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Efficient planning of runway utilization is one of the main challenges in Air Traffic Management (ATM). It
is important because runway is the combining element between airside and groundside. Furthermore, it
is a bottleneck in many cases. In this paper, we develop a specific optimization approach for the pre-
tactical planning phase that reduces complexity by omitting unnecessary information. Instead of
determining arrival/departure times to the minute in this phase yet, we assign several aircraft to the same
time window of a given size. The exact orders within those time windows can be decided later in tactical
planning. Mathematically, we solve a generalized assignment problem on a bipartite graph. To know how
many aircraft can be assigned to one time window, we consider separation requirements for consecutive
aircraft types. In reality, however, uncertainty and inaccuracy almost always lead to deviations from the
actual plan or schedule. Thus, we present approaches to incorporate uncertainty directly in our model in
order to achieve a stabilization with respect to changes in the data. Namely, we use techniques from
robust optimization and stochastic optimization. Further, we analyze real-world data from a large
German airport to obtain realistic delay distributions, which turn out to be two-parametric G-distribu-
tions. Finally, we describe a simulation environment to test our new solution methods.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

ATM systems are driven by economic interests of the partici-
pating stakeholders and, therefore, are performance oriented. As
possibilities of enlarging airport capacities are limited, one has to
enhance the utilization of existing capacities to meet the contin-
uous growth of traffic demand. The runway system is the main
element that combines airside and groundside of the ATM System.
Therefore, it is crucial for the performance of the whole ATM Sys-
tem that the traffic on a runway is planned efficiently. Such plan-
ning is one of the main challenges in ATM. Uncertainty, inaccuracy
and non-determinism almost always lead to deviations from the
actual plan or schedule. A typical strategy to deal with these
changes is a regular re-computation or update of the schedule.
These adjustments are performed in hindsight, i.e. after the actual
change in the data occurred. The challenge is to incorporate
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uncertainty into the initial computation of the plans so that these
plans are robust with respect to changes in the data, leading to a
better utilization of resources, more stable plans and a more effi-
cient support for ATM controllers and stakeholders. Incorporating
uncertainty into the ATM planning procedures further makes the
total ATM System more resilient, because the impact of distur-
bances and the propagation of this impact through the system is
reduced.

In the present paper, we investigate the problem of optimizing
runway utilization under uncertainty. The goal is to incorporate
uncertainties into the initial plan in order to retain its feasibility
despite changes in the data. We focus on the pre-tactical planning
phase, i.e. we assume the actual planning time to be several hours,
or at least 30 min, prior to actual arrival/departure times. We
develop an appropriate mathematical optimization model for this
particular planning phase. The basic idea is that in pre-tactical
planning we can reduce the complexity of the problem by not
determining an exact arrival/departure sequence in terms of exact
landing/take-off times for each aircraft, as we do later in tactical
planning. Instead, we answer the question of howmany aircraft can
be scheduled to one time window of a given size without violating
distance requirements. (For example, it is definitely possible to
tion of runway utilization under uncertainty, Journal of Air Transport
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assign more than one aircraft to a time window from 12:00 pm to
12:10 pm.) Then, we consider a discretized time horizon consisting
of such time windows and assign each aircraft to one of them.

This paper is an extension of Fürstenau et al. (2014), where the
authors set up a mixed integer program (MIP) for the pre-tactical
optimization of runway utilization. Afterwards, the impact of dis-
turbances on the deterministic solutions was investigated. The re-
sults showed that it is crucial to enrich the optimization approach
by protection against uncertainties, in order to produce less
necessary replanning. In the current paper, we thus incorporate
uncertainties directly into the model by using techniques from
robust and stochastic optimization. The remainder of this paper is
organized as follows: In Section 2, we give an overview over the
literature related to runway optimization and explain why our
approach is different. We develop the pre-tactical runway optimi-
zation model in Section 3. In Sections 4 and 5 we describe our
approaches to incorporate uncertainties into this model, and pre-
sent some computational results in Section 4. In order to be able to
test our approaches in a more realistic setting, we analyze real-
world delay data from a large German airport in Section 7
(extending the descriptions in Fürstenau et al. (2014)), where we
also describe our simulation environment to test current and future
solution methods. Finally, we conclude in Section 8.

2. Related work

There are many different approaches that deal with the opti-
mization of runway utilization in the literature. Most of them treat
the runway scheduling problem in the tactical planning phase.

2.1. Deterministic approaches

The most cited MIP model in this context is probably the one
introduced by Beasley et al. (2000). Their linear objective function
minimizes delay, the constraints come from the aircraft dependent
separation times. They also present an integer program (IP)
formulation where time is discretized, but they don't explore it
further because of disappointing computational experiences.
Soomer and Franx (2008) consider the problem from an airline
point of view. They use Beasley's MIP but allowing airlines to define
their own cost functions for each flight. Bertsimas et al. (2011)
develop a comprehensive IP for Air Traffic FlowManagement which
integrates all phases of a flight, different costs for ground and air
delays, rerouting, continued flights and cancellations. Kjenstad
et al. (2013) state a time-discretized model. They assign an
aircraft to a time window and claim that a number of subsequent
time windows (dependent on the aircraft type) remains unas-
signed. In their model, they also consider minimal taxiways and the
possibility to drop departures. Their linear objective function
minimizes delay and the number of dropped departures.

Many authors use heuristic methods aiming to provide solutions
in close to real-time. To schedule aircraft in a first-come first-served
order (FCFS) seems to be fair and also reduces the work of traffic
controllers. However, such an approach doesn't provide maximal
throughput or minimal delay in general (Bennell et al., 2011). Dear
(1976) developed the concept of Constrained Position Shifting,
were each aircraft can be scheduled only a limited number of steps
away from the FCFS sequence. Balakrishnan and Chandran (2010)
solved this problem as a shortest path problem on a special
network.

Anagnostakis and Clarke (2003) formulate a two-stage heuristic
algorithm for the outbound runway scheduling problem. In the first
stage, candidate weight class sequences are determined w.r.t. dis-
tance requirements, ordered by the corresponding throughput. In
the second stage individual aircraft are assigned using operational
Please cite this article in press as: Kapolke, M., et al., Pre-tactical optimiza
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constraints (e.g. earliest and latest departure times of aircraft).
As mentioned, in our optimization model (described below and

in Fürstenau et al. (2014)) we allocate time windows to aircraft.
However, though many papers about runway optimization deal
with ”slot allocation”, this term is used to describe different prob-
lems. Often, it is associated with the Ground-Holding Problem
(GHP), where ”slot” means a certain departure time which is
assigned to an aircraft. Ball and Dahl Vossen (2009) also address the
GHP, but they assign arrival slots to aircraft which provide the
corresponding departure delay in hindsight. They consider
matchings in a bipartite graph which they call the “flight allocation
graph”. The main focus in this paper lies on the graph structure and
matching algorithms.

None of the approaches above deal with “slots” as timewindows
to which several aircraft can be assigned. Thus, to the best of our
knowledge there is no approach similar to ours in which the pre-
tactical planning phase is modelled by assigning such time win-
dows to aircraft.

2.2. Approaches that incorporate uncertainties

All runway optimization approaches presented above assume
that all parameters are known with certainty. We found few works
where uncertainties are incorporated. However, none of them are
using robustness concepts similar to those described in this paper.
Chandran and Balakrishnan (2007), e.g., develop an algorithmwith
Constrained Position Shifting that handles uncertainty in the esti-
mated time of arrival. Hu and Di Paolo (2008) formulate a genetic
algorithm and compute solutions disturbing the estimated arrival
time of 20% of the aircraft. S€olveling (2012) presents a two-stage
stochastic program for solving the mixed-mode runway sched-
uling problem with uncertain earliest times. In the first stage he
determines the weight class sequence. An exact sequence of indi-
vidual aircraft follows in the second stage.

3. The modeling

As mentioned above, we model the problem of optimizing
runway utilization in the pre-tactical planning phase by assigning
time windows to aircraft. Throughout this paper, we consider
single-mode runways with only arriving aircraft. In the future, we
will adjust our models to mixed-mode runways. But since the
single-mode problem is already quite complex from a mathemat-
ical point of view, we decided to focus on arrivals for now. In our
modeling approach we claim that each aircraft has to receive
exactly one time window as each aircraft has to be scheduled. On
the other hand, the number of aircraft that can be assigned to one
time window depends on its size and the weight classes of the
aircraft. The underlying idea is that, contrary to tactical planning,
we don't need to determine arrival times to theminute yet, because
we are several hours (or at least 30 min) prior to the first scheduled
time. Thus, the exact arrival sequences within the time windows
can be decided later.

In this section, we develop a MIP for the described problem. The
objective is the maximization of punctuality. In other words, the
deviation from scheduled times in both directions shall be mini-
mized. The MIP constraints consist of general assignment con-
straints and the modeling of minimal time distance requirement.
Thoseminimum separation times between two consecutive aircraft
depend on their corresponding weight classes. Hereof, we consider
three different aircraft categories (Light, Medium and Heavy) and
use Table 1 (ICAO Document 4444, 2007).

Before we can state our model, we have to analyze the under-
lying problem structure more precisely.

For each aircraft, we consider several corresponding times:
tion of runway utilization under uncertainty, Journal of Air Transport



Table 1
Minimum separation times (in seconds).

Predecessor \ successor Heavy Medium Light

Heavy 100 125 150
Medium 75 75 125
Light 75 75 75
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� Scheduled time of arrival (ST): a fix time that yields a benchmark
to identify delay and earliness of the aircraft. This may be the
time the passenger finds on his flight ticket.

� Earliest time of arrival (ET): depends on operational conditions
(and on the impact of disturbances).

� Latest time of arrival (LT): latest time the aircraft can land
without holdings. It depends on the earliest time ET and on the
actual planning time (or take-off time, respectively, if the
aircraft is still on the ground).

� Maximal latest time of arrival (maxLT): a hard condition for
landing which is calculated with respect to physical, operational
and other relevant conditions (for instance, amount of fuel,
prioritization, etc.).

Those times further determine the corresponding timewindows
STW, ETW, LTW and maxLTW for each aircraft.
3.1. Assignment graph

To model the problem of assigning aircraft to time windows, we
consider a bipartite graph G¼ (A∪W,E) consisting of a vertex set A of
aircraft and a vertex setWof timewindows of a given size in a given
time period (ordered chronologically). An edge (i,j)2E corresponds
to a possible assignment of aircraft i to time window j. Possible
assignments concerning a certain aircraft are all time windows
from ETW to maxLTW.

Now, a feasible solution for our assignment problem is a set of
edges such that.

� every aircraft vertex is linked with exactly one edge from this
set, i.e. every aircraft is assigned to exactly one time window,

� every time window vertex is linked with a number of edges
from this set, so that no separation time constraints are violated.

In Fig. 1 we see a small example of a bipartite graph with a
possible assignment of aircraft a1,…,a42A to time windows
w1,w2,w32W.
3.2. Decision variables

To solve our assignment problem, we have to decide whether to
choose a certain edge or not. To model this decision in our MIP, we
introduce a binary variables xij for each edge (i,j)2E:
Fig. 1. Assignment graph. Red edges show a possible assignment: aircraft a1 and a2 are
assigned to time window w1, a3 and a4 are assigned to w2. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article).

Please cite this article in press as: Kapolke, M., et al., Pre-tactical optimiza
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xij ¼
�
1; if aircraft i is assigned to time window j
0; otherwise

3.3. Objective function

Our objective is the minimization of delay and earliness,
respectively. Wemodel delay/earliness as edgeweights. Theweight
cij of an edge (i,j)2E results from the distance of time window j to
the STW of aircraft i (counted in number of time windows). Delay is
penalized quadratically for reasons of fairness (e.g., a solution in
which one aircraft has a delay of six time windows is worse than a
solution in which two aircraft have a delay of three time windows
each). Earliness is penalized linearly. If the assigned timewindow is
after the LTW (i.e. between LT and maxLT), we add an extra penal-
ization term, namely the squared distance from LTW. Assume an
aircraft iwith STW w5, ETW w1, LTW w10 and maxLTW w13. Thenwe'd
have, e.g., ci2 ¼ 3, ci8 ¼ 32 and ci12 ¼ 72þ22.

Now the objective function of our optimization model is the
following1

min
X

ði;jÞ2E

cijxij (1)
3.4. Aircraft constraints

First of all, we have to assert that each aircraft is assigned to
exactly one time window. So we claim
X
j2Wi

xij ¼ 1 (2)

for each i2A, where Wi¼{j2W:(i,j)2E} describes the set of time
windows that aircraft i can be assigned to.

3.5. Time window constraints

Further, we have to determine the number of aircraft that can be
assigned to one timewindow. In order to do so, we need to consider
the distance requirements, dependent on the weight classes of
consecutive aircraft. We use the minimum separation times shown
in Table 1.2 Clearly, the maximum number of aircraft that fit in one
time window is reached when a sequence from Light to Heavy is
assumed. In more detail, to avoid separation times of 125 and 150 s,
such a sequence contains sub-sequences of aircraft of the same
type. First, all Lights are scheduled, followed by all Mediums, and
finally by all Heavies. According to Table 1, we therefore need a
separation time of 75 s after each Light and each Medium, whereas
we need 100 s after each Heavy except the last one (the needed
separation time after the last aircraft in a time window models the
distance requirements at the window boundary and is analyzed
later in this section).

For each time window we get upper bounds on the number of
aircraft by assuming such a sequence from Light to Heavy. Mathe-
matically, it yields the following two constraints for each j2W:
1 Since all penalization terms are modelled within the cij-coefficients, other
penalization strategies can also be applied without changing the structure of our
MIP.

2 An adaptation of the results in this paper to other minimum separation time
tables is possible as well.

tion of runway utilization under uncertainty, Journal of Air Transport



Fig. 2. Possible assignments for an aircraft ai in the robust model.
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75
X
i2Lj

xij þ 75
X
i2Mj

xij þ 100
X
i2Hj

xij � sþ 100 (3)

75
X
i2Lj

xij þ 75
X
i2Mj

xij � sþ 75 (4)

Here, s is the size of the time windows (in seconds). Further,
Lj¼{i2L:(i,j)2E} describes the set of Lights that may be assigned to
timewindow j (and thus, the corresponding sumyields the number
of Lights that are assigned to it). Mj and Hj are defined analogously.

If we assign aircraft to a time window without exceeding these
bounds in (3) and (4), we know that there exists a sequence of those
aircraft that fits in the timewindow. However, we do not determine
how that sequence looks like exactly in terms of concrete pre-
decessors and successors. We are still flexible in (re)arranging
different aircraft of the same type. And if the time window contains
enough “empty space”, we can even deviate from the Light-
Medium-Heavy order without changing the assignment.

Further, we extend (3) and (4), because they do not assert se-
curity distances at the time window boundaries yet. This means
that the last aircraft in one time window and the first aircraft in the
subsequent time window may be planned to land at the very same
time. In order to obtain feasible solutions, we can generally claim
150 extra seconds as buffers in every time window. But of course,
this approach only provides a heuristic procedure for solving the
problem because those buffers will be unnecessarily large for some
time windows. In Fürstenau et al. (2014), we describe a way to
model distance requirements at the window boundaries precisely.
For this purpose, we introduce additional variables for each time
window which model the situation at the boundaries (dependent
on corresponding aircraft types). Afterwards, we modify our con-
straints to assure suitable minimum separation times at the end of
each time window. For instance, if we have a Heavy at the end of a
time window j and a Medium at the beginning of the subsequent
one (assuming a sequence from Light to Heavy in both windows),
we assure 125 extra seconds of separation time at the end of j
(according to Table 1). If we have a Medium at the end of j instead,
we assure 75 s and so on.

4. Incorporating uncertainties

In this section, we want to incorporate uncertainty into the
model to receive a robustification of our solution plan. In general,
robustificationmeans to ensure that deviations in the input data do
not have a large impact on the solution. Considering the optimal
solution of the nominal problem, i.e. the problem where un-
certainties are ignored, small deviations in the input data could
have the effect that the nominal optimum becomes infeasible for
the disturbed problem, i.e. the problem where the input data suf-
fers from deviations.

In mathematics, there exist different approaches to handle un-
certainty in optimization. In stochastic optimization (e.g. Kall and
Mayer, 2013) the goal is to describe the uncertainty by probability
distributions. Knowing these distributions, one can then optimize
the expected values. A second approach to the problem of model-
ling uncertainty is located in robust optimization (e.g. Ben-Tal et al.,
2009; Bertsimas and Sim, 2003), where the goal is to immunize
against predefined worst-case scenarios. In contrast to stochastic
optimization, the probability distributions of the uncertainties do
not need to be known. However, one has to predefine uncertainty
sets that determine the values of the uncertain parameters against
which the optimization problem has to be protected. The task is to
find robust feasible solutions, i.e. solutions that are feasible for all
parameter values in the uncertainty set. Among all robust feasible
Please cite this article in press as: Kapolke, M., et al., Pre-tactical optimiza
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solutions, the robust optimal solutions are those with the best
guaranteed objective function values.

4.1. Robust optimization approach

In the setting for our model described in Section 3, the uncertain
parameters are the ET windows ETW and, dependent on those, LTW
and maxLTW. Hence, we have to predefine an uncertainty set for
each aircraft. Therefore, we have to chose deviations of the earliest
timewewant to be protected against. For each aircraft this yields an
interval of possible earliest times and thus a set of possible ETW's.
These ETW's also determine the possible maxLTW's.

Now, we actually solve our optimization model from Section 3.
But in the robust approach we assume an assignment graph that
only contains edges which are feasible for every scenario according
to our chosen uncertainty set. A scenario is defined by exactly one
interval of possible assignments for each aircraft. An example of
feasible assignments for an aircraft in the robust model is illus-
trated in Fig. 2. As mentioned, the robust model assumes the worst-
case, i.e. the extreme cases for earliest time (w4) and maximal latest
time (w7) in the predefined uncertainty set are taken into account,
whereas the other time windows which lay within the uncertainty
set for both times (w2, w3, w8, w9) are forbidden.

4.2. Stochastic optimization approach

We follow a single-stage stochastic optimization approach in
which we optimize over all assignments which are “expected to be
possible” dependent on the underlying probability distribution.
Therefore, we consider the expected values for ET and maxLT for
each aircraft, or the corresponding time windows, respectively.
Afterwards, we optimize the obtained “expected scenario”, i.e. we
solve our mathematical model described above with decision var-
iables (edges in the assignment graph) that correspond to the
feasible assignments in this scenario. In Fig. 3 we show an example
of feasible assignments in the expected scenario for one aircraft.

5. Advanced robustness concepts

The robustification approach in the previous section was a strict
one, which potentially can be too conservative and produce large
delay values. In this section we take a look at less conservative
robust approaches to avoid the over-conservatism of strict
robustness.

5.1. Recoverable robustness

In the context of railway, recoverable robustness (Liebchen et al.,
2009) has been established. We now apply these approaches to our
optimization model for pre-tactical planning.

Since a (nominal) solutionmight become infeasible by a realized
scenario, the concept of recoverable robustness, introduced by
Liebchen et al. (2009), simultaneously considers the optimization
tion of runway utilization under uncertainty, Journal of Air Transport



Fig. 3. Possible assignments for an aircraft ai in the stochastic model.
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of the problem and an algorithm, which repairs the solution to a
feasible one, in cases of infeasibility. This algorithm is called re-
covery action. In contrast, the strict robust approach postulates that
a strict robust solution is feasible for all possible uncertainties in the
uncertainty set, which of course is a more strict assumption.
However, a recoverable robust solution can be recovered by limited
actions to a feasible one for all occurring scenarios (not necessarily
the same feasible solution in each scenario).

We consider our nominal model and introduce first stage vari-
ables xij, which denote the assignment variables of the nominal
solution (as defined in Section 3.2). Furthermore, we have to define
additional recovery variables ysij for each aircraft i2A, time window
j2Ws

i and scenario s2S (each scenario s is determined by ∪i2AWs
i ,

where Ws
i describes the time horizon to which aircraft i can be

assigned in this scenario; note that the number of time windows
contained in Ws

i for a certain i is independent of s). These second
stage variables denote second-stage assignments for each scenario
(equal to 1 if aircraft i is assigned to time window j in scenario s).

Thus we want to minimize the delay costs of the nominal so-
lution and the worst-case costs for the recovery action for each
scenario. Since we want to plan a nominal solution x as close as
possible to a feasible solution ys for all scenarios, the recovery costs
for each scenario s2S would be the difference between the
computed nominal solution of the x-variables and the solution of
the ys-variables. As we require fairness for the recoverable robust
solution in general, we square this difference and optimize the
following objective function

min
x

X
i2A

X
j2Wi

cijxij þ (5)

max
s2S

min
ys

X
i2A

0
@ X

j2Wi

j$xij �
X
l2Ws

i

l$ysil

1
A

2

(6)

whereby the first summand (5) denotes the nominal optimization
problemwith delay costs cij and the second summand (6) describes
the recovery costs.

Now we require a feasible assignment on both first stage and
second stage. Thus, besides the constraints defined in Sections 3.4
and 3.5 for the x-variables, we further need the same constraints
for the ys-variables for each scenario s2S (using the corresponding
assignment graphs). Although x- and y-variables decompose in the
constraints, this problem is mathematically challenging. Beside the
quadratic objective function we obtain a min-max-min-structure.
Furthermore, it is a problem with 1þ jSj many assignments with
quadratic objective function. Thereforewe propose a simplification.

5.2. Recovery to strict robust solution

In order to handle the problem of the min-max-min-structure,
we can recover the nominal solution to a strict robust one. By
that, we do not have ys-variables for each scenario, but only
Please cite this article in press as: Kapolke, M., et al., Pre-tactical optimiza
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consider the worst-case. Again, using the structure of uncertainty,
the strict robust time horizon set can be defined as WR

i ¼ ∩s2SWs
i ,

which is feasible for all scenarios s2S. Thus we consider decision
variables y, which are defined in the set WR

i . We then can simplify
the objective function, namely (6), by cutting off the maxs2S part
and minimizing over those y-variables instead of the ys-variables.

We still have to consider the same constraints, but regarding the
second stage, they reduce to constraints for only one scenario (the
strict robust one). Thus, we have to solve two assignment problems,
which are decomposed in the constraints and only coupled in the
quadratic objective function. Furthermore, the min-max-min-
structure is reduced to a minimization problem. However, this
approach requires the existence of a feasible strict robust solution.
Further, we do not get the optimal recovery costs for every realized
scenario, but we get one recovery action which is always feasible.

Since the objective function above is still quadratic in the vari-
ables, we linearize it. Therefore, we introduce new binary u-vari-
ables for substitution u¼xy and use the fact, that for every binary
variable x2{0,1}, x2¼x holds. We then achieve two assignment
problems with a linear objective function. Furthermore the vari-
ables xij, yil and uijl are linearly coupled within the constraints
(modeling the fact u¼xy).

6. Computational results for the robust and stochastic
optimization approaches

The following results were obtained by the integer program-
ming solver Gurobi (version 5.6). For the experiments we used a
laptop with Intel i7 CPU, 4 cores (2.70 GHz) and 8 GB RAM. We
tested instances of 200 aircraft which have to be assigned to 36
time windows of 600 s (10 min). The distribution of the weight
classes was always 82% Medium, 11% Heavy and 7% Light. The STW's
for all aircraft are chosen randomly, i.e. uniformly distributed. The
ETW's are assumed to be the predecessors of the STW's. We further
assumed LTW and maxLTW to be 40 min (4 time windows) and
60 min (6 time windows), respectively, after ETW. The disturbances
on our ET windows were G-distributed with t ¼ 1.82 windows
(yields mean delay m ¼ 0.73) and s ¼ 1.19 (which is reasoned in
Section 7).

In this computational study we compare four approaches:
nominal, stochastic, strict robust, and recovery to strict robust solu-
tion. The uncertainty set for the strict robust solutions is deter-
mined by shifting ET/maxLT by m±k$s time windows, with k ¼ 1
(note that k ¼ 0 yields the stochastic approach). For each approach,
we generated 100 random instances. In Table 2 we see the averaged
results.

The first observation considering Table 2 is that most runtimes
are very low. In fact, the value shown for the recovery to strict
robust approach is influenced by 7 instances which reached the
time limit of 15 min. Thus, 93 instances have significantly lower
runtimes than shown in the table. The parameter infeasible as-
signments shows whether the optimal solution of the correspond-
ing approach is still feasible after the disturbances occurred. It
describes the number of aircraft that have been assigned to time
windows to which they cannot be assigned in the disturbed situ-
ation. We see that the robust approaches have the least infeasible
assignments. In fact, these approaches are significantly better than
the stochastic approach which provides about three times the
number of infeasible assignments of the strict robust approach.
However, the stochastic approach still is better than the nominal
one. This satisfies our expectations, because it shows that opti-
mizing with robust or stochastic models provides more stable plans
that become “less infeasible” facing disturbances. Further, the
result for the ‘recovery to strict’ approach is what we expect from
recoverable robustness, i.e. providing a trade-off between nominal
tion of runway utilization under uncertainty, Journal of Air Transport



Table 2
Experimental results.

Approach Runtime (s) Average delay (windows) Delayed aircraft (#) Infeasible assignments (#)

nominal 3.45 0.02 23.78 12.22
stochastic 7.59 0.31 56.76 9.11
strict robust 12.76 1.29 200 3.24
recovery to strict 136.10 0.66 127.13 6.51

Instances of 200 aircraft on 10min-windows, with G-distributed disturbances.
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delay and strict robust stability. (To actually recover the computed
solutions into the strict robust scenario in case of infeasibility, we
would replan 129.49 aircraft with a maximum replan distance of
1.22 time windows.) However, we also notice that even the strict
robust approach still has some infeasible assignments, i.e. it is not
totally robust. This results from our chosen uncertainty set, i.e. the
relatively small chosen k ¼ 1. Anyway, because being more robust
means deleting more possible assignments, we have to choose
uncertainty sets carefully.

Concerning the average delay value (counted in time windows)
and the number of delayed aircraft, we observe inverse relations:
these values are smaller for the nominal approach than for the
stochastic one, and even larger for the robust approaches. Consid-
ering the strict robust approach, we see that all aircraft are delayed.
However, this is not surprising at all due to our setting. We chose
STW to follow the nominal ETW. Hence, if we choose to protect us
against a deviation of more than one time window (which we did),
we can't assign any aircraft to its STW anymore. Considering the
’recovery to strict’ approach, its reduced conservatism yields the
possibility to choose solutions with lower delay costs (in compar-
ison with the strict robust approach), but the recovery condition
still has a price (compared to the nominal approach).

So far, in this paper we have described a mathematical approach
for optimizing runway utilization in the pre-tactical planning
phase. Further we have enhanced our developed optimization
model by incorporating uncertainties in different ways (robust and
stochastic) and discussed some computational results. In the
following section, we now analyze real-world disturbances from
our database from a large German airport. Finally, we describe a
simulation environment to test our current and future approaches
with those realistic disturbances.

7. Empirical delay data analysis and baseline simulation

For validating the new scheduling models by means of Monte
Carlo (MC) simulationswe start in the following Subsection 7.1 with
the brief description of an appropriate stochastic delay model (see
(Fürstenau et al., 2015) for additional discussion). It is first used for
quantifying the statistics of empirical delay data (Subsection 7.2)
and for deriving departure delay distributions, which in turn are
used as the dominating stochastic disturbance for the MC-
simulations. In Subsection 7.3, MC-results of baseline scheduling-
simulations are presented using continuous time models and the
nominal version of the new discrete MIP-based one. Initial results
obtained with the stochastic and robust version are presented in a
follow-up paper (Fürstenau et al., 2015).

7.1. Stochastic delay model

Understanding and modeling the statistics, dynamics, and
propagation of air-traffic arrival and departure delays is a prereq-
uisite of any attempt to optimize the punctuality of schedules and
airport capacity, and minimizing necessary buffer times for
required robustness of performance (e.g. Tu et al., 2008; Wong and
Tsai, 2012). In the present section we provide a simple stochastic
Please cite this article in press as: Kapolke, M., et al., Pre-tactical optimiza
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arrival and departure delay model that is tested by means of
empirical delay data from a large German airport.

Empirical histograms of delay data exhibit a pronounced non-
symmetry (e.g. Tu et al., 2008) that was modeled by Wu (2010)
by means of the two-parametric Beta-probability density function
(limited to the open (0,1) interval).

For our purpose the family of two-parametric Gamma (G)-PDF's
(limited to ℝþ, with shape and scaling parameters a, b) appears
more appropriate as analytical model because it contains the one
parametric Poisson process (sometimes used for modelling inter-
arrival delays) as a special case (Dodson and Scharcanski, 2003).

A realistic model of arrival delays, in addition to the asymmetry
has to include a significant amount of early arrivals, i.e. delay tD<0.
Furthermore, besides the statistics of the sequence of all different
arrivals ai (different flights) during single days of operation (single
day statistics) also single flight (¼airline) statistics (e.g. all arrivals j
of the same flight aij over a time interval of e.g. half a year) have to
be modeled (Abdel-Aty et al., 2007). The delay statistics naturally
exhibits daily, weekly, and seasonal periodicities and trends, i.e.
nonstationary behavior. Consequently any realistic model has to be
a combination of deterministic and random components (Abdel-
Aty et al., 2007; Tu et al., 2008) which is one reason for the inap-
propriateness of the Poisson model. For taking into account early
arrivals (tD < 0) each histogram data set has to be transferred into
ℝþ by subtracting the minimum delay (minimum earliness tDmin)
before data fitting with the G-model. The G-PDF as a generalization
of the Poisson process of inter-arrival times (t) and delays may be
parametrized by the shape parameter a and mean t ¼ ab, with
standard deviation s¼t/a.

f ðt; t; aÞ ¼
�a
t

�a ta�1

GðaÞe
�at

t (7)

with normalized time scale t/t, and G(a)¼ n! for a2ℕ. For a¼ 1, (7)
reduces to the Poisson case of maximum randomness, i.e. expo-
nential t-distribution. For a < 1, (7) models a process with larger
variance than the random process due to clustering, i.e. non-
independent clustered events. For large a > 1, with the G-PDF ap-
proaches a (t,s)-Normal distribution.

The analysis of empirical arrival and departure delay histograms
in the following Section 7.2 together with MC computer experi-
ments in Section 7.3 in fact indicate G-models to provide reasonable
approximations for the arrival and departure delay statistics as one
usable metric for the optimizer performance differences.

7.2. Analysis of empirical arrival- and departure delays and
derivation of disturbance statistics

In this section we model the empirical arrival and departure
delays of flights aij (i ¼ 1�m) with a stochastic G-process according
to (7), with delays ¼ random deviations from scheduled arrival
times (STA, flight plan), and we derive an empirical disturbance
statistics for use with the MC-simulations. As proposed by Abdel-
Aty et al. (2007). we analyze and model daily delays observed
within the time series of all flights aij (i ¼ 1 � m > 200) during full
tion of runway utilization under uncertainty, Journal of Air Transport



Fig. 5. Normalized (by individual G-mean t) departure delay G-PDF fits for all de-
partures of 46 flights with >150 departures over 6 months). For average delays the
averages 〈t〉 of G-fit means (representing the empirical histograms) have to be reduced
by the average earliness: 〈m(departure)〉 ¼ 18.2�10.9 ¼ 7.3 min, 〈s〉 ¼ 11.9 min.
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days of operation, as well as delay data from a selection of single
flights aj over a couple of months (with j ¼ 1 � n � 150 monitored
arrivals or departures).

Fig. 4 shows an example of arrival delay distribution f(ATA�STA)
for a single full day of operation (ATA ¼ AIBT). We also analysed a
sample of 33 flights (different callsigns) with �150 arrivals each/
half year (out of 1384 within 7e12/2013). The c2-tests of the
maximum likelihood (ML) G-fits to the empirical delay histograms
differ significantly between single days as well as between single
flights. This is no surprise, of course, due to the neglection of any
deterministic effect (correlations between consecutive flight arrival
times or delays depending on traffic density, ATC-sequencing etc.).

For the simulations in Section 7.3 we will use departure delays
as the only disturbance during the flight. This is motivated by the
fact that according to Eurocontrol statistics (see Performance
Review Commission, 2013) departure delays represent the main
source of arrival delays. Fig. 5 depicts a summary plot of departure
delay G-fits with normalized delay axis tD

t
, obtained from 46 single

flights aij with �150 departures (j) out of 1579 analysable flights ai
from altogether 32604 departures during a 6-months time span.

The figure legend provides the fit results for the parameter es-
timates a,b with G-mean t (identical for empirical histogram and
ML-estimate), a-b correlation coefficient, and c2-test of G-hypoth-
esis (0-hypothesis rejection for p < 5%). The fit example in this case
in fact formally should be rejected at the p ¼ 5% level, basically due
to the deviations around zero delay (AIBT - STA ¼ tD ¼ 0). Besides
the necessity of considering the above mentioned deterministic
effects, this deviation around tD ¼ 0 can be explained by active ATC
interventions to minimize delays. Nevertheless we obtained many
examples without 0-hypothesis rejection, i.e. p(c2) > 5%. The
average fit parameter estimates for the 33 single flights ai are (±1
stddev): 〈a〉 ¼ 3.5(1.3), 〈b〉 ¼ 8.7(3.4), 〈t〉 ¼ 27.5(7) min, with
average minimum earliness htDmini ¼ �23:9 8:8ð Þ min (trans-
formation into ℝþ by tDminðaiÞ for each single fit), yielding an average
arrival delay of hmD〉Arr :¼ hti � htDminiz3:6 11ð Þ min, with stderror
of mean ε ¼ 2 min.

The corresponding average departure delay parameters (±1
stddev) are 〈a〉 ¼ 2.5(0.8), 〈b〉 ¼ 8(3.4), 〈t〉 ¼ 18.2(5.4) min,
htDmini ¼ �10:9ð4:1Þ min, yielding an average departure delay
hmD〉Dpt :¼ hti þ htDmini z7:3 6:6ð Þ min, with stderror of mean
ε ¼ 1 min. Comparing this value with the average of the 33 mean
arrival delays yields the departure delays about 4 min larger. This
Fig. 4. Example of empirical arrival-delay histogram (AIBT - STA - tDmin (earliness <0:
tDmin ¼ �24 min)) from the data base at a large German airport (shifted into ℝþ) with
G-PDF fits yielding a,b estimates. Full-day (17 h) traffic with 205 evaluated arrivals.
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difference compares well with statistics reported in Performance
Review Commission (2013). Also the larger variation of the mean
arrival delays sðmDÞArrz7 min as compared to the mean departure
delay variation sðmDÞDptz5 min compares well with PRR-results,
although this may be explained partly by the different sample
size. Because no sufficient empirical data for departure delays from
the airports of flight origin were available we use the departure
delays of the destination airport as representative departure
disturbance value for the MC-simulations.

Derived from an empirical data set as used for Fig. 4, the tuple
(take-off time TOT, ET, STA, LT, LTmax)i from awell defined series of
209 flights of a full single-day of traffic (17 h time span) was used
for the MC-simulations of the standard traffic scenario (S1).
Because the corresponding average traffic density of ca. 12 flights/h
was low compared to the published capacity of 27 arrivals/h (plus
27 departures/h) we created in addition a dense scenario (S2) for
testing the optimizers. The whole traffic of 209 A/C of the empirical
standard scenario in this case is compressed to a reduced time span
(8 h from originally 17 h, starting at 6:00) yielding a traffic density
of 26 arrivals/h near the capacity limit. This was realized in such a
way that all flights with arrival times < t0 þ 8 h remain unchanged
and the rest up t0 þ 17 h is put in between these flights with
correspondingly shifted (ET, STA, LT, LTmax)- times.

Furthermore each flight ai is characterized by its individual
weight class that determines its minimum separation distance
from the previous flight ai�1 according to Table 1 (Section 3).
Because the original scenario contained only 8 H-class A/C we
increased the number (and traffic complexity) to 24 by changing
those M-class with long flight distance (> 1500 km) into H-class.
Themodified empirical scenario (S6.2, S7.2) contained 24 (11.5%) H-
class A/C, 14 (6.7%) L-class, and 171 (81.8%) M-class A/C.
7.3. Monte Carlo simulations

In this section we describe Monte-Carlo baseline simulations as
foundation for the validation of the new stochastic and robust
scheduling models by means of corresponding ongoing computer
experiments (published in (Fürstenau et al. (2015)).
7.3.1. General aspects
For calculating and updating the individual target times TTi for

each flight ai (i ¼ 1,…,m) of the full day schedule (with ET� TT� LT
tion of runway utilization under uncertainty, Journal of Air Transport
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< LTmax), the computer experiments used a simplified time-based
trajectory model defined by the individual earliest and latest times
of arrival (ET, LT, LTmax). For the pre-tactical phase before depar-
ture ETi ¼ constant, LTi ¼ LTmaxi. After the departure ETi converges
to TTi according to � DtSimðTT� ETÞ=ðTT� tSimÞi, and the interval
(LT - ETi) as function of simulation time tSim decreases linearly ac-
cording to ðET� tSimÞi=2, with some modifications during final
approach <30 min before arrival which however, are not of interest
within the present work.

Target Time TTi for each simulation time step DtSim (¼4 min) is
the optimization result with regard to minimizing for the whole
daily arrival sequence the deviations from the individual schedules
STAi, or alternatively from ETi. An update of optimized ai-sequences
is calculated for each DtSim, and the daily sequence will undergo
changes as long as new flights are starting from their respective
departure airports, with the individual departure delay drawn from
the same average G-PDF (a ¼ 2.5, b ¼ 8, t ¼ 18.2 min; see previous
section) and shifted back to the delay scale mD. Typically, for 17 h of
daily operation of our empirical dataset we have ca. 260 simulation
steps per MC-run. Runtime depends on the traffic density, time of
operation and sequencing algorithm. With 200 MC-runs per
experiment we typically have up to several hours of simulation
time for a specific model and scenario. The simulations run on a
high performance PC with 2xIntel 64 Bit E5645 12 core processors
(24 cores with hyperthreading “on”), 2.4 GHz, 24 GB RAM.

7.3.2. Baseline simulations
In order to establish a baseline, the MC-simulations as a first

step were performed without considering a-priori knowledge of
disturbance. The simulations used the First-Come-First-Serve rule
(FCFS) and a (continuous time) standard optimizer (Take Select 8e2
(Helmke, 2011)) requiring a monotonous version of the objective
function with zero cost for early arrivals, and we compare it with
the nominal model using the discrete (MIP) Gurobi optimizer.

Fig. 6 depicts anMC-simulation (MC057: S7.2) with the FCFS rule
(i.e. no optimization) as an example for a single day (¼ single run)
delay statistics for all flights of 8 h of operations. The figure shows
the delay histogramwith G-PDF fit that may be compared with the
empirical PDF of Fig. 4. In most cases the G-PDF fits to the delay
histograms exhibit good c2-test results (p(c2) > 5%-rejection
threshold of 0-hypothesis).

A corresponding result is obtained for the single flights ai-
Fig. 6. Example histogram and G-PDF fit of baseline MC-simulations with FCFS
method. Single MC-run ¼ single day of operation (8 h, 209 arrivals) depicting statistics
of the dense arrival sequence (scenario S7.2). p > 5% and low covariance r(a,b) suggest
acceptance of G-fit.
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analysis with 200 repeated arrivals each. The runtime (± stddev) of
this experiment for S6/S7 respectively was 1.7(0.6)/1.1(0.4) s. The
209 individual histograms with G-PDF fits for each single flight and
the summary plot exhibits results similar to the single days case.
The latter numbers (averages 〈$〉 of fit-parameters (a,b;t,s), with
standard deviations ($), times in minutes) for the 200 MC-runs
(MC062(S6.2)/MC057(S7.2)) are: 〈a〉 ¼ 1.7(0.2)/2.8(0.4);
〈t〉 ¼ 23.2(1.2)/34(20); htDmini ¼ �30:2 0:5ð Þ=� 29 2ð Þ, yielding for
the delay 〈mD〉 ¼ �7.0(1.4)/5.3(5.0). The average number of
sequence position changes (re-scheduling) per flight ai is
〈rs#〉 ¼ 2.2(0.9)/12.7(5.6). Table 3 summarizes the corresponding
simulations with the (continuous time) Take Select TS8-2 optimizer
and the nominal discrete Gurobi-MIP optimizer for the high density
scenario S7.2.

Although for the low traffic density (S6.2) the FCFS rule yields
the best results with regard to re-scheduling as well as delay sta-
tistics, for the high traffic density (S7.2) in contrast the use of an
optimization algorithm appears advantageous for all three metrics:
number of re-schedulings (rs#), mean delay m and (as expected)
runtime RT. The general agreement on average of mean delays (m),
as obtained from single day and single flight delays proves the
consistency of the analysis of the 200,209 z 40000 entries MC-
data tables although, for the TS8-2 optimizer, the single flight
analysis (in contrast to the single day evaluation) exhibits signifi-
cant inter-individual scattering. We also observe a tendency to-
wards more symmetric PDF's (smaller skewness 2/a) with
increasing traffic density.

In our future investigations, we will test our new developed
optimization methods from the previous sections within the
described simulation environment and compare them with FCFS
and TS8-2. The above mentioned results of the empirical data
analysis and baseline simulations indicate the two-parametric G-
PDF to be a reasonable approach for modeling the random distur-
bances for the validation of our approaches.
8. Conclusion

We have developed a mathematical optimization model for the
pre-tactical optimization of assigning time windows for runway
utilization. In this model, several aircraft can be assigned to the
same time window which reduces the complexity of the problem.
Further, we enriched the model by protection against uncertainties
using techniques from robust and stochastic optimization. Our
computational study showed that such an incorporation of a priori
knowledge on uncertainties has a large effect on the resulting so-
lutions. The stochastic approach optimizes the expected scenario
and, therefore, is more likely to remain feasible in the face of dis-
turbances than the nominal approach. Thus, on average it provides
more stable plans and less necessary replanning. However, robust
optimization methods provide even more stable solutions. Using
the strict robust approach, we definitely know that a solution (if
one exists) will be feasible for all scenarios within the pre-
determined uncertainty set. Thus, it is the approach with the
highest possible stability. However, this may come at the price of
increased delay. Recoverable robustness on the other hand takes
into account that a time window assignment might become
Table 3
Comparison Of Baseline Results (for simulation with high traffic density).

Model(MC#) 〈RT(std)〉/s 〈a〉 〈m(std)〉/min 〈rs#(std)〉

FCFS (57) 1.1 (0.4) 2.8 5.3 (5.0) 12.7 (5.6)
TS8-2 (56) 203 (63) 3.5 3.5 (6.0) 8.1 (3.2)
Nominal MIP (87) 15.8 (1.5) 3.2 1.7 (3.9) 0.45 (0.27)

tion of runway utilization under uncertainty, Journal of Air Transport
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infeasible in some scenario. In that case, it applies a recovery action,
i.e. a replanning step, that makes the assignment feasible again.
This potentially necessary recovery is already incorporated in the
computation of the initial solution. Hence, recoverable robustness
provides a promising trade-off between little delay (as nominal)
and high stability (as strict robust). This is also true, if we consider
the ’recovery to strict robust solution’ approach (under the
assumption that a strict robust solution exists). This approach is
way easier to solve than the general recoverable robust approach,
since we don't have an exponentially large scenario set to consider
and further we have an easier objective function. Our corre-
sponding computed solutions remain quite stable while producing
less delay than the strict robust approach.

We performed statistical analyses of real-world traffic data from
a large German airport for deriving a departure delay model based
on the two-parametric G-PDF to generate realistic disturbances for
Monte Carlo computer experiments. Furthermore, we described a
simulation environment for these experiments to test current and
future optimization approaches. Results of simulations are pre-
sented with two continuous time and the nominal model using the
discrete Gurobi optimizer. Results for the new stochastic and robust
models are presented in a follow-up paper (Fürstenau et al., 2015).
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