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a b s t r a c t

This paper presents an efficiency assessment of Latin American airlines, using VDRAM-DEA (Virtual
Frontier Dynamic Range Adjusted Model - Data Envelopment Analysis). In VDRAM, the reference and
DMU evaluation sets are different, thus allowing higher discrimination of scoring. In this research, the
VDRAM model is used first in a two-stage approach. In the second stage, Simplex Regression is adopted
to handle skewed and asymmetrical efficiency scores. The results corroborate previous studies and reveal
that the impact of fleet mix and public ownership cannot be overlooked in Latin American airlines, which
seem to be affected by insufficient load factors and hub and spoke systems. For the same reasons,
although low cost carriers are an emerging trend in the region, it was not possible to confirm their higher
efficiency levels. Besides, to some extent, these findings also show the absence of a learning curve in
Latin American airlines.

© 2016 Published by Elsevier Ltd.
1. Introduction

This research focuses on the efficiency of Latin American airlines
by using the VDRAM-DEA, presented in Li et al. (2016), as the
cornerstone method to compute efficiency. Previous research on
airlines has adopted several methods, such as the factor produc-
tivity approach (Bauer, 1990; Oum and Yu, 1995; Barbot et al.,
2008); Stochastic Frontier Analysis or SFA (Good et al., 1993;
Baltagi et al., 1995); the Turnquist total factor productivity index
(Coelli et al., 2003; Barbot et al., 2008); and DEA (Data Envelopment
Analysis) models (Merkert and Hensher, 2011; Barros et al., 2013;
Barros and Peypoch, 2009; Barros and Couto, 2013). Papers have
variously focused on US airlines (Barros et al., 2013; Greer, 2008;
Sj€ogren and S€oderberg, 2011), Canadian airlines (Bauer, 1990;
Assaf, 2009), European airlines (Distexhe and Perelman, 1994;
Greer, 2008; Barros and Peypoch, 2009), Asian airlines (Baltagi
et al., 1995; Wanke et al., 2015), and African airlines (Barros and
Wanke, 2015). Except for Melo Filho et al. (2014), who focused on
wages in Brazilian airlines; and Oliveira and Huse (2009), who
focused on Brazilian airlines' price reactions to market entry, thus
Wanke), cbarros@iseg.utl.pt
far, to the best of our knowledge, few papers have focused on Latin
American airlines. Therefore, this paper innovates by focusing on a
comprehensive set of Latin American airlines.

Recently, Wanke et al. (2015) and Barros and Wanke (2015)
showed the importance of using efficiency methods with high
discriminatory power towards the efficiency frontiere that is lower
efficiency scores in contrast to traditional DEA models e when
assessing, respectively, the efficiency of Asian and African airlines.
Additionally, the authors advocate the combining of different pre-
dictive modelling techniques to explore effectively the impact of
contextual variables on efficiency measurement. Therefore, this
paper innovates in this context first by undertaking a review of
Latin American airlines and, second, by adopting as a research tool
the newly VDRAM, presented in Li et al. (2016), combined with
Simplex Regression in a two-stage approach. To the best of our
knowledge, this is the first time such approach is used to analyze
airline efficiency in light of different contextual variables, simul-
taneously tackling two major problems in efficiency measurement:
score discrimination and asymmetry.

The motivations for the present research follow. First, Latin
America is one of the regions in the world most favored by the
commodity price boom in the last ten years, with clear reflexes on
airline traffic, justifying the present research. Second, this paper
builds upon previous studies related to airline efficiency by
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evaluating relative efficiency among Latin American airlines. To the
best of our knowledge, this is the first time Latin American airlines
have been analyzed as a whole, thus differing from country-based
level analysis. Third, the present analysis enables a ranking of the
relative efficiency of the Latin American airlines using the newly
developed VDRAM (Li et al., 2016), while assessing the impact of
different contextual variables related to cargo type, ownership type,
and fleet mix on their efficiency levels.

Therefore, the purpose of this study is to assess the de-
terminants of airline efficiency in Latin America based on business
related variables commonly found in the literature. In order to
achieve this objective, an efficiency analysis is developed in a two-
stage approach: VDRAM DEA model efficiency estimates are
computed first, observing the prescriptions in Li et al. (2016), fol-
lowed by Simplex regression. Researchers frequently face situations
where they are interested in modelling proportions, percentages or
values, such as efficiency scores, within the open interval (0; 1),
according to one or several covariates, within the architecture of
the regression. For this type of variable, the normal assumption is
not supported, thus invalidating conclusions that might otherwise
be obtained from these results. Asymmetry of the response variable
and multicollinearity are two of the most frequent problems that
the normal model cannot accommodate. In this situation, several
alternatives have been developed, such as Beta regression, which
leverages the advantages the general linear model, and simplex
distribution, which is part of a more general class of models, i.e.,
dispersionmodels (L�opez, 2013). The paper is structured as follows:
after this introduction, the literature survey is presented. The
methodology section, in which the two-stage VDRAM-Simplex
regression is further discussed, follows next. Section 4 presents the
data and the contextual setting, followed by the discussion of the
results in Section 5 and the conclusions in Section 6.

2. Literature review

Research in airline frontier models encompasses several scien-
tific methods to analyze efficiency quantitatively. First was the early
tradition based on cost models (e.g., Caves et al., 1981, 1984;
Windle, 1991; Baltagi et al., 1995; Oum and Yu, 1998; Liu and
Lynk, 1999; Fritzsche et al., 2014). Second was the total factor
productivity approach of Bauer (1990) adopted by Oum and Yu
(1995) and Barbot et al. (2008). More recently, the contemporary
stochastic econometric frontier models have gained popularity
(e.g., Cornwell et al., 1990; Good et al., 1993; Sickles, 1985; Sickles
et al., 1986; Captain and Sickles, 1997; Coelli et al., 1999; Inglada
et al., 2006) and the DEA models (e.g., Distexhe and Perelman,
1994; Good et al., 1995; Adler and Golany, 2001; Fethi et al.,
2001; Scheraga, 2004; Greer, 2008; Bhadra, 2009; Gitto and
Mancuso, 2012).

Caves et al. (1981) assessed the productivity of eleven US airlines
for the period 1972e1977. Caves et al. (1984) analyzed the impact of
network size on the performance of US airlines. Caves et al. (1984)
compared the productivity performance of a sample of US and non-
US airlines over the period 1970e1983. Schmidt and Sickles (1984)
analyzed the efficiency of US airlines. Gillen et al. (1990) compared
the productivity of seven Canadian airlines over the period
1964e1981. Sickles (1985) analyzed the impact of deregulation on
the performance of US airlines. Bauer (1990) assessed the efficiency
and returns to scale of twelve US airlines over the period
1971e1981. Good et al. (1993) compared the performance of large
European and US airlines over the period 1976e1986, and Oum and
Yu (1995) compared the performance of European and US airlines
over the period 1986e1993. Ehrlich et al. (1994) analyzed the
impact of ownership on the productivity of European airlines.
Captain and Sickles (1997) analyzed the impact of average stage
length, network size, and percentage of the work force on the
performance of European airlines. Coelli et al. (1999) analyzed the
impact of stage length, load factor, and network size on the per-
formance of US and European airlines.

Several issues have been addressed by these studies within
these countries or regions. Besides, for example, rankings of effi-
ciency and comparisons of slack, the impacts of network size,
ownership, and regulatory measures on the performance of the
airline industry have also been assessed, by incorporating contex-
tual variables in a two-stage approach (Barros et al., 2013). Indeed,
recent papers maintain this focus. For example, Barbot et al. (2008)
compared the efficiency of US, European, and Asian airlines with a
DEA model. Barros and Peypoch (2009) analyzed European airline
efficiency with a DEA two-stage model, applying the results of
Simar and Wilson (1998). Assaf and Josiassen (2012) analyzed the
efficiency of European and US airlines with a Bayesian frontier
model. Wanke et al. (2015) and Barros and Wanke (2015) intro-
duced the use of TOPSIS in airline efficiency measurement by
focusing on the Asian and African cases, respectively. It is inter-
esting to note, however, that despite the emergence of the phe-
nomenon of low cost airlines (Pearson et al., 2015 and Yu et al.,
2016), this is still a relatively understudied topic under the lenses
of operational efficiency between them and the traditional full
services carriers.

A summary of the literature review is presented in Table 1,
which enumerates the objects of analysis and the models used in
each paper over the last three decades of studies on airline effi-
ciency. This paper builds upon this body of knowledge not only by
revisiting and confirming in a relatively unexplored geographic
region several findings related to the contextual variables, but also
by offering additional insights on new contextual variables and
methodological approaches where the discriminatory power of the
efficiency models and the asymmetry of their computed scores are
handled simultaneously.

Additionally, taking a closer look within each paper, it is clear
that the most common inputs are labor, capital, and materials or
capacity, while the most frequent outputs encompass revenues,
profits, movements, and passengers. Therefore, in this study, as the
input, we use the number of employees, and, as the dynamic factor,
the total number of aircraft. The outputs used involves the number
of domestic, world, and Latin and Caribbean flights. Additionally, it
appears that although there has been, thus far, only one application
of virtual frontiers in the airline industry (Li et al., 2015), no paper
has adopted simultaneously VDRAMDEA and Simplex regression in
a two-stage approach. Furthermore, as an additional innovation of
this paper, no earlier work has analyzed Latin American airlines in
isolation.
3. Virtual Frontier Dynamic Range Adjusted Model (VDRAM)

DEA is a non-parametric model first introduced by Charnes et al.
(1978). Based on linear programming (LP), it is used to address the
problem of calculating relative efficiency for a group of DMUs by
using a weighted measure of multiples inputs and outputs (Wanke,
2012). Consider a set of n observations on the DMUs (Decision
Making Units). Each observation,DMUj (j ¼ 1; :::;n) usesm inputs xij
(i ¼ 1; :::;m) to produce s outputs yrj (r ¼ 1; :::; s). DMUo represents
one of the n DMUs under evaluation, and xio and yro are the ith input
and rth output for DMUo, respectively. Model (1) presents the
envelopment modelling for the variable return-to-scale frontier
types, where ε is a non-Archimedian element and s�i and sþr ac-
count, respectively, for the input and output slack variables (Zhu,
2003; Bazargan and Vasigh, 2003).



Table 1
Literature review.

Author(s) Sample size and focus Method(s) used

Caves et al. (1981) 15 US airlines Multilateral TFP index
Caves et al. (1984) 9 US airlines Translog Cost Frontier
Schmidt and Sickles

(1984)
Largest US airlines Cobb-Douglas Production function

Bauer (1990) 7 Canadian airlines Translog Cost Frontier
Gillen et al. (1990) 8 US airlines Translog cost Regression
Cornwell et al. (1990) 14 US and 27 international airlines Cobb-Douglas Production frontier
Windle (1991) Largest US airlines Multilateral TFP index and cost function
Windle (1991) Largest US airlines Multilateral TFP index and cost function
Good et al. (1993) 9 US, 15 European, and 9 Asian airlines Cobb-Douglas production frontier
Distexhe and Perelman

(1994)
US and European airlines DEA-CCR and Malmquist index

Good et al. (1995) US airlines Cobb-Douglas production frontier and DEA-CCR
Baltagi et al. (1995) 8 US, 8 European, and 7 Asian Translog Variable Cost Function
Oum and Yu (1995) 32 international airlines Multilateral TFP Index
Coelli et al. (1999) 11 US airlines Translog Production Frontier
Liu and Lynk (1999) 18 international airlines, 20 international airlines Cobb-Douglas Cost; Malmquist productivity index
Inglada et al. (2006) 39 International airlines DEA-BCC and TFP Index
Barbot et al. (2008) 14 US airlines DEA-BCC and TFP Index
Greer (2008) 8 US airlines DEA-CCR and Two Stage regression
Greer (2009) 29 European airlines Malmquist index
Barros and Peypoch

(2009)
12 US airlines DEA-CCR and two Stage regression

Assaf (2009) 7 Canadian Airlines Stochastic Production Bayesian Frontier
Ouellette et al. (2010) 50 largest airlines Technical Efficiency and allocative Efficiency
Chow (2010) Chinese airlines, 2003e2007 Efficiency analyzed with DEA and productivity analyzed with Malmquist

index
Sj€ogren and S€oderberg

(2011)
18 major UK airlines Input Distance Function

Merkert and Hensher
(2011)

15 US airlines DEA Two Stage

Barros and Couto (2013) 23 European airlines Malmquist and Luenberger productivity measures
Bilotkach and Huschelrath

(2012)
Airline alliances Conceptual approach

Barros et al. (2013) 11 US airlines, 1998 to 2010 B-convex DEA model
Wu et al. (2013) Chinese airlines, other Asian airlines, USA airlines and European

airlines, 2006e2010
Efficiency with CCR and BCC DEA model and a second stage regression
explaining efficiency.

Tavassoli et al. (2014) Iranian airlines in 2010 SBM-NDEA model (Slacks based measure network data envelopment
analysis)

Lee and Worthington
(2014)

Several airlines, 1994e2011 DEA and SFA and second stage regression

Barros and Wanke (2015) African airlines, 2010e2013 TOPSIS and neural networks in a two-stage approach
Li et al. (2015) World airlines, 2008e2012 Virtual Frontier Network Slack Based Model
Wanke et al. (2015) Asian airlines, 2006e2012 TOPSIS and Markov-Chain Monte Carlo GLM model
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maxf� ε

 Pm
i¼1

s�i þ Ps
r¼1

sþr

!
s:t:Pn
j¼1

ljxij þ s�i ¼ xio;ci

Pn
j¼1

ljyrj � sþr ¼ fyro;cr

lj � 0;cjPn
j¼1

lj ¼ 1

(1)

Any of the DMUs may or may not be on the frontier when the
output-input ratio is measured (Barros and Peypoch, 2009; Wang
et al., 2012; Wang and Feng, 2015). The distance from the actual
allocation of a particular DMU to the frontier is believed to repre-
sent the inefficiency of the DMU, which may be caused by various
factors that are specific to the DMU. If the efficiency of DMU i is 1,
DMU i is a technically efficient DMU; if its efficiency is less than 1, it
is technically inefficient.

Since the units of the inputs and outputs do not affect the op-
timum solution in the Range Adjusted Measure (RAM) model (Aida
et al., 1998), thus improving the discriminatory power of DEA, RAM
is used here to evaluate airline efficiency when there is a large
difference in size between inputs and outputs. The use of RAM
within the context of DEA models was originally proposed by Aida
et al. (1998) and Cooper et al. (1999) and has beenwidely applied to
evaluate efficiency (Steinmann and Zweifel, 2001; Sueyoshi and
Sekitani, 2007; Wang et al., 2013).

The basic RAM (range-adjusted measure) model is given below:

q ¼ 1�max
1

M þ N

 XM
m¼1

s�m0
R�m

þ
XN
n¼1

sþn0
Rþn

!
(2)

s:t: xm0 ¼
XK
k¼1

lkxmk þ s�m0;m ¼ 1;2;…;M

yn0 ¼
XK
k¼1

lkynk � sþn0;n ¼ 1;2;…;N

XK
k¼1

k ¼ 1

lk; s
�
m0; s

þ
n0 � 0
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where-
R�m ¼ max

k¼1;2;…;K
ðxmkÞ � min

k¼1;2;…;K
ðxmkÞand Rþn ¼ max

k¼1;2;…;K
ðynkÞ �

min
k¼1;2;…;K

ðynkÞ are the ranges of the inputs and outputs.
To measure the intertemporal efficiency change, many models

have been proposed, such as the window analysis of Klopp (1985),
the Malmquist index DEA model by F€are et al. (1994) and the dy-
namic DEA model by F€are and Grosskopf (1996) and Tone and
Tsutsui (2010). Compared with the dynamic model, the other
models do not explain the effect of carry-over activities between
two consecutive terms and the connecting activities between terms
are not accounted for explicitly (Tone and Tsutsui, 2010). In this
research, we adopt the dynamic RAM model (DRAM) as presented
in Li et al. (2016):

roverall ¼ 1�max
XT
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wt
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Pn
j¼1

ljt ¼ 1 t ¼ 1;2;…; T

l � 0; s� � 0; sþ � 0
(3)

where xijt indicates the i th input for DMU j at period t , yijt stands
for the i th output for DMU j at period t , zijt denotes the i th dy-
namic factor for DMU j at period t . s�it ; s

�
ilt �1; s

þ
ilt ; s

þ
it stand for the

input excesses, dynamic factor excesses in input, dynamic factor
shortfalls in output and the output shortfalls, respectively.
Rx ¼ maxðxÞ �minðxÞ;Ry ¼ maxðyÞ �minðyÞand Rz ¼
maxðzÞ �minðzÞ are the ranges of the inputs, outputs and dynamic
factors. The term efficiency of term t is given by:

rt ¼ 1� 1
mþ sþ 2r
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However, in the dynamic RAM model above, each decision-
making unit compares its production ability with the production
ability of an optimal real frontier. When its result is 1, the DMU is
technically efficient; otherwise, the DMU is technically inefficient.
Therefore, the differences between efficient DMUs cannot be
distinguished in such circumstances. To overcome this disadvan-
tage, a Virtual Frontier Dynamic RAM was proposed based on the
Virtual Frontier DEA in recent papers (Bian and Xu, 2013; Cui and Li,
2014, 2015a, 2015b; Li et al., 2015). Hence, the overall efficiency of
Virtual Frontier Dynamic RAM model qoverall is measured by:
roverall ¼ 1�max
Xr
t¼1

wt
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where xxijt indicate the inputs for DMU j at period t in the frontier
reference set, yijt stands for the outputs for DMU j at term t in the
virtual frontier reference set, zzijt denotes the dynamic factors for
DMU j at term t in the virtual frontier reference set. The term ef-
ficiency of term t is

rt ¼ 1� 1
mþ sþ 2r

 Xm
i¼1

s�it
Rxi0t

þ
Xr
i¼1

s�ilt�1
Rzi0t�1

þ
Xs
i¼1

sþit
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þ
Xr
i¼1

sþilt
Rzi0t

!
(6)

In this model, the reference DMU set and the evaluated DMU set
are two different sets; this offers the possibility of distinguishing
between the efficient DMUs in the traditional dynamic RAMmodel.
During the evaluating process, the reference DMU set remains
unchanged so that its results may be more reasonable than existing
models. The selection of the virtual frontier sets observes
xi0t ¼ min

j
fxijtg; yi0t ¼ max

j
fyijtg; j ¼ 1;2;…;n represents the

DMUs, xijt denotes the inputs of DMU j at term, yijt denotes the
outputs of DMU j at term t . According to the literature (Cui and Li,
2014, 2015a, 2015b; Li et al., 2015), for the virtual frontier reference
set, the inputs are set as xxijt ¼ 0:95xi0t , the outputs are set as
yyijt ¼ 1:05yi0t , and the dynamic factors are set as zz ¼ z.

From the selection of the reference DMU set, it is expected that
the inputs of reference DMU are less than the real DMUs and that
the outputs are larger than the real DMUs. Therefore, the efficiency
estimates of the Virtual Frontier Dynamic RAM are lower than
those obtained from the traditional dynamic RAM model.
4. Data and efficiency prediction using Simplex Regression

4.1. The data

The data on 19 Latin American airlines were obtained from the
ALTA airline website based on available operational reports of air-
lines for the period 2010 to 2014, (https://www.alta.aero/la/home.
php). The ALTA association includes airlines of almost all Latin
American countries. Table 2 presents the airlines analyzed.

https://www.alta.aero/la/home.php
https://www.alta.aero/la/home.php


Table 2
The Latin American airlines in 2014.

Company Country Domestic flights Latin American and Caribbean flights World flights Employees Number of aircraft

Aerolíneas Argentinas Argentina 35 15 5 11,200 69
Aeromar Mexico 20 0 2 900 19
Aeromexico Mexico 44 13 22 13,000 122
Avianca Colombia 42 32 16 19,650 170
Avianca Brazil Brazil 24 0 0 4032 40
Bahamasair Bahamas-Nassau 13 2 4 641 9
BoA - Boliviana de Aviacion Bolivia 7 3 2 978 14
Caribbean Airlines Caribbean 2 11 6 1000 23
Cayman Airways Cayman Islands 2 4 5 386 6
Copa Airlines Colombia 9 53 10 9399 94
Cubana Cuba 16 11 6 2113 13
GOL Brazil 52 13 2 16,157 140
InselAir Aruba 0 17 2 500 17
LATAM Airlines Group South America 113 124 12 53,000 328
LIAT Antigua 0 21 0 1025 11
Sky Airline Chile 13 4 0 1800 16
Surinam Airways Surinam 0 8 2 299 4
TAME Ecuador 17 7 1 1423 15
Volaris Mexico 33 0 13 2738 48
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Table 2 shows that airlines from all major Latin American
countries (Brazil, Mexico, Argentina, and Chile) are represented.
Moreover, all major Latin American airlines are analyzed. Aero-
líneas Argentinas is Argentina's most important airline and is the
national flag carrier. The company was created in 1949 and
returned to government control in December 2014, after a brief
period of private ownership. The Mexican airline Aeromar was
established in 1987 and operates domestic services in Mexico and
international services between Mexico and USA. Based at Mexico
City International Airport, Aeromar is a private airline owned by
Grupo Aeromar. The Mexican airline Aeromexico is that country's
national airline and was established in 1934.With its hub inMexico
City International Airport, Aeromexico is a private airline held by a
large number of private investors. Colombia's Avianca Airlines is
that country's national airline. Established in 1919, it is the second
oldest airline, after the German KLM. Its hub is located in Bogota,
Colombia. Avianca has several subsidiaries: Avianca-Brazil, Avi-
anca-Costa Rica, Avianca-Equador, Avianca-El Salvador, Avianca-
Peru, and Avianca-Cargo. The private company is owned by
Germ�an Efromovich. The state-owned Bahamasair is the national
airline of the Bahamas and was established in 1973. The airline
Boliviana de Aviacion (BoA) is the publicly owned national carrier of
Bolivia. Established in 2007, it flies to USA, Latin America, and
Europe. Caribbean Airlines is a publicly owned airline that
commenced operations in Trinidad and Tobago in 2006. Cayman
Airways is the airline of the British Overseas Territory of the
Cayman Islands. Founded in 1968, the airline is publicly owned.
Copa Airlines of Colombia is the publicly owned national carrier
andwas established in 1993. Cubana de Aviaci�on is the state-owned
flag carrier airline of Cuba; founded in 1929, it serves most Latin
American destinations. GOL, of Brazil, is a low cost private airline
operating out of S~ao Paulo airport and began operations in 2001.
InselAir, of Aruba, Curacao, has been in business since 2006 and is
the state-owned flag carrier. LATAM Airlines Group is a private
airline from Chile that started operations in 2010. Based in Santiago,
Chile, the company also has offices in S~ao Paulo, Brazil. The com-
pany is the result of the merger of the Brazil's TAM and Chile's LAN.
LIAT, a company based in Antigua, is a Caribbean airline specialized
in inter-island service. Operating since 1956, in January 2007 this
private airline merged with Caribbean Star Airlines. Chile's
Santiago-based Sky Airline is also a low cost private airline serving
Latin American destinations, including Argentina, Brazil, Peru and
Bolivia. The company has been operating since 2002. TAME, of
Ecuador, is the public flag carrier established at the international
airport at Quito. This airline was founded on December 1962.
Volaris is a private Mexican airline located in Tijuana, Mexico. The
second largest Mexican airline after Aeromexico, Volaris started ots
low cost operations in 2005. The above airlines are representative
of most Latin American countries.

The final sample size of 95 units involves the combination of 19
airlines for a period of five years. Inputs and outputs adopted in this
research were in accordance with the literature review and data
availability. As the single input, we used the number of employees;
the total number of aircraft was the solely dynamic factor; and the
outputs were represented by the total number of flights to Latin
America and the Caribbean, to domestic destinations, and to the
rest of the world. Their descriptive statistics are presented in
Table 3.

In addition, six contextual variables were collected to explain
the differences in efficiency levels. These are also presented in
Table 3, and are related to the major business characteristics of the
airline, namely: ownership type (whether public or not); whether
the airline performs cargo transportation or not; and the fleet mix
of the airline (percentage of large and small aircrafts). A dummy
variable was also included with respect to the few existing low-cost
airlines in Latin America: GOL (Brazil), Sky Airways (Chile), and
Volaris (Mexico). Additionally, two contextual variables were used
to represent the linear and squared components of an eventual
learning curve.

Before proceeding, it is worthwhile presenting the grounds of
the concept of dynamic factors and carry-overs in DEA in light of
the variable selection depicted in the previous paragraph. In DEA,
there are several methods for measuring efficiency change over
time, e.g. the window analysis and the Malmquist index. However,
they usually neglect carry-over variables between two consecutive
terms. These carry-overs play an important role in measuring the
efficiency of DMUs in each term as well as over the whole terms
based on the long-term viewpoint. Dynamic DEA model proposed
by F€are and Grosskopf (1996) is the first innovative contribution for
such purpose. Then, Sengupta (1997) verified the dynamic effi-
ciency embedded within the Farrell's productive structure (1957) e
which ensembles the basic DEA models ewhile varying the capital
input over the course of time. When presenting VDRAM applica-
tion, also building upon the classic DEA models, Li et al. (2016)
considered the capital stock as the dynamic factor or the carry-
over effect to be used. According to Hill (1999), the capital stock,
or simply capital, consists of all the fixed assets such as machinery,
equipment, buildings and other structures used by enterprises to



Table 3
Descriptive statistics for the VDRAM and contextual variables.

Variables Min 1st Qu. Median Mean 3rd Qu Max.

Contextual and Business-related
Characteristics

Learning curve Trend 1.0000 2.0000 3.0000 3.0000 4.0000 2014
Trend2 1.0000 4.0000 9.0000 11.0000 16.0000 5.0000

Low-cost Yes 0.0000 0.0000 0.0000 0.1579 0.0000 1.0000
Cargo
transportation

Yes 0.0000 0.0000 0.0000 0.05263 0.0000 25.000

Ownership Public 0.0000 0.0000 1.0000 0.5789 1.0000 1.0000
Fleet mix % Large Aircraft 0.0000 0.4375 0.7234 0.6528 1.0000 1.0000

% Small Aircraft 0.0000 0.0000 0.2174 0.2847 0.5410 1.0000
VDRAM variables Outputs Number of Domestic Flights 0 2 15 22.38 33 113

Number of Latin and Caribbean
Flights

0 3 10 17.41 16 124

Number of World Flights 0 1 3 5.032 6 22
Input Number of Employees 266 829 1607 7021 9701 53,000
Dynamic factor Number of aircraft 2 13 19 59.13 86.50 328
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into processes of production. Therefore, in this research, the
number of planes represents the productive resources accountable
for the carry over effects in intertemporal efficiency levels, acting as
mediators over the course of time between traditional inputs such
as labors and outputs such as the number of destinations accom-
plished. It is also worth noting that dynamic efficiency models may
also encompass productive network structures, where the outputs
of the first stage consist of the inputs of the subsequent stage,
which is not the case here since the single black-box approach is
under consideration in the VDRAM DEA (Kawaguchi et al., 2014).

At last, some additional lines should be added with respect to
zero-valued inputs and outputs in DEA. Following Barr (2004),
these zero values were substituted by 0.01daccording to the
feature offered in different DEA softwaresdin order to proceed
with the analyses within the ambit of output-oriented models.
Results found suggest that the methodological bias introduced by
this procedure seems to be minimal, since the variation in effi-
ciency scores were negligible. As a matter of fact, results presented
in Section 6 still hold when 0.001 is used instead of 0.01.
4.2. Predicting efficiency levels using Simplex Regression

The Simplex regression has its roots in the Simplex distribution,
which is a distribution that belongs to the family of dispersion
models, with location and dispersion parameters m and s2,
respectively (also abbreviated as DMðm;s2Þ). The exponential
dispersion family density (ED) has the form

pðy; q;fÞ ¼ exp
�
yq� kðqÞ

aðqÞ þ Cðy;fÞ
�
; y2С (7)

for some functions að$Þ, kð$Þ and Cð$Þ with parameters q2Q and
f>0 and С is the support of the density. In particular, it is known
that k is the cumulant generating function. Note that ED is the
classical exponential family of the random component in the GLM
framework.

The general form of a dispersion model is

p
�
y;m;s2

�
¼ a

�
y; s2

�
exp
�
� 1
2s2

þ dðy; mÞ
�
; y2С (8)

where m2U; s>0 and a � 0 is a normalizer term, independent of
m.Function d is known as the unit deviance and is defined in
ðy;mÞ2ðС;UÞ and it must satisfy some additional properties (Song,
2007).

A simple advantage over the classical exponential family
parametrization in (7) is that both, mean and dispersion parame-
ters, m and s2, are explicitly in the density expression (8) whereas in
(1), m ¼ EðYÞ ¼ k0ðqÞ.
More precisely the parameter m ¼ EðYÞ and VarðYÞ ¼ s2

VðmÞ , where

VðmÞ is directly related with dð$; $Þ, i.e., VðmÞ ¼ 2

v2dðy;mÞ
vm2

�����
y¼m

;m2U This

function is known as the “unit variance function”. Specifically, if y
follows a simplex distribution, that is y � S�ðm; s2Þ, then (8) takes
the form:

p
�
y; m; s2

�
¼
h
2ps2fyð1� yÞg3

i�1
2exp

�

� 1
2s2

dðy;mÞ
�
; y2ð0;1Þ;m2ð0;1Þ (9)

In particular, where

a
�
y; s2

�
¼
h
2ps2fyð1� yÞg3

i�1
2

and

dðy;mÞ ¼ ðy� mÞ2
yð1� yÞm2ð1� mÞ2

; y2ð0;1Þ; m2ð0;1Þ

it follows that EfdðY;mÞg ¼ s2, Efd0 ðY;mÞg ¼ 0,
VarfdðY;mÞg ¼ 2ðs2Þ2. These and others features can be studied in
detail at Song (2007). Other inferential properties can be studied in
the seminal paper by Barndorff-Nielsen and Jørgensen (1991). The
distribution can have one or two modes and can take the approx-
imate shape of a bell, U, J, or L (also known as reverse-J) for different
combinations of its parameters. It is important to note that the
simplex distribution cannot emulate a flat distribution as the uni-
form distribution on the interval (0, 1).

Let be Y1;…;Yn independent random variables following the
distribution in equation (9) with the mean mi and the dispersion
parameters2i , and let be xi ¼ ðxi1; xi2;…; xipÞ and
wi ¼ ðwi1;wi2;…;wiqÞ, i ¼ 1;…;n, vectors of covariate information.
It is important to note that covariables x and w can be identical or
they could be subsets of each other. We want to model the mean
value mi and the dispersion parameter s2i .

Similar to Cepeda and Gamerman (2001), Smithson and
Verkuilen (2006) and Song et al. (2004), two link functions, g and
h will be considered: one for each parameter in the simplex dis-
tribution. A convenient function g for themean is the logit function,
which ensures the parameter m is in the open interval (0, 1). More
specifically
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gðmiÞ ¼ log
mi

1� mi
¼ xui b (10)

where b ¼ ðb0;…; bpÞ is a vector of unknown parameters. Equation
(10) is also known as the location submodel.

The logit function has an extensive application in the field of
statistics. This transformation helps to give answers in terms of the
odds ratio. This is because the odds ratio between the predictive
variable and its response variable can be found by using the relation
OR ¼ expðbkÞ; k ¼ 1;…; p. On the other hand, the dispersion
parameter s2i must be positive, and a function h that enjoys this
property is the logarithm function. Therefore,

h
�
s2i

�
¼ log

�
s2i

�
¼ wu

i d (11)

where d ¼ ðd0;…; dqÞ is a vector of unknown parameters that must
be estimated. The equation (5) is known as the dispersion
submodel.
5. Results and discussion

The efficiency levels calculated for 19 selected Latin American
airlines from 2010 to 2014, using the VDRAM approach and
considering different grouping criteria, are given in Figs. 1 and 2.
The full set of VDRAM scores is given in the Appendix. More pre-
cisely, in Fig. 1, VDRAM scores are disaggregated by year, and in
Fig. 2, the scores are shown by year and country simultaneously,
thus allowing for the analysis of each airline separately. It is worth
noting that, although median efficiency levels are quite stable over
the period analyzed (ranging around 0.75e0.82), substantial dif-
ferences are apparent when efficiency levels are grouped by either
countries or airlines. For instance, efficiency tends to decrease in
smaller countries, such as Aruba, Cuba, and Cayman Islands e with
the exception of Trinidad and Tobago, and remain stable or
decrease in larger countries, such as Argentina, Brazil, Colombia,
Mexico, and Chile. This suggests the presence of the eventual
impact of contextual variables, which may be embedded within
these groupings.

A robustness analysis was performed in order to compare the
VDRAM scores with those computed from the traditional RAM
(Aida et al., 1998) and DRAM (Li et al., 2016; Tone and Tsutsui, 2010)
models (cf. Fig. 3). The major objective is not to only assess whether
the VDRAM method increases the discriminatory power of the
Fig. 1. VDRAM efficiency leve
analysis against the efficient frontier, but also whether their scores
are more symmetrical around the mean and, therefore, less biased
towards 1.0.

Themean overall efficiency scores in the VDRAMmethod is 0.74,
whereas the traditional DRAM and RAM models presented mean
values of 0.78 and 0.87, respectively. This result suggests that the
discriminatory power of the VDRAM method is higher than that
observed in DRAM and RAM models, as their scores are lower and
are not inflated towards one. The impact of VDRAM efficiency
modelling can also be found in other statistical properties that are
derived from the frequency distribution of efficiency estimates in
both models. Although negative, that is, with a longer left tail and
thus less concentrated around 1.0, VDRAM skewness is
lower �1.06, against 0.087 [RAM] and �1.03 [DRAM], which sug-
gests that, in the VDRAM method, efficiency scores are more
asymmetrical around the mean, and that they not only favor the
Simplex Regression analysis, but also other robust predictive
modelling techniques. Nevertheless, Spearman rank correlation
between efficiency scores derived from DRAM model and those
derived from the VDRAMmethod were found to be extremely high
(0.98) and significant at 0.01, thus suggesting isotonic results for
both models.

Next, a Simplex regression analysis was performed on the
VDRAM efficiency scores, using the contextual variables presented
in Section 4.1 as their predictors. The coefficients and significance of
each contextual variable are shown in Table 4. With regards to
VDRAM efficiency scores, the significant predictors for the Latin
American airlines are variables that are related to fleet mix (per-
centage of large aircrafts) and public ownership. The impact of
trend is negligible.

Fleet mix presented a negative impact on levels of efficiency, in
that smaller aircrafts, such as those manufactured by Embraer or
Bombardier, are positively related to higher levels of efficiency,
which is probably due to the smaller operating costs per aircraft.
The bigger aircraft manufactured by Boeing, Airbus, and
McDonnell-Douglas, all contributed to lowering levels of efficiency.
This finding corroborates Barros and Wanke (2015) in the analysis
of African airlines. The impact of fleet mix on levels of efficiency
may depend upon the forces that drive economies of density and
economies of scope for Latin American airlines. In the airline in-
dustry, in general, passenger-sensitive costs are small (e.g. food,
ticket handling), in relation to flight-specific fixed costs. Thus, as
traffic volume increases, an airline is able to fill a larger proportion
of its seats on a given type of aircraft and thus increases its load
ls: overall and per year.



Fig. 2. VDRAM efficiency levels grouped by airline and by country (Time 1 ¼ 2010 and Time 5 ¼ 2014).

Fig. 3. Robustness analysis.

Table 4
Simplex regression results.

Coefficients Estimate Std. Error z value Pr(>jzj)
(Intercept) 1.61958 0.55408 2.923 0.00347**
Cargo operation �0.33026 0.37690 �0.876 0.38090
Public ownership 0.42453 0.17371 2.444 0.01453*
% Large Aircrafts �0.79474 0.40929 �1.942 0.05217.
% Small Aircrafts �0.36288 0.41725 �0.870 0.38446
Low Cost 0.15924 0.22353 0.712 0.47622
Trend �0.14687 0.28150 �0.522 0.60184
Trend 2̂ 0.02071 0.04608 0.449 0.65309
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Log-likelihood: 27.68, p-value: 0.4798351
Deviance: 87
Number of Fisher Scoring iterations: 18
Standard Pearson residuals:
Min 1Q Median 3Q Max
�2.6621 �0.4296 0.2266 0.6739 1.5333
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factor; moreover, its costs per RPK fall as flight-specific fixed costs
are spread over an increased volume in traffic. However, a key
aspect in this analysis is the size of aircraft. According to Besanko
et al. (2014), a larger aircraft (e.g., one with more than 300 seats)
that is flown a given distance at a given load factor is less than twice
as costly as a smaller aircraft (i.e., with 150 seats or less) flown the
same distance at the same load factor. Putting this into perspective,
and taking a less prescriptive view regarding the assumptions of
Besanko et al. (2014), the results derived from this research suggest
that load factors are low within the context of Latin American air-
lines and that they act as drivers in favor of operating with smaller
aircraft. Several reasons may explain such lower load factors, from
insufficient traffic density within a given route, to justifying oper-
ating with larger aircrafts, and even the scale of the network, which
results in an insufficient hub and spoke system d probably a
negative synergistic combination of both causes. Although it is
expected that low cost carriers are more efficient that full service
carriers e and this variable presented a positive sign in the case of
Latin American airlines e it is interesting to note that these factors
-insufficient hub and spoke system, scale of the network etc - may
also be the underlying cause for the lack of significance of the low
cost dummy variable.

Furthermore, public ownership is related to higher levels of
efficiency, also corroborating Barros and Wanke (2015), and is
probably due to the higher entrance barriers to launching an
airline; indeed, in most Latin American countries, not only does a
State monopoly prevail, flag carriers are also highly subsidized.
Latin American countries tend to be middle-income and, as such,
only the government has the capability of raising and/or mobilizing
the funds or resources necessary for launching an airline. Lastly, the
trend presented no impact on levels of efficiency, which suggests
the absence of a learning curve in the case of the Latin American
airline industry.
6. Conclusion

This paper presents an analysis of the efficiency of Latin Amer-
ican airlines, using VDRAM DEA modelling and Simplex regression.
VDRAMmakes it possible to rank airline efficiency, and it turns out
there is much variation between airlines, with Sky Airline ranking
first, with a score of 0.95 in 2010. Relative to the frontier of best
practices, in which values equal to 1 signify full efficiency, this
airline presents an inefficiency level of 1e0.95 ¼ 0.05. The least



(continued )

Year Company VDRAM term efficiency

Cubana 0.792142
TAME 0.760913
Sky Airline 0.74585
InselAir 0.727071
Caribbean Airlines 0.721945
Volaris 0.689349
LIAT 0.680172
Avianca Brazil 0.662588
Aeromexico 0.646355
GOL 0.638027
Copa Airlines 0.574825
Avianca 0.564086
LATAM Airlines Group 0.323356

2013 Surinam Airways 0.931541
Cayman Airways 0.9084
Bahamasair 0.907354
BoA - Boliviana de Aviacion 0.9003
Aeromar 0.872806
Cubana 0.864651
LIAT 0.820501
Aerolíneas Argentinas 0.804109
InselAir 0.800466
Sky Airline 0.73466
Avianca Brazil 0.721828
TAME 0.719272
Caribbean Airlines 0.707014
Volaris 0.682894
Aeromexico 0.572503
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efficient airline is LATAM, which scored 0.21 in 2014. Based on the
Simplex regression results, drivers of efficiency are fleet mix and
public ownership. Fleet mix has shown some impact on efficiency,
meaning that operating certain types of aircraft can represent an
additional cost to airlines, thus affecting their efficiency. Addi-
tionally, smaller aircraft, such as those manufactured by Embraer
and Bombardier, have a positive impact on efficiency. Public
ownership is also a positive influence on efficiency, which indicates
that small markets are one of the major problems of Latin American
airlines, which face tough regulation and enjoy public subsidies.
This, however, maybe one of the major causes that helps in
explaining why low cost airlines are as efficient as their full service
counterparts are. With the exception of the learning curve, the
airline market of Latin America resembles that of Africa with
respect to economic fundamentals. Further research is necessary to
confirm these results.
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Appendix. VDRAM scores
Year Company VDRAM term efficiency

2010 Sky Airline 0.95337
Avianca Brazil 0.926288
BoA - Boliviana de Aviacion 0.889837
Caribbean Airlines 0.887132
Aerolíneas Argentinas 0.860464
Bahamasair 0.855011
Surinam Airways 0.85118
Volaris 0.835269
GOL 0.810768
LIAT 0.794028
Copa Airlines 0.742582
Avianca 0.727582
LATAM Airlines Group 0.68941
Cubana 0.669397
Aeromar 0.638105
TAME 0.634339
Cayman Airways 0.634148
Aeromexico 0.549989
InselAir 0.470284

2011 Sky Airline 0.937598
BoA - Boliviana de Aviacion 0.929263
Bahamasair 0.860648
Caribbean Airlines 0.85542
Avianca Brazil 0.836453
Volaris 0.832365
GOL 0.829326
Surinam Airways 0.828135
Aerolíneas Argentinas 0.809306
Copa Airlines 0.796662
TAME 0.724628
Cayman Airways 0.704478
Cubana 0.663911
Aeromar 0.657182
Avianca 0.652429
LIAT 0.641634
Aeromexico 0.630977
LATAM Airlines Group 0.627522
InselAir 0.485633

2012 BoA - Boliviana de Aviacion 0.920247
Surinam Airways 0.905916
Cayman Airways 0.866409
Bahamasair 0.836602
Aerolíneas Argentinas 0.826573
Aeromar 0.792882

Avianca 0.552576
GOL 0.544582
Copa Airlines 0.468753
LATAM Airlines Group 0.206976

2014 Surinam Airways 0.96964
Cayman Airways 0.9084
Bahamasair 0.907354
BoA - Boliviana de Aviacion 0.9003
Aeromar 0.872806
Cubana 0.864651
LIAT 0.820501
Aerolíneas Argentinas 0.804109
InselAir 0.800466
Sky Airline 0.738752
Avianca Brazil 0.733408
TAME 0.719272
Caribbean Airlines 0.707014
Volaris 0.682894
Aeromexico 0.572503
Avianca 0.552576
GOL 0.544582
Copa Airlines 0.468753
LATAM Airlines Group 0.206976
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