and unselected
respectively in steps (t24)–(t28). The new eTSP can be extended
by attaching a vertex popped from UntracedStack in the following
iteration of trace().

When trace() returns, other TSPs starting at v are traced in the
while loop of steps (g2)–(g10), and then unselected vertices are
picked up for further processing in step (g1). After stage one, all
acyclic or partially cyclic TSPs are found and the remainders are
fully cyclic TSPs. A fully cyclic TSP can be traced from any via-link



Fig. 3. The graph construction algorithm.
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in the TSP. Steps (g18)–(g28) in stage two find all fully cyclic TSPs
as similar to those steps in stage one except the starting vertices
are selected from any via-link which has not been traced.

Example 1. Consider a data set consists of 30 Web browsing
sessions as shown in Table 2 and the corresponding Web structure
is depicted in Fig. 5. Suppose the minimum support is 5%. Figs. 6
and 7 show the corresponding initial path traversal graph and the
frequent path traversal graph respectively. In Figs. 6 and 7, the via-
links are listed in the tables beside the graphs to keep the graphs
simple and readable. The contents of UntracedStack, BacktrackStack,
and TSPs for all iterations in the mining processes are illustrated in
Fig. 8.

The graph traverse algorithm is executed as follows. In the first
iteration I1, the vertex a (the home page of the website) is picked
and attached to P1. Then, one of the starting edges associated with
vertex a, namely ha, ci, is picked and the function trace() is called
with arguments ha, ci and P1. In trace(), vertex c is pushed on
UntracedStack and then popped for further processing in iteration
I11. While the vertex c is popped, it is attached to P1 and its descen-
dents, g and d, obtained from via-links ha, c, gi and ha, c, di are
pushed on UntracedStack. Because there are two successive verti-
ces, the index value 1 of vertex c in P1 is pushed on BacktrackStack
once. Then d is popped and attached to P1 in iteration I12. Vertex j,
the only successor of d, is pushed on UntracedStack. The following
vertices are pushed and popped on UntracedStack and attached to
P1 as shown in Fig. 8. As the vertex s is popped and attached to
P1 in iteration I15, the current throughout-surfing pattern
ha, c, d, j, n, si is terminated and a new TSP is created by copying
the prefix of the first two vertices in P1. The index value 1 of prefix
vertices to be copied is recorded on BacktrackStack. Therefore, ver-
tices a and c in P1 form the prefix of the new TSP P2. The rest mining
process for P2, P3, P4, P5, and P6 is similar to that mentioned above.
P4 is a partially cyclic TSP in which hg, l, p, ti is cyclic. P6 is a fully
cyclic TSP that does not have a starting edge so we can traverse
it from any via-link. If we begin on hw, x, yi and go along hx, y, zi,



Fig. 4a. The graph traverse algorithm.
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hy, z, wi, and hz, w, xi, we will return to hw, x, yi. While the repeated
edge hw, xi is met, the fully cyclic TSP hw, x, y, z, w, xi is found. All
discovered TSPs are presented in Table 3.

Note that P5 is not a subpattern of P1, and P5 cannot be elimi-
nated. For applying content management and dynamic reconfigu-
ration of Web structure for personalized services, the meaning of
P5 = ha, d, j, n, si is distinct from P1 = ha, c, d, j, n, si. P5 shows that
the visitor may directly traverse the website from a to d not pass-
ing through c. According to P1 and P5, we expect the visitor is likely
to surf the website along the paths a–c–d–j–n–s or a–d–j–n–s for
some purposes. There are paths from a to c and a to d. We can high-
light both hyperlinks on the Web page a or even merge the con-
tents of c and d to provide a personalized Web structure for the
specific visitor.
4. Experimental results

In this section, we describe the data sets used for experiments
and illustrate the experimental results conducted by the proposed
method. Two kinds of data sets are used to evaluate the perfor-
mance of the mining method. The synthetic data sets are described
in detail in Section 4.1. The real data set of Web browsing sessions
is prepared by chaining the click stream of each visit in Web access
logs that are acquired from the website of the Directorate General
of Budget, Accounting and Statistics, Executive Yuan, Taiwan, ROC.
The performance evaluations are shown in Section 4.2.

The algorithms devised in this paper were implemented in
Microsoft Visual C++ 6.0. We conducted the experiments on a PC
running Microsoft Windows 2000 Professional with an Intel/
1.5GHz Pentium IV processor, 512MB of main memory, and 80GB
of hard disk.

4.1. Generation of synthetic Web browsing sessions

In this study, the Web browsing sessions are created based on
the maximal forward references (Chen et al., 1998). The synthetic
data sets of Web browsing sessions are generated from a simulated
website. A Web structure graph is built to mimic the structure of a
website with the root node regarded as the home page at the top
level. It is separated into two stages to construct the graph. The
first is the graph-expanding stage in which the number of nodes
at the lower level grows larger than that at the upper level and
the second is the graph-shrinking stage in which the number of
nodes at the lower level is less than that at the upper level. Fig. 9
shows an example of a simulated Web structure graph where the
fourth level is the separation between the graph-expanding stage
and the graph-shrinking stage. The graph-expanding stage
and the graph-shrinking stage contain four and three levels
respectively.



Fig. 4b. The trace() function.

Table 2
The data set of 30 Web browsing sessions.

Session ID Web browsing session Session ID Web browsing session

S001 ha, bi S016 hc, g, ji
S002 ha, c, di S017 hc, g, l, qi
S003 ha, c, d, ji S018 hc, g, l, pi
S004 ha, c, g, j, n, si S019 hc, g, l, p, ui
S005 ha, c, g, ki S020 hd, j, n, si
S006 ha, c, g, li S021 hg, j, n, si
S007 ha, c, g, l, p, t, g, li S022 hg, l, p, n, si
S008 ha, c, g, mi S023 hj, n, ri
S009 ha, d, hi S024 hl, p, n, si
S010 ha, d, ii S025 hl, p, t, gi
S011 ha, d, j, oi S026 ht, g, li
S012 ha, d, j, n, si S027 hw, x, y, zi
S013 ha, ei S028 hy, z, w, xi
S014 ha, fi S029 hx, y, z, w, xi
S015 hc, d, ji S030 hw, x, yi

a

b c d e f

g h i j

k l m n o

p q r s

t u

v

w

x

z

y

Fig. 5. The Web structure of Example 1.
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The Web structure graph consists of internal nodes and leaf
nodes. For each internal node, its children nodes could be at the



Vertex Via-link 

c <a, c, d>, <a, c, g> 

d <a, d, h>, <a, d, i>, <a, d, j>, 

<c, d, j> 

g <c, g, j>, <c, g, k>, <c, g, l>, 

<c, g, m>, <t, g, l> 

j <d, j, n>, <d, j, o>, <g, j, n> 

l <g, l, p>, <g, l, q> 

n <j, n, r>, <j, n, s>, <p, n, s> 

p <l, p, n>, <l, p, t>, <l, p, u> 

t <p, t, g> 

w <z, w, x> 

x <w, x, y> 

y <x, y, z> 

z <y, z, w> 

: edge
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c b e d 
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j i h 

k l m o n 
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z 
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Fig. 6. The initial path traversal graph of Example 1.

Vertex Via-link 

c <a, c, d>, <a, c, g> 

d <a, d, j>, <c, d, j> 

g <c, g, j>, <c, g, l>, 

<t, g, l> 

j <d, j, n>, <g, j, n> 

l <g, l, p> 

n <j, n, s>, <p, n, s> 

p <l, p, n>, <l, p, t> 

t <p, t, g> 

w <z, w, x> 

x <w, x, y> 

y <x, y, z> 

z <y, z, w> 

: edge

a 

c d 

g j 

l n 

p s 

t 
w 

x y 

z 

Fig. 7. The frequent path traversal graph of Example 1.
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lower level, at the same level, or at the upper level. The number of
children nodes of each internal node, referred to as fan-out F, is
determined by a uniform distribution within a given range from
one to ten. The length of Web browsing sessions is also generated
by a uniform distribution with mean |P|. Two predetermined prob-
abilities Pu and Pd are used to guide at which level the following
node in the same Web browsing session lies. The parameters used
to synthesize the data sets of Web browsing sessions are shown in
Table 4.

The synthetic Web browsing sessions are created as follows.
First, the length |P| of a Web browsing session is determined. Sec-
ond, the Web browsing session begins at the root node and one
node is uniformly selected from the lower level in the Web struc-
ture graph as its successive node. Then, the level of the following
node is determined by the probability Pu or Pd. The parameter Pu

indicates the probability of branching to the upper levels in the
graph-expanding stage, and Pd indicates the probability of branch-
ing to lower levels in the graph-shrinking stage. While the level of
the following node is determined, a node is picked uniformly from
the level. The next nodes in this Web browsing session are gener-
ated in the same way until the length of the Web browsing session
is equal to |P|.
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Table 3
All throughout-surfing patterns identified from
the data set in Table 2.

ID Throughout-surfing pattern

P1 ha, c, d, j, n, si
P2 ha, c, g, j, n, si
P3 ha, c, g, l, p, n, si
P4 ha, c, g, l, p, t, g, li
P5 ha, d, j, n, si
P6 hw, x, y, z, w, xi

Root

Graph-expanding
stage 

Graph-shrinking
stage 

Fig. 9. A simulated Web structure graph.

Table 4
The parameters for generating synthetic data set.

Parameter Default value

P: number of Web browsing sessions 200 K
F: number of fan-outs of an internal node 10
|P|: average length of Web browsing sessions 5
Pu: probability of branching to upper levels 0.3
Pd: probability of branching to lower levels 0.1
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Fig. 11. Execution time for various lengths of Web browsing sessions.
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Fig. 12. Execution time for various sizes of data sets.
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Fig. 13. Execution time for various numbers of fan-outs.
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4.2. Performance evaluations

In this study, we conducted a series of experiments to compare
our method with the modified Apriori and PrefixSpan algorithms.
Other mining methods such as CloSpan and BIDE may be compared
by their performance curves (Wang et al., 2007; Yan et al., 2003). In
the experiments, both the Apriori and PrefixSpan algorithms were
modified to discover Web traversal patterns (Lee & Yen, 2007) in-
stead of frequent Web access patterns. The outputs of both modi-
fied Apriori and PrefixSpan algorithms require further joint efforts
to generate TSP. In the following figures of experimental results,
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Fig. 10. Execution time for different settings of minimum support thresholds.
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Fig. 14. Performance evaluations on the real data.



Table 5
Precision and recall measures gathered from the experiments on 750 K real data.

Min_sup (%) TSP count WTP count Matched Contained Missed Precision Recall

0.02 266 415 176 239 0 0.662 0.424
0.06 103 118 86 32 0 0.835 0.729
0.10 59 67 50 17 0 0.847 0.746
0.14 43 43 40 3 0 0.930 0.930
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the values of the parameters are depicted in the form of
Px1Fx2|P|x3Sx4Pux5Pdx6. x1 is the size of the data set, x2 is the number
of fan outs, x3 is the mean length of the Web browsing sessions, x4

is the minimum support, x5 is the probability for branching to the
upper level, and x6 is the probability for branching to the lower
level.

On different settings of minimum support thresholds, the exper-
imental results are shown in Fig. 10. While the minimum support
becomes lower, the number of frequent patterns increases and the
frequent patterns get longer. In Fig. 10, the execution time of our
mining approach remains almost at the same level because it discov-
ers the TSP by traversing the path traversal graph and almost all the
run time is spent on constructing the path traversal graph.

Figs. 11 and 12 illustrate the scalability of the algorithms by
varying the mean length and the number of Web browsing ses-
sions respectively. We expect the execution time is proportional
to the mean length as well as the number of Web browsing ses-
sions. As the length of the Web browsing sessions or the size of
the data set increases, the cost of scanning the data set also raises.
The experimental results conform to our expectation.

In Fig. 13, the number of fan-outs is varied from eight to thir-
teen. The number of via-links associated with a vertex is propor-
tional to the number of fan-outs. Therefore, the execution time
grows with a larger number of fan-outs. Because the Apriori algo-
rithm must examine all combinations of large sequences obtained
in the (k � 1)th iteration to produce candidates of length k, its
execution time grows exponentially. The number of fan-outs has
a great effect on the number and the size of the projection
databases. As the number of fan-outs increases, both the number
and the size of the projection databases increase. Therefore, the
PrefixSpan algorithm does not perform well as the number of
fan-outs increases.

Fig. 14 presents the results of experiments conducted on the
real data. As the minimum support varies from 0.14% to 0.01%,
the execution time of our method grows slightly from 27 to 29 sec-
onds, which conforms to the results shown in Fig. 10.

As mentioned in Section 2, the method for mining TSP is not di-
rectly comparable with those algorithms for mining maximal fre-
quent sequences, closed sequences, and Web traversal patterns.
However, as Theorem 1 describes, the set of throughout-surfing
patterns is a pattern closure of Web traversal patterns. Table 5
exhibits the numbers of TSPs and WTPs (TSP count and WTP count
respectively) as well as the precision and recall measures gathered
from the experiments on 750 K real data. Precision is defined as the
ratio of mined Web traversal patterns to all TSP. Recall is defined as
the ratio of mined Web traversal patterns to the Web traversal pat-
terns contained in the data set. Both equations of the precision and
recall are listed below.

Precision ¼ number of WTP in TSP=number of TSP: ð1Þ
Recall ¼ number of WTP in TSP=number of WTP in data sets:

ð2Þ

The ‘‘Missed’’ column records the number of WTPs that are nei-
ther found nor contained in TSP. The ‘‘Matched’’ column presents
the number of Web traversal patterns that match throughout-surf-
ing patterns. The ‘‘Contained’’ column shows the number of Web
traversal patterns that are contained in some TSPs.
As shown in Table 5, the discovered TSPs hold all Web traversal
patterns, that is, all the Web traversal patterns are contained in the
TSP, and hence the values in the column of ‘‘Missed’’ are all zero.
Theorem 1 is verified by the columns of ‘‘Matched,’’ ‘‘Contained,’’
and ‘‘Missed.’’ While the minimum support is considerably low,
the precision and recall are degraded. Nevertheless, it is unrealistic
to set the minimum support at such low levels to generate a large
number of patterns. On the other hand, the higher minimum sup-
port setting acquires high degrees of precision and recall measures.
5. Conclusions and future work

In this paper, we investigate the problem of mining Web navi-
gation patterns. Two primary issues involved in mining Web nav-
igation patterns are the effectiveness and the efficiency of the
mining approaches. First, we introduce the concept of through-
out-surfing patterns, which are effective to predict website visitor’s
surfing paths and destinations. Second, we propose the path tra-
versal graph and graph traverse algorithm to increase the effi-
ciency of mining throughout-surfing patterns. The research
results show that throughout-surfing patterns are more effective
for content management and they are applicable to providing surf-
ing paths recommendation and personalized configuration of dy-
namic websites.

In addition, a path traversal graph structure is suitable for incre-
mental mining of sequential patterns. The compact graph structure
retained in the main memory may be output to permanent storage.
While mining patterns from the database with new added data, the
path traversal graph is restored in the main memory and the new
data is retrieved and appended to the graph. Then, the processes
for mining TSPs are performed in the graph. We will extend the
mining algorithm for mining TSP from incremental databases in
the future study. Moreover, TSP only features consecutive click se-
quences. It is another interesting issue to mine nonconsecutive
browsing patterns. The algorithms proposed in this study will be
advanced to discover the discontinuous browsing patterns in a
website.
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