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a b s t r a c t

The implementation of an environmental market-based measure on U.S. aviation industry is studied.
Under this policy, each airline pays a carbon fee for the carbon dioxide emissions it generates. The impact
on ticket prices and corresponding market shares is investigated via the joint estimation of an air travel
demand model and an airlines' behavior model. In the demand model, aggregate air traffic data is used to
determine the marginal effects of flight attributes that are specific to itinerary, airline and airport on
market share. The airline's behavior model incorporates the carbon fee in the airline marginal cost. After
the implementation of the carbon policy, the increased cost forces airlines to adjust ticket prices in order
to maximize profits. The results obtained by the proposed model indicate a moderate price increase
which strongly depends on the per tonne carbon price. Air travel demand falls from 2.4% to 21%
depending on the carbon price level.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Along with safety and security, environmental protection is in
the centre of the aviation industry aims. Recent statistics indicate
that, if no mitigation action is taken, carbon dioxide (CO2) emis-
sions will continue to rise given the increasing trend of air traffic.
Technological and operational efficiency improvements and the use
of alternative fuels are widely believed to be promising long-term
approaches to meet aviation's climate goals. Market-based in-
struments complement these measures and provide a cost-
effective option to reduce emissions in the short term (Lee et al.,
2013).

Market-based measures (MBM) put a price on aircraft emis-
sions, with most existing instruments focusing on CO2 emissions.
Existing market-based measures include voluntary carbon off-
setting, environmental charges at the airports and cap-and-trade
policies. The largest cap-and-trade aviation policy is the European
Emissions Trading Scheme (EU ETS), introduced in 2012 (European
Union, 2008). Trade disputes at international level and opposition
from many non-EU countries led to the amendment of the Euro-
pean regulation in 2014; EU ETS covers flights only within the
).
European Economic Area until 2016 (European Union, 2014). This
situation added a pressure on International Civil Aviation Organi-
zation (ICAO) to agree on a global market-based measure for
aviation as part of a broader package of measures including new
technology, more efficient operations and better use of infrastruc-
ture (ICAO, 2013).

A number of studies examined the impact of EU ETS on airlines
network reconfiguration (Derigs and Illing, 2013; Hsu and Lin,
2005), tourism (Blanc and Winchester, 2012; Peeters and Dubois,
2010; Pentelow and Scott, 2011; Tol, 2007), airline operational
characteristics (Brueckner and Zhang, 2010) and airline competi-
tion (Barbot et al., 2014). Other studies investigated the impact on
ticket prices and demand change. Albers et al. (2009) examined the
effect of EU ETS on airfares and passenger demand at individual
route level. Assuming a carbon price of V20/tn, they found that
additional costs may range from V1.5 to V26.8 per passenger. Un-
der two scenarios of cost pass-through rate (35% and 100%) and
using existing values of price elasticity, their results showed mod-
erate price increase which could not initiate major route configu-
ration. EU ETS has also been studied by Scheelhaase and Grimme
(2007) and Scheelhaase et al. (2010) in terms of its economic
impact on EU and non-EU airlines. The results indicated that EU
airlines' environmental costs are higher, due to a wider coverage of
operations within the EU region, losing a significant competitive
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advantage as compared to the non-EU airlines. Anger (2010) used a
dynamic simulation model to investigate the impact of EU ETS on
macroeconomic activity and CO2 emissions. Under three allowance
price scenarios and 100% cost pass-through rate, the author
concluded that EU-ETS results in an increase of annual CO2 emis-
sions at low allowance prices but a fall of 0.30% at an allowance
price of V40 in 2020 compared with no action scenarios. Lu (2009)
examined the impact of environmental charges on air passenger
demand using six intra-European short-haul routes in two city
pairs. The potential demand reduction is higher for the low-cost
carrier Easyjet compared to that of full service carriers, because of
lower fares. Miyoshi (2014) investigated the changes in passenger
demand and consumer welfare after the implementation of EU ETS
on Annex I and non-Annex I airlines. The author constructed a logit
model to estimate the impact of travel costs increase on market
shares of a specific route. The results demonstrated that the EU ETS
could be an effective instrument except for very low carbon prices.
Malina et al. (2012) estimated the economic impact of EU ETS on US
airlines. They used price elasticity values derived in other studies
and assumed that fuel efficiency, fuel price and carbon price are
annually increased. The authors found that under full cost pass-
through, the CO2 emissions from US airlines may increase by 32%
between 2011 and 2020 in comparison to 35% for the reference
scenario. Hofer et al. (2010) examined the effects of an air travel
carbon emissions tax on travel-related carbon emissions in the US
and concluded that the emissions tax increases ticket prices under
an own-price elasticity value of �1.15. They also considered the air-
automobile substitution effect, since some air travelers may divert
to automobiles, assuming a cross-elasticity of 0.041. They showed
that emission taxes may cause significant air-to-automobile diver-
sion effects.

This paper considers the hypothetical implementation of a
market-based environmental policy on U.S. flights, where airlines
pay an extra fee, referred to as “carbon fee”, based on their CO2
emissions. The impact of this policy is assessed using an empirical
demand and supply model following Berry (1994). The interaction
of passengers' behavior and airline decision is taken into account by
the joint estimation of demand and supply parameters. The de-
mand side is studied by discrete choice models, using market-level
data over a large number of Origin and Destination cities without a
need for consumer-level data. On the supply side, airlines offer
several differentiated flight connections and set their ticket prices
under Bertrand competition. The carbon fee increases airlines costs.
If airlines maintain ticket prices levels, profits will fall. However, it
is expected that a portion of the carbon cost will be passed onto the
passengers, resulting in increased prices and lower demand. Esti-
mation of price and demand adjustments caused by the introduc-
tion of the carbon fee is the main objective of this paper. More
specifically, aggregate air traffic data is used while air travel de-
mand is modeled by discrete choice models of consumer behavior.
Most known aggregate demandmodels employ linear regression of
passenger traffic and thus do not consider travelers' behavioral
decisions (Bhadra and Kee, 2008; Kopsch, 2012; Mumbower et al.,
2014; Sivrikaya and Tunç, 2013; Wei and Hansen, 2006). This
research uses a nested logit model for air travel demand where the
utility of the passenger for a specific connection is formed by a
number of observed flight characteristics. The model accounts for
the fact that not all flight characteristics are observed by the
researcher and, thus, a single term capturing unobserved (to the
analyst) characteristics is also included. On the supply side, a linear
model is assumed for the marginal cost of each airline connection.
The marginal cost is determined up to a vector of several cost
shifters. After the implementation of the environmental policy,
carbon costs are added to the airlines' marginal cost. Contrary to
existing studies, the impact of the market-based policy on air travel
demand is not based on given values of price elasticity of demand.
Posterior policy prices are determined from the computation of the
new equilibrium in demand and supply. Then price elasticity and
market shares are obtained from the demand model. Airline cost
pass-through behavior is an important determinant of the impact
of the market-based measures. Most of existing studies assume a
fixed percentage of cost pass-through. In this study, cost pass-
through rate is determined by the demand and supply model and
consequently depends on a number of factors, including market
structure and level of competition.

The implementation of a market-based environmental policy is
considered on the US airline network and a large number of do-
mestic flight connections. Our results identify the key factors that
influence the environmental policy such as itinerary distance and
number of stops. Longer flights and indirect flights experience the
greatest impact on ticket prices increase and demand fall due to the
larger amount of CO2 emissions.

2. Modeling framework

In this section the proposed modeling framework is described
following Berry (1994). Nested logit models are employed for the
representation of passenger behavior allowing for unobserved
flight characteristics in the utility of travelers. On the supply side,
airlines act as profit maximizers that settle over prices given by a
Bertrand Nash equilibrium. Carbon fee is introduced as a shifter of
marginal cost.

2.1. Passenger perspective

In a given network, there is a set of Origin-Destination (O-D)
cities and a set of airlines which link them by direct or indirect
itineraries. An O-D city pair is regarded as a “market”. Our basic unit
of observation is the unique combination of the itinerary and the
ticketing carrier, i.e. “Origin-Connecting-Destination airports and
ticketing airline” and is referred to as “airline connection”. A pas-
senger who wants to travel within a marketmmay choose to travel
by air, travel by another transport mode or not travel. If the pas-
senger decides to travel by air, he/she chooses among several airline
connections j (j ¼ 1, 2, …, n). If the passenger chooses not to travel
by air, we say that the non-air alternative is picked (j¼ 0). The share
of passengers choosing the non-air alternative is denoted by MS0.
This choice formulation suggests the use of a nested logit model,
where the choice set of a passenger is partitioned into two nests: (i)
air and (ii) non-air. The air nest includes all airline connections. The
non-air nest includes travelling by other transportation modes
(such as car, train, etc) or not travelling at all. The utility Uij that a
passenger i obtains when choosing alternative j is given by:

Uij ¼ xjb� apj þ xj þ viðlÞ þ lεij (1)

where pj is the ticket price of connection j and xj is a vector
encompassing all observable characteristics; it includes features
associated with the itinerary, the airline and the airport. A detailed
description is given in Section 3.2. The scalar term xj includes all
characteristics that are unobserved by the analyst (but known to
the passenger) such as in-advance ticket purchase, in-flight meal
service quality, ticket restrictions etc, factors that give an important
explanation for the deviation in ticket prices offered within given
routes. The term ni(l) þ l·εij is a stochastic term that captures the
preferences of passenger i on airline connection j. ni(l) is a random
variable that is constant across airline connections (within the air
nest) and differentiates them from the non-air alternative. εij is an
independent and identically distributed random variable across
passengers and airline connections following the extreme value
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distribution. l is a measure of the degree of independence within
market alternatives (high l means greater independence and less
correlation).

The nested-logit can be decomposed in two logit models so that
the aggregate market share MSj of connection j in market m can be
expressed as the product of two logit probabilities: the product of
the share of air transport MSg (upper level involving nest choice)
and the conditional share of a specific connection j MSj/g, given that
air transport is chosen (lower level).

MSj ¼ MSj=g$MSg ¼ eðxjb�apjþxjÞ=l
Dg

$
Dl
gP

gDl
g

(2)

where Dg ¼ P
j2Jg

e
xjb�apjþxj

l . Berry (1994) proposes an estimation pro-
cedure which transforms Eq. (2) so that parameters enter linearly.
The resulting demand equation has the following form:

lnMSj � lnMS0 ¼ xjb� apj þ ð1� lÞ$lnMSj=g þ xj (3)

Eq. (3) has a linear regression form. The dependent variable is
formed by the log difference of market shares minus the non-air
option. The explanatory variables include the vector of observed
characteristics xj, the price of flight pj and the conditional market
share. The unobserved characteristic xj acts as the disturbance term.
b, a and l are the unknown parameters that need to be estimated.
Notice that standard Ordinary Least Squares (OLS) procedures are
not directly applicable because the disturbance and some of the
explanatory variables are generally correlated. Indeed, ticket- or
flight-level unobserved attributes that are captured by the term xj
are correlatedwith price pj andwith thewithin-group (conditional)
market shareMSj/g. Thus Eq. (3) suffers from endogeneity since two
explanatory variables are correlated with the disturbance. This
issue is addressed by the use of Instrumental Variables methods as
explained in Section 2.3.
2.2. Airline behavior

Airlines set ticket prices to maximize profits. Following (Berry
and Jia, 2010; Gayle and Brown, 2014; Lee, 2013) we assume that
ticket prices are determined independently across markets. Each
airline f serves a subset Jf of the J total within-market connections.
The airline profit is formed by the difference in revenues and cost as
follows:

pf ¼
X
j2Jf

0
BBB@pj$M$MSj|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Revenues

�mcj$M$MSj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Costs

1
CCCA

pf ¼
X
j2Jf

�
pj �mcj

�
$M$MSj

(4)

where mcj is the marginal operating cost of connection j and M is
the market size, i.e. the potential number of travelers between the
O-D cities. The marginal cost is not directly provided by the avail-
able aggregate data and thus needs to be estimated.We assume it is
given by a linear function of observed cost shifters (wj) (further
detailed in Section 3.2) and an unobserved cost shock (uj):

mcj ¼ wj$g þ uj (5)

Airlines set their ticket prices under Bertrand competition and
product differentiation, taking into account the prices set by com-
petitors. The first order condition yields:
max
p

pf/MSj þ
X
k2Jf

ðpk �mckÞ$
vMSk
vpj

¼ 0; for cj2Jf (6)

A Bertrand Nash equilibrium is a vector of prices that satisfies
Eq. (6). Note that the ticket prices of competitors are contained in
the market share marginal effects. Eq. (6) forms a linear system of
equations for the prices of all flights of a given airline in a given
market. Substituting the marginal cost from Eq. (5), the system of
Eq. (6) takes the form:

pf ¼

0
BBBB@�D�1

MSf ;pf
$MSf|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

mark�up

1
CCCCAþwf $gþ uf|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

marginal cost

(7)

where vectors pf, MSf, wf, uf represent ticket prices, market shares,
observed and unobserved cost characteristics of airline f within a
market. Note that price is split in two terms: the airline markup and
the marginal cost. DMSf ;pf

represents the Jf � Jf matrix of partial
derivatives of MSj with respect to price.

The above approach relies on a static Nash equilibrium in prices
and thus rests upon some simplifying assumptions. First, airline
decisions are not confined to price setting but include other
important variables such as flight frequencies and hub choice lo-
cations. Moreover, under real conditions ticket prices are set using
revenue management techniques, which seek to allocate seats
across different passenger categories in order to maximize ex-
pected revenue (Donovan, 2005). The inclusion of yield manage-
ment techniques in the above model requires consideration of
dynamic aspects that are beyond the scope of this paper and is left
for future work.
2.3. Joint estimation of demand and supply

The system of demand and supply Eqs. (3) and (7) forms the
basis for the estimation of parameters a, b, s and g. Two issues
should be pointed out: First, the two equations need to be esti-
mated jointly because demand parameters enter both equations.
Moreover due to the presence of the derivative matrix DMSf ;pf

pa-
rameters a and s enter the cost function nonlinearly, while b enters
both equations linearly. Secondly, endogeneity of prices andmarket
shares is a critical econometric issue. In the pricing equation,
market share and market share derivatives are endogenous. The
unobserved cost characteristics affect ticket prices through Eq. (7)
and, thus, are correlated with connections' market share and
market share derivatives. Thus these variables are endogenous
since they are correlated with u in Eq. (7). The above endogeneity
issues may lead to biased parameter estimates if OLS is used. In
contrast, Instrumental Variables methods can cope with endoge-
neity under suitable conditions. Instrumental Variables methods
require the existence of proper instruments, i.e. auxiliary variables
that are correlated with the explanatory variables but are uncor-
related with the disturbance for both the supply and demand sides.
Moreover handling the inherent presence of nonlinearities, re-
quires the use of generalized moments in connection with in-
struments. In this work the two-step Generalized Method of
Moments estimator is used (Hansen, 1982; Hall, 2005). For the two
main equations we employ instruments that satisfy the following
moment conditions:

E
�
xjZ1
ujZ2

�
¼ 0 (8)
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Z1 and Z2 are the vectors of instruments for the demand and cost
equation respectively. These instruments include the explanatory
variables of our system and additional auxiliary variables. A
detailed discussion is presented in Section 3.3. We first solve Eqs.
(3) and (7) for xj and uj respectively. Then the Generalized Method
of Moments estimators for demand and supply can be defined by
minimizing the quadratic product of the moment conditions (from
Eq. (8)) with a symmetric and positive definite weight matrix.
2.4. CO2 emissions model

To assess the impact of a market-based environmental policy on
air transportationwe need to calculate the fuel burn and associated
emissions for all flights. The fuel mostly used by civil aircraft is
kerosene (Lee et al., 2010). Combustion of kerosene produces
various emissions including carbon dioxide, water vapor, nitrogen
oxides, carbon monoxide, hydrocarbons and soot (Brasseur et al.,
1998; IPCC, 2007; Lee et al., 2009, 2010). Of these, carbon dioxide
and water vapor are greenhouse gases and directly affect the
climate. Carbon monoxide, hydrocarbons and nitrogen oxides are
called air pollutants and affect air quality around airports as they
are mainly produced when aircraft engines are operating at their
lowest combustion efficiency, while the latter also has indirect ef-
fect on climate change. Greenhouse gas emissions differ from air
pollutants in the fact that the impact of air pollutants is limited to a
regional level, while the impact of greenhouse gases expand to
global scale due to their long lifetime. In particular, the atmospheric
lifetime of CO2 is on the order of one hundred years, which means
that its impact on climate change is long lasting (Schafer et al.,
2009). Although water vapor and nitrogen oxides have significant
effect on climate, their precise impact is yet uncertain and it de-
pends on several factors, including the prevailing ambient atmo-
spheric conditions and the amount and types of particles formed in
the engine exhaust (Schafer et al., 2009). In addition, water vapor
emissions at low altitudes have no climate effect. For these reasons,
CO2 which has been widely documented as the dominant green-
house gas emitted by aircraft (IPCC, 2007; Gudmundsson and
Anger, 2012; Scheelhaase et al., 2010) is included in the majority
of existing policy measures and will be the focus of this work. The
fuel burn and CO2 emissions computations are conducted flight-by-
flight for every itinerary in the traffic sample.

Aircraft fuel burn and CO2 emissions are influenced by various
factors including aircraft and engine type, flight distance, flight
mode and time consumed in each mode. Once the aircraft fuel
consumption is calculated, CO2 emissions can be obtained by
multiplying fuel burn by the emission factor of 3.157 kg CO2/kg fuel
(ICAO, 2014). Landing and Take-off (LTO) phase, which includes
operations below 3000 feet, is separated from operations above
3000 feet which form part of the Climb-Cruise-Descent phase
(called cruise thereafter). The LTO fuel burn rate is obtained from
the ICAO Engine Exhaust Emissions databank (ICAO, 2016) and the
fuel burn rate during the cruise phase is taken from the EMEP
CORINAIR database (EEA, 2013).

Air traffic data are obtained from the Airline Origin and
Table 1
Procedure for fuel burn and CO2 emissions calculation.

Flight phase Fuel burn rate database

LTO ICAO Engine Exhaust Emissions Databank

Cruise EMEP CORINAIR

Notes: See Section 3.1 for the derivation of T100, OTP and DB1B databases.
Destination Survey (DB1B) available from the U.S. Department of
Transportation, as explained in Section 3.1. Table 1 presents the
procedure employed in this work and the variables required to
compute aircraft fuel consumption and CO2 emissions for each in-
dividual flight. The data required by the CO2 model include aircraft
and engine type, flight distance and LTO times in the study airports.
The original flight data is supplemented by two other databases:
the T-100 Domestic Segment for U.S. Carriers (T100), which pro-
vides us with the aircraft type and the Airline On-Time Performance
database (OTP), from which taxiing times at the study airports are
derived. Flight distance is given in the original flight data from
DB1B, while engine types are assigned to the given aircraft type
according to EEA (2013). The exact equations used in this paper for
the calculation of fuel burn and CO2 emissions are given in Pagoni
and Psaraki (2014).
3. Data description and estimation

3.1. Description of the dataset

Estimation of the supply and demand model and simulation of
the market-based environmental policy, require a rich dataset with
information on airline connections, flight passengers, ticket prices
and other explanatory attributes that affect passenger demand and
airline marginal cost. In addition, aircraft data is needed for the
computation of CO2 emissions. In this study, data available by the
U.S. Department of Transportation published in the website of the
Bureau of Transportation Statistics (BTS, 2015) are used. In partic-
ular, the Airline Origin and Destination Survey (DB1B) reports a 10%
sample of domestic airline tickets sold by U.S. airlines. DB1B is used
to create the flight itineraries and to generate airline connections'
market shares, ticket prices and other itinerary attributes which are
presented in Table 2. We merge the above dataset with three
additional databases: the T-100 Domestic Segment for U.S. Carriers,
the Airline On-Time Performance database and the U.S. Census
Bureau. The T-100 Domestic Segment for U.S. Carriers (hereinafter
referred to as T100) contains monthly domestic non-stop segment
data reported by U.S. air carriers. The variables constructed by T100
include frequency, seat capacity and representative aircraft types as
presented in Table 2. Airline On-Time Performance (hereinafter
referred to as OTP) contains on-time arrival data for non-stop do-
mestic flights in the U.S. and it is used to create delay and other
time-related variables. The U.S. Census Bureau provides us with
population data used to construct the market size, as the geometric
mean of the populations of origin and destination cities. The con-
struction of the final sample follows a well established procedure
(Berry and Jia, 2010; Chi and Koo, 2009; Lee, 2013; Hsaio and
Hansen, 2011) consisting of the following steps. We filter DB1B
raw data to keep round-trip itineraries with at most two segments
per direction and tickets with single itinerary ticketing carrier and
credible fares, while we omit open-jaw trips and tickets with very
low and very high air fares (we keep tickets in the fare range of $25
and $3000 for a round-trip). In the second step, we process T100
and OTP data to be compatible with the DB1B database. Since T100
Inputs Source

Aircraft type T100
Engine type EEA (2013)
Time spent in LTO modes OTP
Aircraft type T100
Flight distance DB1B



Table 2
Summary statistics of demand and cost variables.

Variable Mean Standard deviation Minimum Maximum Source

Airline-route specific
Fare [in $100] 4.52 1.41 1.21 16.50 DBIB
Number of stops 1.52 0.79 0 2 DBIB
Round trip distance [in 1000 sm] 3.07 1.56 0.17 10.90 DBIB
Minimum frequency (flights/quarter) 277.78 193.44 13 1992 T100
% of morning departures 0.25 0.17 0 1 OTP
% of late-afternoon departures 0.25 0.16 0 1 OTP
Aircraft size 0.25 0.43 0 1 T100
Per passenger fuel [tn fuel/pax] 0.16 0.06 0.02 0.55 Own-computation
Airport-specific
Slot control 0.12 0.35 0 3 DB1B
Delays 0.14 0.05 0 0.38 OTP
Alternative airport 0.59 0.49 0 1 Own-computation
Airport-Airline relationship
Hub 0.63 0.48 0 1 DB1B
Market specific
Market distance [in 1000 sm] 1.54 0.78 0.09 5.45 DB1B
Airline dummies
Jet Blue Airways 0.02 0.15 0 1 DB1B
Delta Air Lines 0.20 0.40 0 1 DB1B
American Airlines 0.15 0.35 0 1 DB1B
US Airways 0.13 0.34 0 1 DB1B
Southwest Airlines 0.31 0.46 0 1 DB1B
Other legacy airlines 0.11 0.31 0 1 DB1B
Other low-cost airlines 0.08 0.27 0 1 DB1B
Observations: 19,362
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and OTP are reported in a monthly basis, and DB1B data are quar-
terly, we need to aggregate T100 and OTP in a quarterly basis. Once
this is done, edited T100 and OTP tables include frequency, seating,
aircraft and time-related quarterly data. In the third step, wemerge
the three databases by flight segment and airline. DB1B and T100
segments are merged by operating airline while DB1B and OTP by
reporting airline. Next, we supplement the DB1B-T100-OTPmerged
datawith population data. Finally we filter airline connections so as
to include regular scheduled flights (a minimum of 12 flights per
quarter and more than fifty passengers in the quarter are chosen as
thresholds) and medium to large Metropolitan Statistical Areas
(with population greater than 800,000 people). The data are rear-
ranged to create the final data table which includes unique com-
binations of a round-trip between Origin (Oj), Connecting (Cj),
Destination (Dj) airports by Ticketing airline (Aj) during a specific
Quarter (Qj), i.e. “Oj-Cj-Dj/Aj,Qj” supplemented with demand and
cost variables.

Similar to existing econometric studies, we used one-quarter
data for model estimates. In particular, our sample period is the
first quarter of 2012 (Q1/2012). The database resulting from the
above pre-processing has 19,362 airline connections, 3,285markets
(O-D city pairs), 66 origin and destination cities, 99 airports and 10
ticketing airlines. The sample markets consist of 20.4% monopolies,
16.5% duopolies and 63.1% oligopolies. On average, there are 5.9
airlines within each market.

3.2. Demand and cost variables

The most common explanatory variables in air transport de-
mand models are ticket prices, flight frequency, market distance,
delays, layovers and dummies for airlines and slot controlled air-
ports. Trip distance, aircraft types, transferring via hub airports and
airline dummies have been used in previous studies as cost shifters.

On the demand side an increase in the price of a good will
typically lead to a reduction in the quantity demanded, ceteris
paribus. This is also applicable to air travel where ticket price is an
important determinant of demand. In our work, the ticket price of
each round-trip is taken as the passenger-weighted average ticket
price. The variable “number of stops” is included in order to explain
the intuition that, all else being equal, a direct air travel connection
is more preferable than a connection with intermediate stops. The
variable “number of stops” is calculated as the number of layovers
within the itinerary and takes three values 0,1 or 2. For a round-trip
with both direct outbound and return flight, the variable is equal to
zero. Frequency is an important factor in passenger's travel
decision-making process, since passenger's utility increases with
higher flight frequency. Since flight frequency is a segment char-
acteristic, an itinerary may include several frequency variables. The
itinerary frequency could be calculated as the average number of
segment departures. However, the minimum frequency is more
critical than the average and thus the frequency variable is here
calculated as the minimum of segment frequencies. Following
Hsiao and Hansen (2011), the frequency is introduced in logarith-
mic form. Distance is assumed to affect air travel demand in two
ways (Bhadra, 2003): it affects passenger's propensity to travel and
passenger's choice on transport mode. In the demand function,
distance is defined as the O-D market distance. In the cost function,
round-trip distance is used to capture various cost components
such as fuel and maintenance costs. The variable slot-control cap-
tures the potential negative effect of congestion in slot controlled
airports on air travel demand. The four U.S. slot-controlled airports
are: Newark Liberty International Airport, John F. Kennedy Inter-
national Airport, LaGuardia airport and Ronald Reagan Washington
National Airport (GAO, 2012). On average, each airline connection
passes via 0.12 slot-controlled airports. On-time performance is
another important factor which influences passenger itinerary
choices. Suzuki (2000) notes that market shares may be influenced
by passengers' delay experience. Thus, the delay variable takes into
account the connection's on-time performance during the last
quarter of 2011 ie. the quarter prior to decision. Besides, when
passengers book their tickets, they are informed on airline delays
for the previous quarter. The delay variable is equal to 1 if the
itinerary arrival was more than 15 min delayed in the previous
quarter of the decision quarter. On average, 14% of flights experi-
enced more than 15 min delay during the last quarter of 2011.
Finally, we include dummy variables for the ticketing airlines to
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capture the preference of consumers on specific airlines. Two leg-
acy carriers (Delta and American Airlines) and two low-cost airlines
(Southwest and JetBlue) are included. US Airways is used as the
base carrier in the estimation against which the other airlines are
compared. Airline dummies are also included in the cost function to
model airline-specific cost effects. Turning to purely cost variables,
aircraft size and transferring via hub airports are selected to explain
marginal cost. Aircraft size determines a variety of aircraft operating
costs, such as rental/ownership and maintenance costs. Other size-
related costs include landing fees since they are computed on the
basis of the maximum take-off aircraft weight. This dummy vari-
able is equal to 1 if at least one segment of the itinerary is operated
by a wide-body aircraft. A variable indicating transfer via hub air-
ports is used to explain if concentration of traffic in hubs affects
marginal cost. The dummy Hub variable is equal to 1 if the itinerary
departs/connects/arrives from/to an airport which is a hub for the
ticketing carrier.

In this paper, the above variables are augmented with some
additional attributes not formerly used in aggregate models.
Intuitively an itinerary is more attractive if it is offered in the
morning and afternoon period. Past studies used booking data
from computer reservation systems and found that late-evening
itineraries are not preferred (Barnhart et al., 2014; Koppelman
et al., 2008) while Koppelman et al. (2008) found that mid-
morning and late-afternoon itineraries are most preferred. Based
on these observational findings, we construct two variables,
morning and late-afternoon departures, that indicate the percent-
age of connections offered in the morning period (from 8 a.m. to
12 a.m.) and in the late-afternoon period (from 3 p.m. to 7 p.m.)
respectively. In the 1st quarter of 2012, 25% of airline connections
are offered in the morning period. Another factor that stands out
as helping to explain city-pair travel demand is the presence of
alternative airports nearby the passenger's origin or destination
city. A variable is constructed to control for the possibility that
passengers can leave the market and fly from/to other airports.
Although several factors may influence airport choice (Malina,
2010), we control for access distance and flight availability. We
assume that the distance a traveler is willing to drive to reach an
alternative airport is differentiated for short- and medium/long-
haul trips. This distance is taken as 60 miles for short-haul
flights and 100 miles for medium/long-haul fights. These values
are consistent with existing evidence on airport leakage (Leon,
2011; Fuellhart, 2007) and are within the distance range given in
the booking system of various U.S. airlines. Our approach differs
from existing studies (Ciliberto and Tamer, 2009) in two points:
first, access distance is measured from the Metropolitan Statistical
Area (MSA) centroid to the candidate airport, since the traveler is
assumed to originate his/her trip from this point. Second, a
candidate airport is considered as alternative only if it serves the
desired destination within the quarter under consideration. In
our sample, 59% of the itineraries are served by alternative air-
ports. For a better understanding of the above process, Fig. 1 il-
lustrates the proximity of MSA (indicated by their population-
weighted centroids) to alternative airports within 60- and 100-
mile radius. It can be seen that passengers at the Northeast and
Southwest U.S. have the greatest opportunity to choose alternative
airports. Finally, the variable fuel consumption captures the impact
of fuel cost on airline marginal cost. The variable is computed for
every flight according to the emission model outlined in Section
2.4 and represents the amount of fuel consumed per passenger
travelled.

Table 2 summarizes the relevant demand and cost variables
with descriptive statistics and data source.
3.3. Instrumental variables

The main source of endogeneity in the demand equation comes
from the correlation of price and within group market share with
the unobserved variable as the latter commonly reflects quality
features. Thus we need to instrument for pj andMSj/g. Following the
standard practice, we assume that the remaining characteristics xj
are uncorrelated with xj, and thus can be used as valid instruments.
We also use additional exogenous variables that are believed to
affect ticket prices and within group share but are uncorrelated
with xj. We use three groups of instruments for the demand
equation related to market- and route-level characteristics and
rival attributes. The first group includes market characteristics such
as the number of offered connections and the number of airlines in
the market. Both instruments indicate the degree of within-market
competition a connection is facing, which in turn may affect its
ticket price. Route-level characteristics include two instruments of
whether the destination or the connecting airports are hubs for the
ticketing carrier. The intuition is that airline costs may be affected
by hub operation, which may in turn influence ticket prices set by
the ticketing airline. In addition, the number of destination cities
served by direct flights reflects the airline's size of operation at the
origin airport and can be related to its price level at the airport.
Finally, rival connections' attributes include the percentage of
nonstop rivals' routes and the average number of passengers car-
ried by rivals within the given market. Both variables capture
within-market competitiveness and thus overall price level, while
the latter additionally predicts within-group market shares. The
pricing equation also suffers from endogeneity since the error term
(u) is correlated with market share and market share derivatives.
Apart from the demand instruments we include two more in-
struments which are indicative of the potential passenger traffic of
each connection and each airline. In this way, they predict potential
market share of each connection and airline. They are defined by
the market size divided by the number of connections and by the
number of airlines in the market respectively.

To justify the appropriateness of the selected instruments we
applied the Hausman test which verifies the endogeneity of prices
and market shares and F-statistic test for the relevance of
instruments.

3.4. Parameter estimates

The parameter estimates and their standard errors are reported
in Table 3. The coefficients associated with the explanatory vari-
ables have the expected sign. As expected, the ticket price has
negative effect on air travel demand (�0.45). The estimated value of
(1�l) indicates a correlation of 0.32 in the preferences of passen-
gers for air, which reflects moderate substitution possibility among
flight connections. The negative coefficient of the number of stops
(�1.00) indicates that passengers do not favor flights via connect-
ing airports. This is partly explained by the extra travel. Market
distance has a positive coefficient equal to 0.43 which reflects the
fact that aircraft is the preferred long distance transport mode. The
frequency coefficient (0.48) indicates that passenger's utility in-
creases with the number of departures. The other two indicators of
quality of service namely percentage of morning and late-afternoon
departures, have positive coefficients (0.17 and 0.14 respectively).
These values indicate that airlines attract more passengers if they
offer a large percentage of connections during morning and late-
afternoon. On the contrary, market shares are negatively influ-
enced by delays. Arrival delays at the destination airport of more
than 15 min significantly affect passenger's utility (�2.07). The
variable slot-controlled airports is also negatively weighted
(�0.26). Flight delays frequently observed at slot-controlled



Fig. 1. Proximity of Metropolitan Statistical Areas (MSA) to alternative airports within 60- and 100-mile radius.

Table 3
Estimation results for the demand and cost equations (Q1/2012).

Dependent variable: lnMSj e lnMS0 Dependent variable: pj (fare)

Demand variables Coefficient Std. error Cost variables Coefficient Std. error

Constant �7.67 0.139 Constant 1.33 0.045
Ticket price �0.45 0.028 Round-trip distance 0.44 0.016
ln(MSj/g) (1�l) 0.32 0.010 Aircraft size �0.07 0.027
Number of stops �1.00 0.011 Per passenger fuel 1.57 0.336
Market distance 0.43 0.032 Hub dummy 0.17 0.036
ln(minimum frequency) 0.48 0.012 Jet Blue Airways* �0.95 0.046
% of morning departures 0.17 0.039 Delta Air Lines* 0.01 0.032
% of late-afternoon departures 0.14 0.044 American Airlines* �0.30 0.031
Slot control �0.26 0.022 Southwest Airlines* �0.41 0.042
Delays �2.07 0.178 Other low-cost airlines* �1.07 0.029
Alternative airport �0.31 0.015 Other legacy airlines* 0.12 0.036
Jet Blue Airways* 0.15 0.057
Delta Air Lines* �0.12 0.022
American Airlines* �0.15 0.029
Southwest Airlines* �0.39 0.023
Other low-cost airlines* �0.22 0.044
Other legacy airlines* �0.15 0.030

Observations: 19,362
Note: * US Airways is used as the base carrier in the estimation.
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airports may discourage passengers from choosing these airports.
The negative coefficient of the variable alternative airport (�0.31) is
consistent with our intuition that the existence of an alternative
airport reduces passenger's utility for the connection as it can be
served by another itinerary.

The estimated cost parameters have also the expected sign. The
positive coefficient of round-trip distance (0.44) indicates that cost
rises with distance travelled. The aircraft size coefficient (�0.07)
implies that using wide-body aircraft may be more cost efficient for
an airline. Wide-body aircraft can provide more capacity and thus
transfer more passengers, lowering per passenger marginal cost.
Cost economies of larger aircraft are documented in (Wei and
Hansen, 2003; Ryerson and Hansen, 2013). Our cost estimates
show that fuel consumption significantly increases marginal cost.
In particular, a 10% increase of per passenger fuel consumption
would lead to an increase in marginal cost per passenger of
approximately 15.7%. Passing through a hub airport increases
airline marginal cost, all else being equal. Hub operations offer
economies of density. Airlines may transfer higher traffic flows and
thus generate higher load factors, which decrease per-passenger
cost (Lee, 2013; Shen, 2012; Ssamula, 2008). On the other hand,
traffic concentration in hub airports may cause congestion and
flight delays or may increase travel time compared to the corre-
sponding direct flight and ultimately increase marginal costs
(Borenstein and Rose, 2007; Gayle and Wu, 2015). The hub dummy
coefficient (0.17) indicates that the net effect of these counter-
vailing forces on cost is positive. Finally airline dummies indicate
that in general low cost airlines have lower marginal cost (�1.07),
with Jet Blue Airways being themost cost efficient (�0.95) followed
by Southwest Airlines (�0.41).

In order to measure how well the estimated equations repro-
duce the observed data, two indicators are compared: the pas-
senger demand, which will reveal the goodness of fit of the demand
model and the ticket prices, which reflect the characteristics of the
supply side. For each airline connection, the estimated and
observed values are plotted in Fig. 2. The line in the figure is
indicative of the difference between observed and estimated
values. To obtain the estimated data, we substitute the demand and
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Fig. 2. Comparison of estimated and observed passenger demand and ticket prices.
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marginal cost estimates of Table 3 into Eq. (7) and solve the equa-
tion for ticket price. Then, the estimated prices are substituted into
the market share function (Eq. (2)) to predict market shares. Esti-
mated passenger demand is calculated by multiplying the esti-
mated market shares with the respective market size.

Table 4 provides a comparison of average observed and esti-
mated passenger demand and ticket prices. In addition, a goodness
of fit measure, which has been suggested for instrumental variables
regressions (Gugler and Yurtoglu, 2004; Pesaran and Smith, 1994;
Windmeijer, 1995) is calculated for the demand and the supply
model. It is computed as the squared correlation coefficient be-
tween predicted and observed values of the passenger demand and
ticket prices and ranges from 0 to 1. For the passenger demand, it is
0.66, while for the airline behavior it is equal to 0.45.

Fig. 2 and the findings from Table 4 generally suggest that our
model is capable of capturing the dominant effects of passenger
demand and ticket prices. Summed across all airline connections,
estimated passenger demand is only 1.7% higher than the observed
data while modeled ticket prices are only 0.6% lower than the
observed. If the outliers observed in Fig. 2 are excluded, the
goodness of fit measure rises to 0.70.
4. Simulating a market-based environmental policy

Suppose that a carbon emission fee F (in $/tn CO2) is introduced,
for every tonne of CO2 emitted. The pre-policy airline's marginal
cost (mcj,pre) is increased by the emission fee. The post-policy
marginal cost (mcj,post) is given by:

mcj;post ¼ mcj;pre þ F$
XS
s¼2

Es;j
LFs;j$SEATs;j

; where S

¼ f2;3;4g ; j2J (9)

Es,j is the amount of CO2 (in tn CO2) emitted by the airline in each
segment s of connection j and the product LFs,j$SEATs,j gives the
Table 4
Goodness of fit for the demand and supply model.

Estimated Obser

All airline connections
Mean Passengers per connection 100.3 98.6
Mean Ticket price 449.42 452.2
number of passengers carried by the regulated airline in each
segment s of the examined connection j. The resulting emission
cost is computed for every connection by summing the per pas-
senger CO2 emissions for all segments.

Ticket prices will be adjusted as a response to the carbon
emission fee. The precise value of the adjustment is determined
from the new equilibrium associated with the post policy marginal
cost. This new equilibrium is computed iteratively as highlighted in
the methodology section.

Setting an effective level of carbon price is essential when
designing a market-based policy. In emission trading schemes,
carbon price is driven by market conditions. For example, too many
allowances will result in a low carbon price but too few allowances
will result in a high carbon price. The policy considered in this
paper employs a pre-defined carbon unit price. To set a realistic
unit carbon price, historical price data from existing policies in
aviation as well as values reported in various studies were
reviewed. To take into account the uncertainties related to carbon
price, three scenarios (low, medium and high) were considered
based on different carbon prices: $10, $20, $50 and $100 per tonne
of CO2. The medium price scenario ($20/tn CO2) was chosen in
order to reflect the baseline price level used among existing
research papers (Albers et al., 2009; Anger and Kohler, 2010; Barbot
et al., 2014; Malina et al., 2012; Scheelhaase et al., 2010). The low
price was used to approximate the average price of European Union
Allowance (EUA) price during 2012. The prices of $50 and $100 per
tn CO2 reflect two more aggressive scenarios for aviation emissions
abatement.

The simulation results are presented in Table 5. The ticket price
increases by 1.18%e11.77% depending on the carbon price set. The
change of within-group market shares (MSj/g) varies from �0.27%
for a carbon price of $10 to �2.60% for a carbon price of $100.
Overall, the implementation of a market-based policy leads to
airfare increase followed by a decrease in air traffic. In particular,
our results indicate a 4.65% decrease in air traffic for the medium
scenario ($20 per ton CO2). This means that 4.65% of passengers will
ved D% (Estimated/Observed) Goodness of fit

101.7% 0.66
2 99.4% 0.45



Table 5
Effects of the market-based policy in the US domestic airline industry (Q1 2012).

F [$/tn CO2] Low scenario Medium scenario High scenarios

F ¼ 10 F ¼ 20 F ¼ 50 F ¼ 100

Average fare increase [%] Dprice 1.18% 2.35% 5.89% 11.77%
Average air travel demand change [%] DMSj �2.36% �4.65% �11.18% �20.94%
Average demand change of within-group connections [%] DMSj/g �0.27% �0.54% �1.33% �2.60%
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choose not to fly as a result of increased prices. Decreased air traffic
will lead to lower emission levels for the network under consid-
eration. Some of the passengers will divert to other transport
modes, while others may choose not to travel at all. Due to the
appearance of this travel mode substitution effect a decrease in the
aggregate volume of aviationwill cause an increase in the aggregate
traffic volume of another mode. This especially applies to short-
distance trips where air transport strongly competes with land
transport.

The effect of the above changes to different distance groups is
illustrated in Fig. 3. Flight connections are grouped in three groups
based on their market distance: connections with market distance
less than 1250 miles, from 1250 to 2500 miles and greater than
2500 miles. Longer flights experience the greatest impact due to
the carbon cost as they generate the largest amount of CO2 emis-
sions. For the medium scenario ($ 20/tn CO2), shorter flights
become on average 1.9% more expensive while longer flights' fares
increase by about 3.1%.

Another critical observation is that the CO2 policy affects direct
and non-direct flights differently. Fig. 4 shows that on average, a
passenger will face a higher price increase on non-direct flights. A
one-stop flight includes the fuel consuming parts of landing and
take-off at the connecting airports. This results in higher CO2
emissions in comparison to the corresponding direct flight. Hence,
even within the same market, passengers who choose to travel
directly between O-D airports will benefit more than those who
travel on a one-stop flight. For the high scenario of $50 per tn CO2,
connecting flights face a 6.3% increase in ticket prices compared to
4.2% for direct flights. Moreover, 12.1% and 7.1% of passengers in
connecting and direct flights respectively may choose not to fly
after the introduction of carbon policy, due to higher airfare.
Fig. 3. Changes in ticket prices and market shares compared to actual Q
5. Conclusions

This paper shows how an airline may adjust its pricing strategy
in view of a market-based environmental policy within a compet-
itive airline network. A portion of the induced environmental cost
may be passed onto the passengers, resulting in increased ticket
prices and lower demand. An empirical demand and supply model
for air travel, which considers the interaction of passengers'
behavior and airline decision, is presented. One important feature
of this paper is that a carbon fee is introduced as a shifter of the
airline's marginal cost. The adjustment of ticket prices in response
to the carbon fee is determined by a Nash equilibrium in prices.

The key determinants of airlines' demand and cost are identi-
fied. On the demand side, apart from ticket price, arrival delays and
indirect flights are found to negatively affect air travel demand.
Furthermore, travel demand of a specific connection is found to be
negatively affected by the presence of an alternative airport. On the
other hand, an airline could increase its market share by improving
its itinerary's frequency. Contrary to the majority of aggregate
studies, which employ linear regression of passenger traffic, air
travel demand is modeled by discrete choice models of consumer
behavior. On the cost side, itinerary distance and fuel burn are the
most significant cost drivers. The two-step Generalized Method of
Moments is used for the joint estimation of the nonlinear model
bypassing endogeneity issues through the use of proper in-
struments. One limitation of our analysis is that ticket price is
considered as the key decision variable in the airline strategy to-
wards an externally imposed environmental fee. In future research,
additional decision variables considered by airlines such as fre-
quency or hub choice location will be examined.

On the whole, our analysis revealed that the implementation of
a carbon policy in the U.S. aviation is expected to cause moderate
changes on ticket prices and market shares. Ticket prices were
found to increase by 1.2%e11.8% depending on the carbon price.
1/2012 values for different distance groups (in statute miles-sm).



Fig. 4. Changes in ticket prices and market shares compared to actual Q1/2012 for direct and indirect flights.
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These changes are more likely to change total air travel demand as
opposed to affecting demand shift between airline connections. In
particular, within-group air travel demand is found to decrease by
only 0.27% for the low scenario and 2.6% for the highest carbon
price. This means that competition distortions are expected to be
rather low. Our findings augment the concluding remarks of other
studies which have investigated environmental policies in Euro-
pean or other markets (Anger, 2010; Malina et al., 2012; Miyoshi,
2014; Scheelhaase et al., 2010).

An examination of the historical data on EU allowances in the
context of EU ETS proves that there exists a considerable amount of
volatility in the dynamics of the carbon price. If carbon price rea-
ches the highest levels of our assumed unit prices ($50 or $100), air
travel demand may decrease by about 11.2% and 20.9% respectively.
Thus, airlines and policy makers may need to turn to alternative
approaches to ensure economic and environmental sustainability.
Finally, policy makers should not ignore the potential passenger
shift from air travel to other transport modes, which is modeled in
this paper as the non-air option. Hence, the demand decrease
resulting by the implementation of a carbon fee (reported in
Table 5) should not be interpreted as a proportional reduction in
CO2 emissions. This especially applies to short-distance trips where
air transport strongly competes with land transport.
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