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The runway is the main element that combines airside and groundside of the ATM System. Thus, it is
crucial to develop efficient models and planning algorithms for its effective usage. The best planning
algorithm, however, is useless if the resulting plans cannot be implemented in the real world. This often
happens because the input data of the planning algorithms face disturbances or changes over time,
respectively. For example, an estimated time of arrival/departure of an aircraft may be changed. It is
usually not certain for the next ten hours.

In this work, we study the runway scheduling problem under uncertain conditions. First, we present
mathematical optimization models that ignore uncertainties. In the most effective approach, we
compute for every discretized point in time whether an aircraft is scheduled and if so, which one is. Then,
in each planning step we take uncertainties into account. We then apply different robust optimization
methods in order to devise solution approaches that lead to stable plans. These optimization approaches
are integrated into a simulation tool and evaluated in different traffic scenarios.

The Monte-Carlo simulations for a mixed-mode runway system show that our robust approaches
result in fewer sequence changes and target time updates, when compared to the usual approach in
which the plan is simply updated in case of infeasibility. Thus, we show that protection against un-

certainties by using robust optimization indeed leads to considerably more stable plans.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

PLANNING, particularly scheduling of limited resources is one of
the main tasks of Air Traffic Management (ATM). However, uncer-
tainty, inaccuracy, and non-determinism almost always lead to
deviations from the actual plan. Typical strategies to deal with
these changes is to simply ignore them (plan freezing) or — slightly
better — to regularly recompute or update the schedule t(j) (see
Fig.1). t(j) denotes the planned target time in the jth planning cycle.
These adjustments are usually performed in hindsight, after the
actual change in the data has occurred. This usually leads to
schedules with reduced overall utilization and reduced throughput.
The disadvantages of such an approach is obvious: A formerly op-
timum plan might not even be feasible any more after some
disturbance has occurred. In this work, we follow a different route.
First of all, we use mathematical optimization in order to design
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global optimum runway scheduling plans. Furthermore, in contrast
to ignoring disturbances, we know there are disturbed scenarios
that we integrate into the models a priori. Thus, the challenge is to
incorporate uncertainty into the initial computation of the plans so
that these plans are stable with respect to changes in the data. This
leads to a better utilization of resources as well as to a more effi-
cient support for ATM controllers and stakeholders.

Two different approaches currently exist to handle uncertainty
in mathematical optimization: on the one hand stochastic optimi-
zation that can be used to compute good average solutions and on
the other hand robust optimization to immunize against predefined
worst-case scenarios. In normal life we intuitively act similarly. As a
host of an invitation for 8 p.m. we know that there are some guests
who often do not arrive before 8:30, but others will arrive in time.
Depending on the invited guests, we start our preparation very
early or we know that we still have time. In the stochastic case, our
host tries to find a good compromise between his waiting time for
the first guests and the waiting time of the guests for the host (still
taking a shower and searching a pair of socks). In the robust case,
however, the host tries to avoid the awkward situation that the first
guest would arrive earlier than the host is prepared for.

(2016), http://dx.doi.org/10.1016/j.jairtraman.2016.02.009
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Fig. 1. The ATC planning and feedback cycle (Heidt et al., 2014).

In this paper we concentrate on robust optimization, i.e. the goal
is to avoid improbable, but critical situations in order to obtain
stable plans. Stochastic optimization and its combination with
robustness is considered in the WP-E funded project RobustATM
(Kapolke et al., 2016). However, an increase in stability naturally
comes with the price that it might reduce the runway efficiency in
general. In order to keep this price under control, we present
different robust optimization concepts, a strict robust one and a
light robust one. In the latter, the user specifies beforehand what
reduction in efficiency is acceptable. Our methods then maximize
the stability of the schedule while keeping the efficiency at the
acceptable limit. Light robustness has been developed for railways
(Fischetti and Monaci, 2009). We show here that it can be suc-
cessfully applied for runway scheduling as well.

An extended abstract of this paper has already appeared in Heidt
et al. (2014), in which two mathematical models for runway
scheduling are used and evaluated in different traffic scenarios.
Furthermore, the model that performs better in practice is
extended to a strict robust model. It is investigated and validated
within a simulation procedure. Finally, the results obtained from
Monte Carlo simulations with the different models are compared
and discussed. The remainder of this paper is structured as follows.
Section 2 presents related works. In the following Section 3 we
introduce the optimization models used for the runway scheduling
problem and compare them experimentally. One approach com-
putes the target times with an accuracy of one second, whereas the
second approach discretizes the timeline into time slots with a
width of x seconds and assigns aircraft to those. We get a trade-off
between runtime performance and accuracy. In Section 4, un-
certainties are taken into account and a strict robust model as well
as a light robust model is introduced. Afterwards, the performed
experiments are described in Section 5 and their results are
compared in Section 6. We concentrate on runway scheduling only
as an example to explain our approach, which is also applicable for
other ATM planning problems. A MIP model of course is needed and
we need explicit probabilistic knowledge of the uncertainties/
possible disturbances.

2. Related work

The development of Arrival Managers for assisting air traffic
controllers has started in the early eighties of the last century (see
Neuman and Erzberger, 1990; Volkers, 1990). The development of
Departure Managers (Bohme, 2005) goes back to the nineties.
Bennell et al. (2013) wrote a survey on arrival and departure
planning. They summarized techniques and tools of operation
research and management sciences.

Usually, heuristic approaches are used for computing the air
traffic sequences. Based on a first-come-first-served (FCFS) princi-
ple, constrained position shifting (CPS) was used by Balakrishnan
and Chandran (2006). Here, only a limited number of aircraft can
change their position. Hu and Chen (2005) used position shifting to

determine an arrival sequencing. Hu and Di-Paolo (2008) further-
more proposed a genetic algorithm. Moreover, metaheuristics such
as Tabu-Search have also been studied for the runway scheduling at
London Heathrow Airport by Atkin et al. (2007).

Beasley et al. (2000) formulated an exact mixed-integer-
program (MIP), where the variables are the exact target times of
the aircraft. They used a linear cost function and developed heu-
ristics and linear programming (LP) based on tree search. Clare and
Richards (2011) used the same mixed-integer formulation and
solved it by receding horizon methods. Considering a time-indexed
(or time-discretized) formulation for runway scheduling,
Anagnostakis and Clarke (2003) used a heuristic approach for de-
parture planning. Here, a two-stage formulation was proposed. In
the first stage, weight classes are assigned to slots, whereas in the
second stage the specific aircraft are scheduled. In Kjenstad et al.
(2013), the time-indexed formulation was used for Hamburg and
Arlanda airport. The authors obtained short computational runtime
(<20 s) for Hamburg Airport. In 2013, Frankovich and Bertsimas
(2013) used a two-phase formulation including the time-indexed
model over a time horizon of one hour and applied the model to
historical data of Boston and Dallas Airport.

According to our knowledge, only few works exist in which the
runway scheduling problem has been studied under uncertainties.
Using stochastic programming, Corolli et al. (2014) tackled the
strategic problem of departure and arrival slot allocation at airports
under uncertainty. In Sama et al. (2014), a rolling horizon approach
was developed for the problem of monitoring and controlling
aircraft with disturbed take-off/landing times in the terminal
control area. Jacquillat and Odoni (2014) optimized the airport's
flight schedule at a strategic level. They also balanced the arrival
and departure rates at a tactical level to mitigate airport congestion.
Iterative, they used a stochastic queuing model for congestion, a
dynamic programming model for capacity utilization and an
integer programming model for scheduling interventions. They did
not integrate robust optimization a priori. In the work of Chandran
and Balakrishnan (2007) a heuristic approach was developed using
FCFS with CPS for stochastic deviations in the earliest times.
Agogino (2011) used a MIP model for departures, included normally
distributed delay and proposed evolutionary algorithms for this
robust scheduling problem. In the PhD thesis of Solveling (2012) a
MIP model was solved by a 2-stage-stochastic approach using a
stochastic branch & bound method. Apart from that, mathemati-
cally robust approaches have hardly been considered for solving
the runway scheduling problem to optimality.

3. A mixed-integer model for the scheduling problem

In this section we model the runway scheduling problem as
mixed-integer programs. First, we only plan once and ignore un-
certainties. So we can simplify Fig. 1 in the way that Input(0) is just
the input into the Planner and the output of the Planner has no
effect on the ATC world. Thus, all aircraft land/depart at their
planned time. We assume a given set of flights F. We abstract from a
real airport with many constraints and terms in the objective
function. Our simple objective function, which may be replaced by
a more complex one in the future minimizes the sum of the de-
viations from the scheduled times. Furthermore, we want to avoid
inbound holdings and want to meet outbound slot constraints, i.e.
departure time constraints in order to meet an acceptable given
latest time TILT. In our simulation we assume outbound slot sizes of
15 min. Slot sizes of this range are often used for balancing the
demand capacities. Furthermore, each aircraft has a schedule time
1. It is assigned an earliest possible time 7£7, which is treated as a
hard constraint. A violation of the latest time TI-LT just results in bad
objective function value as well as holdings or departure slot losses.

(2016), http://dx.doi.org/10.1016/j.jairtraman.2016.02.009
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Due to wake vortexes and runway occupancy times, we have to
maintain minimum separation times ¢; x between two aircraft ieF
and keF, which depend on the respective aircraft weight classes.
Furthermore, fair schedules should be achieved. This means that it
is worse if one aircraft has a delay of 30 min than three that are
delayed 10 min each. We consider the following two different
mathematical models: the first one is a mixed-integer model that
decides the ordering of the aircraft together with their touch-
down/take-off times. The second one uses a time discretization.
The latter computes for every discretized point in time whether an
aircraft is scheduled to it and if so, which one is. Based on this, we
used a dynamic time-indexed model with flexible time discretiza-
tion for each aircraft. As a next step, we compare the time-indexed
models to the mixed-integer model. Many other heuristic and exact
approaches exist to directly solve the runway scheduling problem
(see Helmke (2011) for an overview). We will, however, benefit
from our approach with a time-indexed model as soon as we
consider uncertainty in Section 4.

3.1. A mathematical model with exact touch-down/take-off times
(MIP)

In this section we use the model from Beasley et al. (2000) for
the Runway Scheduling Problem with exact touch-down/take-off
times. We however use a different objective function in order to
ensure fairness. We introduce continuous variables t;eR that
denote the touch-down or take-off time. As we want to schedule
the set of all aircraft as close as possible to their schedule time, we
minimize the sum of the absolute values of the differences between
the touch-down/take-off time and schedule times. Thus, the first
objective function would read as

min Z

ieF

ST
ti—7;

In order to ensure fairness as well, we use the square deviation
from the schedule time which yields

min» (ti - Tl-5T> .
ieF
Planning aircraft after their latest time is possible, but then
undesirable flight maneuvers have to be performed, e.g., airborne
or ground holdings. Thus, we additionally penalize if an aircraft is
planned after its latest time. This can be achieved by an auxiliary
variable t{T* for every aircraft that satisfies

= max{O, ti — rlLT}.

This expression enforces tl.LT+ to take the value O, if the target
time is smaller than the latest time. It takes the difference between
target time and latest time in case aircraft i is planned later than its
latest time.

Combining these expressions, the overall objective function
then reads as

minZ(wST (ti — T?T>2 + wir (tiLT+>2)7 (1)

ieF

with weights wgr, wir €R.

The constraints then model that an aircraft cannot land/depart
before its earliest time. Furthermore, safety distances need to be
maintained. For the details about the constraints and how they are
modeled, we refer to Heidt et al. (2014).

Computationally, it turns out that this formulation is solvable to

optimality only for small instances of aircraft sets <15 elements
within acceptable time, i.e., within less than 10 min. In the
following, we introduce a different optimization model for the
runway scheduling problem. We show experimentally that this
time-discretized formulation leads to more effective solution al-
gorithms, when compared to the model introduced above.

3.2. Runway scheduling as an assignment problem with side
constraints

Motivated by Dyer and Wolsey (1990), we focus on a time-
indexed model (TIM) for the runway scheduling, similar to what
has been done in Kjenstad et al. (2013).

The time horizon T={ty,...,t;s} is discretized into time slots ;€ T.
We use equidistant time intervals for each aircraft. For each aircraft
ieF, the interval [T, 7tT] denotes the target time window in which
the touch-down and take-off times may vary. Thus, for each aircraft
ieF the time horizon reduces to

T;=Tn [TET TI-“T]. (2)

For example, if the discretization is given by T=
{1000,1075,1150,...,1600} and the earliest/latest time interval for
aircraft i by [1111,1582], the time horizon for aircraft i would be
T;={1150,1225,...,1525}. If aircraft i e F proceeds aircraft kF, 0; is
the minimum separation time. For each aircraft ieF and time slot
t;€T; binary variables b;; are introduced to declare whether an
aircraft is scheduled on a slot or not:

1
o= {}
The goal is to minimize the sum of deviation from the schedule
time 57, We furthermore penalize all aircraft which are scheduled
later than their latest time t'"* = max{0,t; — 7}"}. Additionally, we
use quadratic deviations to reduce unfairness in the schedules.
Thus, we want to find an assignment b;; which minimizes the
objective function with weights wgr, w;r €R:

min Z Z bj; (CUST <t] - 71,5T>2 + Wit (tlLT+)2) ) (3)

ieF je.7;

if aircraft ieF scheduled on slot t
otherwise

It is worth mentioning that the quadratic term now consists of
exclusively input data, since t; are fixed slots - the variables b;; are
linear in the objective. Thus, there is only a contribution to the
objective function value if an aircraft i is assigned to slot t; and thus
bij = 1. Hence, we are able to model arbitrarily complex objective
functions without losing performance, if we model the scheduling
task as a slot assignment problem. The first set of constraints
models that each aircraft has to be scheduled:

> bjj=1 VieF (4)
JET,

We have to ensure that each slot can be used at most once.

> bij<1 VjeT (5)
ieF

For each pair of aircraft and each time slot one constraint con-
siders minimum separation times. If aircraft i is scheduled on time
slot t;, it is forbidden for aircraft k to be scheduled on following time
slots until the separation time J; is reached. This yields

(2016), http://dx.doi.org/10.1016/j.jairtraman.2016.02.009
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J+ | ar

bij+ > by <1 VieF, VjeT;, Vk#i, (6)
I=j+1

where At describes the length of one time slot. Since d; x/At can be
fractional, we have to round up this value to ensure that the min-
imum separation times holds. By this, the buffer between two
aircraft can be larger than the minimum separation times 6;;. The
optimization thus computes for every discretized point in time
whether an aircraft is scheduled and if so, which one is. Mathe-
matically, without constraint (6), we get an assignment problem,
which is well understood and solvable in polynomial time (Ahuja
et al,, 1993). In general, the problem with constraints (6), howev-
er, is difficult to solve in practice for large instances. For the
application of runway scheduling we have minimum separation
between 75 and 150 s. Hence, solutions for example for slot sizes of
At = 75s have good runtime performance, but often result in low
objective function values with respect to runway utilization. The
reason is that we plan at most one aircraft into a slot which might
mean that two aircraft are planned further apart from each other
than necessary. In contrast, solutions for slot sizes of At = 5s
compute good objective function values, but have poor computa-
tional runtime. The challenge is to reduce the number of time-
indexed variables so that the problem is still computationally
tractable. On the other hand, we have to compute acceptable
objective function values.

In ATM business it is, however, seldom necessary to plan take-
off or touch down times with an accuracy of five or even one sec-
ond, if the event is still far in the future, e.g. in 30 or even in 120 min
from now on. This idea is elaborated in the next section by the
dynamic time-indexed model approach with variable slot sizes.

3.3. Dynamic time-indexed model for runway scheduling

The dynamic time-indexed model (DTIM) is constructed like the
time-indexed formulation in Subsection 3.2 with the difference
that for each aircraft ie F we may enable a different time dis-
cretization. Thus, the nearer an aircraft gets to the airport, the
smaller are the slot sizes. For aircraft with more remaining flight
time, it is sufficient to know the target time roughly according to
the slot sizes. The same holds for outbounds, i.e. the nearer the
schedule departure time is, the more accurate values are required.
Thus, we may reduce the number of variables used in the optimi-
zation. This leads to smaller computational runtimes, improving
the objective function value simultaneously. The time horizon T; for
each aircraft iF is, therefore, defined as

Ty= {t1,t + At t; + 248, ... tm} N [riET,T,LT].
Thus, the slot sizes At; can vary for different aircraft ieF.
3.4. Computational results for the different models

In order to evaluate the performance of the models we choose
10 different randomly generated instances for 50 aircraft and test
them once for each model. The Table 1 reads as follows: comp.
runtime denotes the computational runtime in seconds, whereas
avg. dev. is an approximation of the average deviation from
schedule time per aircraft in seconds and can be computed by the
formula

ave. dev _\/ obj. func. value
& €€V- =\ lumber of aircraft

Table 1
Computational results for ten different instances of 50 aircraft.
Instances MIP TIM DTIM
At=5 At =175

1 Comp. runtime [s] 375 504 <1 14
Avg. dev. [s] 34,6 374 1175 64.8

2 Comp. runtime [s] >3600 836 <1 20
Avg. dev. [s] 447 61.6 159.4 95.9
Gap % 26.0

3 Comp. runtime [s] >3600 >3600 <1 23
Avg. dev. [s] 762 1208 170.3 91.7
Gap % 60.1 17.7

4 Comp. runtime [s] >3600 520 <1 23
Avg. dev. [s] 31.6 31.6 187.6 64.8
Gap % 58.3

5 Comp. runtime [s] >3600 >3600 <1 19
Avg. dev. [s] 73.5 110.5 234.1 128.8
Gap % 579 50

6 Comp. runtime [s] 1714 1971 <1 11
Avg. dev. [s] 34.6 42.4 140 60
Comp. runtime [s] 245 482 <1 11

7 Avg. dev. [s] 293 346 127.3 447
Comp. runtime [s] >3600 468 <1 8.3

8 Avg. dev. [s] 3338 33.8 199.5 98.9
Gap % 20.6
Comp. runtime [s] >3600 621 <1 13

9 Avg. dev. [s] 469 583 192.9 98.9
Gap % 34.7
Comp. runtime [s] >3600 >3600 <1 11

10 Avg. dev. [s] 51.0 72.1 194.9 78.7
Gap % 23 20.9
Comp. runtime [s] <1 15.3

avg Avg. dev. [s] 58.3 67.5 176.0 86.0

Comparison between MIP, TIM and DTIM with respect to runtime and average de-
viation from schedule time.

We thereby compare the MIP model, the time-indexed model
with time discretization steps At of 5 and 75 s and the dynamic
time-indexed model. We choose Aty of 5 s for the first 10 aircraft
and At of 75 s for the remaining aircraft. The weights wsrand wirin
the objective function (1) and (3) are set to %. Thus, the deviation
from schedule time and planning behind latest time are equally
important. It should be noted that from a mathematical point of
view is irrelevant how these weights are chosen. Gap denotes the
relative gap between the computed lower bound and the computed
minimum, if we interrupt the computation after a time limit of
60 min CPU time is reached.

First of all, the MIP model computes the objective function value
precisely, but unfortunately runs out of time (>1 h) for 7 of 10 in-
stances. The TIM model with time discretization size of 5 s exceeds
the time limit only in 3 cases. With increasing time discretization
sizes for TIM, the computational runtime decreases. For dis-
cretization size of 75 s, the solution for every instance is computed
in less than 1 s, but the average deviation from schedule increases
rapidly. This arises out of the fact that the greater the time dis-
cretization size is, the less variables are computed, but the more
imprecise one gets because the time is only determined within the
discretization size. Another fact is that one might get losses in the
criteria of average deviation when two consecutive aircraft are
scheduled beyond their minimum separation times. This occurs
when the minimum separation times are bigger than one slot
length, but much smaller than two. To avoid these two extreme
cases, the dynamic model DTIM is considered. We thereby obtain
fast runtimes, which are also suitable in practice and the average
deviation increases only by a factor of 1.3 compared to the cases in
which all aircraft are computed with discretization size of 5 s. In
comparison an overall discretization size of 75 s results in an in-
crease by a factor of 2.6. Going into details of each instance we
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obtain that DTIM is fast (<23 s), whereas MIP needs at least 245 s.
When the number of aircraft having comparable schedule times
rises, like instance 3, 5 and 10, the problem gets difficult to solve.
Both MIP and TIM with discretization size of 5 s run out of time.
Also the average deviation from schedule is increased in these
cases. This occurs due to the fact that many schedule times are
similar and thus the gap between target time and schedule time
increases. TIM, respectively DTIM has another advantage. Since we
use binary assignment variables, the objective function stays linear
in the variables whatever we want to optimize. Thus, more complex
objective functions can be considered without loss in performance.
DTIM is also very flexible with respect to runtime and objective
function value: it is thereby possible to compute a good solution
very fast or spend more time to get an even more beneficial solu-
tion. In operational services it is required to compute solutions fast,
because the position and speed of each aircraft change. Based on
these results, the (dynamic) time-indexed model was chosen for
robustification.

4. Robust scheduling considering uncertainties
4.1. Strict robustness approach for ATM schedules

In reality, we have to face disturbances and uncertainties in the
input data that usually lead to deviations from the actual plan. From
a mathematical point of view robust optimization approaches have
to be considered (see Ben-Tal and Nemirovski, 1999; Bertsimas and
Sim, 2004). Here, we protect the model against data uncertainties
by first specifying an uncertainty set that contains all scenarios
against which protection is sought. We only consider a solution, i.e.,
a schedule, feasible if it remains feasible no matter how the un-
certainties manifest themselves within the uncertainty set. Among
all these robust feasible solutions, we determine a robust optimal
one, i.e., one with the best guaranteed objective function value. The
following robustification focuses on TIM, but can analogously be
obtained for DTIM. The strict robust counterparts are denoted by
SRTIM and SRDTIM. In the robust runway scheduling problem the
uncertainties lie in the deviations of earliest and latest times. For
both models the uncertainty set is a discrete one, because the
assignment of a slot is possible or not, i.e. the discrete variable b;;
either exists or the variable vanishes. Hence, the set T; in (2)
changes according to the variations in the interval of earliest and
latest times. Thus, the strict robust time horizon reads as

TR = Tn|+fT + prot;, 7T — prot; |, (7)
where prot; denotes the deviation in the earliest and latest times for
each aircraft against which we want to protect. The choices for
values prot; and buff; are not necessarily related. The next section
specifies the choices made here. The set T,.R is the resulting dis-
cretized time horizon, to which aircraft i can always be assigned.
Thus, for each aircraft the feasible time horizon set T; is replaced by
the strict robust time horizon set TiR. The robustification of the
constraint (4)) and (6) then reads as

jeT}
and
 Oik
HE]
bij+ > by <1, VieF, VjeTfvk+i,

I=j+1

Inequality (5) is maintained from the nominal time-indexed
model, because each slot can still be assigned at most once.
Furthermore, the minimum separation times between two aircraft
might be violated, which leads to go-arounds or departure slot
losses. So we protect the constraints (6) by the use of additional
buffer:

0i k
JH Al_tk ]+buffi.k

bij+ Z

I=j+1

by <1, VieF, VjeTk vk=i.

where buffer buff; can for example be computed by the knowledge
of the expected delay/earliness of aircraft i and k. We will detail this
in the next section.

4.2. Light robustness model for runway scheduling problem

Clearly, depending on the size of the additional security buffers,
the strict robustification from Section 4.1 might reduce the
throughput and increase the delay considerably. This has also been
observed in other contexts, for example by Ben-Tal and Nemirovski
(1999) or Bertsimas and Sim (2004). In this subsection, we intro-
duce a less conservative robustness concept that has been devel-
oped for timetabling in railways. Using the concept of light
robustness (Fischetti and Monaci, 2009; Schobel, 2014), the price of
robustness, i.e., the reduction in throughput and increase in delay,
can be controlled.

The goal of light robustness is to achieve a trade-off between the
stability of a solution under disturbances and the price of robust-
ness. First, the optimization model is solved by ignoring un-
certainties. In a second step, the optimization model is modified
and solved again. In this light robust optimization problem, we
allow an increase in the costs by a certain percentage k that is
specified beforehand. We now aim at determining a solution that
maximizes robustness among all solutions that do not increase the
cost by more than k percent.

As in Subsection 4.1 we focus on the time discretized method
and apply the idea of light robustness here. The light robust time-
indexed counterpart is denoted by LRTIM. As described above, we
solve the nominal problem first (see Subsection 3.2) and denote the
nominal optimal solution as zy,,,. Afterwards, we have to solve a
second optimization problem. This problem contains again the
constraints (4), (5) and (6). Additionally, to fix the quality standard
of the nominal solution, we add the constraint

Z Z bjj (‘JJST (t] — T?T>2 + wLT(tiLT+>2) < (1+4«) Zyom:

ieF jeT;
(8)

which allows an increase in the nominal costs of k with k>0. The
left hand side of this constraint (8) is in fact the objective function
(3) of the nominal problem. Since (3) computes an optimal nominal
solution, we now look for solutions, which may be at most x-100%
worse than the nominal one zj,,,. Among these solutions, we want
to find one that maximizes robustness. Thus, we have to consider a
new objective function, which maximizes robustness. Since un-
certainty effects earliest and latest times, planning very near to the
earliest or latest times usually does not lead to stable schedules. In
contrast, scheduling all aircraft into its strict robust time horizon
7R is most robust, because it contains all time slots that are
possible in each considered realization of uncertainties.

For example, let the nominal objective function value zy,, be
5000, which means for a scenario with 50 aircraft an average delay
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of 10 s per aircraft. The feasible time horizon of an aircraftiis .7 ; =
{100, 125,150, 175,200} with its schedule time settled at 110. If we
want to protect against deviations in earliest and latest times of
25 s, the strict robust time horizon of aircraft i reads as
TR = {125,150, 175}. The nominal solution for this aircraft is then
the slot 100 and the strict robust solution is 125. If we choose k=0.1,
we may allow an objective function value of 5500. In the light
robust approach aircraft i will be computed into its strict time
horizon on slot 125. The left hand side of (8) will increase to 5125,
which is smaller than 5500 and thus feasible. But this approach
does not allow to assign aircraft i on slot 150, because it violates
constraint (8). It is also obvious that depending on the value of k,
possibly not all 50 aircraft can be planned into their strict robust
time horizon.

In summary, the light robust objective function minimizes the
assignment of aircraft to slots that lie outside of their strict robust
time horizon, i.e., that will become infeasible in some scenario.
Every assignment within the strict time horizon is considered
robust and is thus not penalized in the objective. The objective
counts only the delay costs of those assignments which do not lie in
T,~\T1.R. Of course, planning an aircraft into its strict robust time slots
might increase its delay which however is restricted by the value of
parameter k in (8).

Thus, the light robust objective is given by:

min» " biJ-(tj—riST)Z. 9)

i€F jeT\TF

5. Validation setup

Up to now, we have only considered the results of the static case.
We are, however, interested in the algorithmic behavior when
input data are disturbed. Therefore we use random initial data for
each aircraft and for the uncertainties in the earliest and latest
times. The different robust models are compared to the nominal
algorithm. This is done within a simulation for a planning horizon
up to two hours before touch-down/take-off. In the simulation we
will additionally use the quadratic deviation from the last schedule
TILS in the objective function weighted equally to the other both
terms. Hence, we avoid jumps from one simulation step to another,
if e.g. two different solutions with the same objective function
value exist. Thus, the sequence does not change until an improve-
ment in the objective function value is achieved. To be precise, we
only adapt a solution if the previous (best) solution is not feasible
anymore due to disturbed input data. We compare four different
planners (M = 4 in Fig. 2) in the simulation (see Table 2):

The TIM model with discretization size of 75 s works as a
nominal planner without considering robustness (III-B). Its strict

t(j) Planner-M | ™

il

Planner-1

Simulation

ST, i i-1) ET(), LT(
ET(0), LT(0) ET(j-1), LT(j-1)
"Noise,
~~—____“Uncertainty

Fig. 2. Simulation and planning (Heidt et al., 2014).

robust counterpart (SRTIM) with discretization size of 75 s denotes
robust planner 1. As strict robust planner 2 we choose the strict
robust DTIM model (SRDTIM) and the light robust planner is LRTIM.
The omniscient planner knows all uncertainties beforehand and
computes the best sequence with the same discretization size of
the robust planner but without robustification. Thereby it is
possible to compare the results of both planners with the optimal
values of a planner who already knows all deviations in advance.

We will first compare different discretization sizes for DTIM to
evaluate which one fits best for planner 2B. Also we vary the quality
standard parameter k to find out the best configuration of the light
robust planner.

Algorithm 1: High-Ievel description of the simu-
lation procedure.
Data: earliest, latest, schedule times for all aircraft
Result: target times for all aircraft, statistics of criteria
values
calculate initial sequence;
choose planner;
while not all aircraft landed/took-off do
increase simulation time;
disturb earliest and latest times;
for all chosen planners do
decrease window of earliest and latest times;
test for go-arounds, departure slot losses;
serve landed/departed aircraft;
if any target time drops out of its earliest latest
time interval then
‘ optimize the model (update sequence);
else
‘ keep last sequence;
end
get computed target times;
update statistics;

end

end

Algorithm 1 gives an overview over each step of the simulation.
We will detail this in the following. Fig. 2 shows that each planning
takes effect on the simulation and thus on the input data for the
next simulation step. Fig. 2 also shows that each simulation step
consists of two parts. On the one hand, it contains the simulation of
the operator who tries to implement the plan. Therefore, the
earliest and latest times converge towards the planned target
times, because this interval shrinks the nearer an aircraft gets to its
planned time. On the other hand, it generates the disturbances.
Here, we add a random value to earliest (ET) and latest times (LT).
We update every three minutes ET and LT and therefore replan also
every three minutes if the previous sequence is not feasible
anymore, i.e., the simulation step size A7™ is always 180 s. The

increment of the earliest time inciETJJrl of aircraft g; in simulation

Table 2

The different considered planners.
# Planner Model
1 Nominal TIM
2A Strict robust planner 1 SRTIM
2B Strict robust planner 2 SRDTIM
3 Light robust LRTIM
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step j + 1 converges linearly to the planned target time Tl-TTJ of the
previous simulation step j by the following formula:

TTj _ FTj

inc; T/t = C-ATS"’”-T"Wji'S,
T T m
The convergence factor ¢ depends on the difference of the
planned target time TZTJ and the simulation time 7™, It varies from
0.2 (more than 20 min before planned touch-down/take-off time)
to 1.0 (3 min before planned touch-down/take-off time). We
randomly choose the disturbance dist’i+1 of aircraft g; in simulation
step j + 1 from a normal distribution

V% (n{:“, (x§+l ,Gi)z) . (10)

n? = n} = y; is determined by the used scenario (low or high un-
certainty). For j>1 the mean values n?“ are calculated from the
previous disturbances:

02 1 i
m =§-dlst§+§-dlst’i

Thus, the mean value and the standard deviation of the normal
distribution changes for each aircraft and each simulation step.
Factor y; is set to 1.0 for outbounds and for inbounds it ensures that
the standard deviation decreases the nearer an aircraft gets to its
target touch-down time and thus the uncertainty reduces:

1 1800+ 7ETd _ fSim
i 3600
In each simulation step j we calculate the convergence of the

earliest time to the planned target time inch‘j and the disturbance
dist,.
1

ETj-1

. FTj - . .
ETJ _ T +ing ¥ + dlSti if dlSti <0

i TfT"_] + max(inciETJ, distfi> if dist, > 0

The latest times similarly converge towards the planned times.
Similar randomly chosen disturbance dist’i+l are added.

After updating the earliest and latest times we decide whether
an update of the sequence, denoted by the previous target times, is
necessary (see Fig. 3). This is necessary if the inequality
AT < T;ITJ < rf”“ is not satisfied any more, i.e., in case the
planned target time is outside the earliest/latest time interval.

6. Computational results for the different planners

We use three different scenarios (N = 3 in Fig. 2):

O\ yes Optimization
< Replanning? "9—» — —>
Obj. | | )
Func
no
ST
t(j) := t{j-1)

Fig. 3. Replanning decision and optimization (Heidt et al., 2014).

1) high traffic demand with low uncertainty
2) high traffic demand with high uncertainty
3) medium traffic demand with high uncertainty

The case of medium traffic demand with low uncertainty is not
considered because this one is very stable. Each scenario (low or
high uncertainty, medium or high traffic) contains 20 runs with 50
different randomly chosen aircraft. Schedule times are randomly
chosen, so that each five minutes slot (for example 12:00, 12:05,
12:10, ...) except potentially the last one contains the same number
of aircraft S. For medium traffic S = 3 is chosen and for high traffic
scenarios we use S = 5. The earliest time of each aircraft is randomly
chosen out of a range of 5—10 min before its schedule time. Weight
classes as well as operation types (inbound or outbound) are
randomly chosen. We protect the earliest and latest times against
deviations, which are smaller than the sum of mean value and [
times standard deviation:

prot; = u; +1-0; VieF,leZ and

buff; , = max(0, prot;) + max(0, —prot) Vi, keF.

Thus, a buffer is only installed, when the predecessor is sup-
posed to be later or the follower earlier. For low uncertainty we
choose for all aircraft as mean value y; = 2 s and standard deviation
gi = 2s, and at high uncertainty the values are u; = 10s for all
aircraft, g; = 4s for arrivals and o; = 6s for departures. Recall that
these values are not the predicted delay, which is computed with
formula (10). u; = 10s and ¢; = 4s means that in each simulation
time step of size A™™ we have to expect an additional delay of 10's.
We choose | = 3 in all computations. For an aircraft with a
remaining flight time of 3600 s and with A7 = 180 s we expect an
average delay of 200 s (10-3600/180) with a standard deviation of
120 s (1800-+3600/3600-4-3600/180).

This comparison is done with respect to the following average
criteria values:

GoAround: number of go-arounds in each simulation; A go-
around with an increase of the earliest time by 15 min is assigned
to an aircraft if the simulated disturbances result in a separation
loss to the predecessor. Then the latest time of an aircraft violates
the minimum separation of the predecessor inbound resp.
outbound.

Dep. loss: number of departure slot losses in each simulation; A
departure slot loss with an increase of the earliest time by 60 s is
assigned to an outbound if the simulated disturbances result in a
separation loss to its predecessor or immediate successor inbound.

Makespan [s]: difference in seconds between the target times,
except the first two and the last two of the resulting final simula-
tion sequence; we thereby avoid effects on the makespan due to go-
around or departure slot losses (+15 min) of the first or last aircraft.

Changed Pos/SimStep: number of position changes per simula-
tion step AT,

Changed TT/acft [min]: sum of absolute target time changes per
aircraft in minutes.

avg. dev. [s]: First we calculate the objective function of the final
sequence and subtract the objective function value of the omni-
scient planner. We only consider the absolute quadratic deviation
of the target time and the schedule time. We divide this difference
by the number of aircraft and calculate the square root.

Comp. runtime [s]: computational runtime of the chosen algo-
rithm for all optimization steps without simulation time itself.

The test runs are executed on a Windows-7-Notebook with Intel
Core i5-2410M processor with 4 kernels, 2.3 GHz and 4GB RAM. The
code is written in C++. As a commercial solver for mixed integer
optimization problems we use GUROBI (Gurobi Optimization and
Inc, 2014), version 5.6.
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6.1. Tests for different discretization sizes of SRDTIM

We compare three different configurations of discretization
sizes for SRDTIM. The first configuration takes a discretization size
of 5s for the last 10 min before touch-down/take-off and dis-
cretization size of 75s otherwise. The second one chooses 5s as
discretization size for the last 10 min before touch-down/take-off,
25s for target times between 10 and 20 min before planned
touch-down/take-off and 75s otherwise. The third has a dis-
cretization size of 25s for the last 10 min and 75s otherwise.
Thereby we use the scenario of high traffic and high uncertainty for
20 runs with 50 different randomly chosen aircraft. All three
planners compute no go-arounds and no departure slot losses, see
Table 3. The changed position and target times are slightly higher
for planner 1, because by decreasing the discretization size, few
more changes are possible and the aircraft can be scheduled closer
to each other. We will focus on planner 2 for the computational
study, because it yields better solutions with respect to makespan
and average deviation than planner 3 and is more robust (changed
Pos/TT) than planner 1.

6.2. Test for the quality standard parameter k in LRTIM

We compare different quality standard values k for LRTIM,
namely 10%, 30% and 50%. In eq. (8) k denotes the allowed deviation
from the nominal objective function value. Thereby we use the
scenario of medium traffic and high uncertainty for 20 runs with 50
different randomly chosen aircraft. In Table 4, we observe for the
parameter k=0.1 the best makespan and the best average deviation,
because the solution is close to the nominal one. But for x=0.5,
there is no departure loss necessary. The advantage lies in a low
number of position changes as well as target time changes. Hence,
we choose for robustness purposes k=0.5 for the computational
study. Analogous results are obtained choosing one of the other
scenarios.

6.3. Scenario 1: high traffic, low uncertainty

In this first scenario, Table 5 shows the comparison between the
strict robust (SRTIM), the nominal time-discretized with no
robustness consideration (TIM), the strict robust dynamic time-
indexed (SRDTIM) and the light robust time-indexed model
(LRTIM). Comparing the strict robust time-indexed and the nomi-
nal time-indexed model, the criteria go-around and departure slot
losses are profitable in the robust case. By the robustification we
achieve that no go-arounds and no departure slot losses are ob-
tained. Usually, the price of robustness would increase the make-
span. However, the contrary is true here. The reason is that because
of less go-arounds and departure slot losses the robust planner
reveals seven seconds less makespan than the nominal one. The
robust results show that one protects not only against undesired

Table 3

Average results for different SRDTIM planners for 20 instances of 50 aircraft.
Criteria SRDTIM1 SRDTIM2 SRDTIM3
GoAround 0 0 0
Dep. loss 0 0 0
Makespan [s] 2795 2795 2816
Changed Pos/SimStep 0.27 0.21 0.18
Changed TT/acft [min] 0.50 0.39 0.36
Avg. dev. [s] 468.1 466.8 475.7
Comp. runtime [s] 17.8 45.3 9.3

Comparison between different SRDTIM planners with respect to the criteria intro-
duced in Section 6.

Table 4

Average results for different LRTIM planners for 20 instances of 50 aircraft.
Criteria k=0.1 k=0.3 k=0.5
GoAround 0 0 0
Dep. loss 0.2 0.1 0
Makespan [s] 4186 4210 4211
Changed Pos/SimStep 0.14 0.13 0.09
Changed TT/acft [min] 0.69 0.90 0.62
Avg. dev. [s] 89.3 92.9 93.8
Comp. runtime [s] 143 14.3 159

Comparison between three different quality standard values k with respect to the
criteria introduced in Section 6.

Table 5
Average results of high traffic, low uncertainty scenario for 20 instances of 50
aircraft.

Criteria SRTIM TIM SRDTIM2 LRTIM
GoAround 0 1.8 0 0
Dep. loss 0 0.4 0 0
Makespan [s] 2832 2839 2818 2820
Changed Pos/SimStep 0.05 0.58 0.09 0.05
Changed TT/acft [min] 0.11 2.33 0.16 0.08
Avg. dev. [s] 474.5 428.1 464.1 4753
Comp. runtime [s] 13.6 13.1 32.9 471

Comparison between SRTIM, TIM, SRDTIM2 and LRTIM planners with respect to the
criteria introduced in Section 6.

flight maneuvers such as go-arounds, but also achieves stable plans.
In the simulation we observe 0.05 position changes per simulation
step, i.e., about 1.5 position changes per simulation on average. In
comparison, the nominal planner needs to change positions more
often. Considering the changed target times the robust planner
with 0.11 min per aircraft on average is more stable than its nominal
counterpart, which has an average change of 2.33 min. But the
average deviation from schedule time is 46 s higher than in the
nominal case. This is due to the price of robustness, which we have
to pay at this low level of uncertainty. We immunize against the
predefined uncertainty set, but only few deviations from schedule
time happen. The computational runtime is the same. This shows
that the strict robust time-indexed model is not harder to solve
than the nominal one.

To accomplish a better makespan one can use the light robust
time-indexed model. It computes a slightly better makespan by still
having a low number of changes in position and target time, but
does not prohibit the high value for average deviation. Compared to
the strict robust dynamic time-indexed model, the makespan de-
creases. The reason is the smaller discretization sizes near take-off/
touch-down that reduce the average deviation value, when
compared to the strict robust planner.

We also performed runs with a higher robustification of 5¢
(I=>5) and thus computed a plan with no changes in target time and
no position changes. As expected, the makespan raised to 3641 s
and the average deviation value is with 552 s very high. This
demonstrates that our approach also enables extremely stable
plans, but we have to pay a prize for it as well, i.e. aircraft delay
increases.

6.4. Scenario 2: high traffic, high uncertainty

In the second scenario the uncertainty is larger. First of all, we
look at the strict robust and the nominal planner in Table 6. It shows
that go-arounds and departure slot losses are still not needed in the
robust case. The makespan is the same in both cases. Thus, the price
of robustness in makespan is compensated, which is comparable to
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the first scenario. The number of changed positions reduces dras-
tically in the robust case, which is also true for the changes in target
time. Considering the criteria of objective function value, the strict
robust and the nominal planner differ by about 30 s. The reason for
this is that a buffer between two aircraft and a protection against
earliest time deviations is incorporated. In contrast, more go-
arounds and departure slot losses are needed in the nominal
case. Again the computational runtime is practicable.

To avoid the mismatch in average deviation, one can choose the
light robustness planner, which computes almost the same average
deviation level as the nominal one. In fact, it obtains a low number
of changes and a better makespan, but needs more computational
runtime (90.1 s).

The strict robust dynamic time-indexed model computes the
best makespan and the best average deviation, whereas the num-
ber of changes in position and target time is only slightly bigger
than of the strict robust one.

Next, we analyze how the strict robust planner changes in terms
of increased uncertainty at constant high traffic (Table 7). We have
to mention that the buffer between all aircraft also increases by the
same amount. Thus, the number of go-arounds and departure slot
losses is kept at zero.

The criteria changed position and changed target time rise by a
factor of about 3—4 because of the larger uncertainties. These
values, however, are still reduced, when compared to the nominal
planner. Considering the computational runtime, higher uncer-
tainty leads to smaller time windows for each aircraft by constant
high traffic, which makes it more difficult to find a feasible solution.

6.5. Scenario 3: medium traffic, high uncertainty

Finally, we study the behavior of the planner when reducing the
traffic to a medium level (see Table 8). Due to high uncertainty the
buffer is still high and thus protects against go-arounds and de-
parture slot losses in contrast to the nominal planner. Due to me-
dium traffic only, the makespan of the robust and the nominal
planner is almost the same. Here, in contrast to high traffic, there is
a natural buffer in the scenario itself. Comparable to both scenarios
before, the robust planner “wins” the criteria changed position and
changed target time. The average deviation reduces, because go-
arounds and departure slot losses affect the nominal planner
more when compared to high traffic, because fewer other aircraft
can reduce the average deviation value. The runtime is again viable.
Again the light robust planner succeeds in the measurement
average deviation.

The behavior of the strict robust dynamic and the light robust
time-indexed model is similar to scenario 2. The light robust time-
indexed model is fast in handling medium traffic. Concerning the
strict robust dynamic time-indexed model, one difference is
recognized in computational runtime. Here, the strict robust dy-
namic time-indexed model needs more computational time,

Table 6
Average results of high traffic, high uncertainty scenario for 20 instances of 50
aircraft.

Criteria SRTIM TIM SRDTIM2 LRTIM
GoAround 0 24 0 0
Dep. loss 0 0.9 0 0
Makespan [s] 2861 2861 2795 2833
Changed Pos/SimStep 0.13 3.13 0.21 0.20
Changed TT/acft [min] 0.38 8.56 0.39 0.42
Avg. dev. [s] 517.1 484.6 466.8 487.9
Comp. runtime [s] 20.1 26.4 453 90.1

Table 7
Average results for low and high uncertainty at high traffic for 20 instances of 50
aircraft.

Criteria LowU HighU HighU — lowU

GoAround 0 0 0

Dep. loss 0 0 0

Makespan [s] 2832 2861 29
HighU/lowU

Changed Pos/SimStep 0.05 0.13 2.6

Changed TT/acft [min] 0.11 0.42 3.8

Avg. dev. [s] 474.5 517.1 1.09

Comp. runtime [s] 13.6 20.1 1.48

Comparison of SRTIM planner at different uncertainty levels with respect to the
criteria introduced in Section 6.

Table 8

Medium traffic, high uncertainty scenario for 20 instances of 50 aircraft.
Criteria SRTIM TIM SRDTIM2 LRTIM
GoAround 0 1.1 0 0
Dep. loss 0 0.2 0 0
Makespan [s] 4232 4241 4194 4210
Changed Pos/SimStep 0.06 0.62 0.15 0.09
Changed TT/acft [min] 0.47 4.86 0.75 0.62
Avg. dev. [s] 99.6 157.2 90.2 93.8
Comp. runtime [s] 14.3 26.9 34.2 14.1

Comparison between SRTIM, TIM, SRDTIM2 and LRTIM planners with respect to the
criteria introduced in Section 6.

because it still has to manage small discretization sizes.

How does the robust planner react for reduced traffic? Table 9
shows that there is a significant increase in makespan value. This
is due to the fact that at medium traffic three instead of five aircraft
are assigned to the same schedule time. By always considering 50
aircraft, the makespan increases automatically, because the devia-
tion from schedule time is optimized. The reduction in changed
position stems from the fact that changes at medium traffic are
easier to control and do not have as large effects on other aircraft,
when compared to high traffic. The objective function value in-
creases rapidly, because at high traffic each aircraft has a higher
impact on the others than at medium traffic. Finally, the compu-
tational runtime reduces because less aircraft are in conflict state of
being scheduled at the same time.

7. Conclusion

The goal of this work was to study runway scheduling when
explicit knowledge of aircraft uncertainty is available. To this end,
we used a time-indexed optimization model for the mixed-mode
runway scheduling problem that is able to cope with un-
certainties in the input data. Using this model, we set-up a

Table 9
Average results for medhigh traffic at high uncertainty for 20 instances of 50 aircraft.

Criteria MedTr HighTr HighTr — medTr

GoAround 0 0 0

Dep. loss 0 0 0

Makespan [s] 4232 2861 -1371
HighTr/medTr

Changed Pos/SimStep 0.06 0.13 2.2

Changed TT/acft [min] 0.47 0.42 0.90

Avg. dev. [s] 99.6 5171 5.19

Comp. runtime [s] 14.3 20.1 1.41

Comparison between SRTIM, TIM, SRDTIM2 and LRTIM planners with respect to the
criteria introduced in Section 6.

Comparison of SRTIM planner at different traffic level with respect to the criteria
introduced in Section 6.
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simulation approach in which we determined optimum schedules
in each time step. Especially, we studied the question whether the
robust approach leads to more stable plans with fewer go-arounds
and departure slot losses.

We evaluated our method on three different and relevant sce-
narios. In more detail, we considered the scenarios of high traffic
and low uncertainty, high traffic and high uncertainty, medium
traffic and high uncertainty. We compared our approach with the
corresponding results for the nominal approach that does not take
uncertainties into account.

The computational results show that the strict robust model
indeed computes more stable sequences: the number of sequence
changes is at least decreased by a factor of 10! Depending on the
needed protection against replanning we could reduce the num-
ber of go-arounds and departure slot losses to zero. Usually, one
expects that a high level of protection against uncertainty leads to
lower throughput, i.e. one has to pay a certain price of robustness.
However, in our tests the contrary was the case. Due to the fact
that the robust planner significantly reduces the number of go-
arounds and departure slot losses, the makespan value is com-
parable to the nominal case. The average deviation from schedule,
however, decreases when robustness is considered. We investi-
gated a light robust time-indexed model. We observed an
improvement with respect to the strict robust time-indexed model
in makespan and average deviation. This behavior is also shown by
the strict robust dynamic time-indexed model. Concluding the
computational results of our study, we would recommend the
light robust planner at medium traffic and high uncertainty and
the strict robust dynamic during high traffic situations with high
uncertainty. In case of high traffic and low uncertainty there is a
trade-off between the light robust and the strict robust dynamic
planner. The user has to set the priority between number of po-
sition changes and changes in the target time on the one hand and
computational runtime as well as average deviation from schedule
on the other hand.

We have chosen the deviation from schedule as one objective
function example, but other, also more complex ones, are usable.
Since we use assignment variables in our models the objective
function stays linear in the variables, no matter what objective
the user wants to optimize. Even the light robust time-indexed
model only needs runtime of 10 s for one optimization step.

We also showed that our approach enables stable sequences
without replanning. The prize potentially, but not necessarily, is a
lower objective function value. However, by tuning the parameter [
the user can decide the needed trade-off between sequence sta-
bility (robustness) on the one hand and efficiency (objective func-
tion value) on the other hand. We can benefit from our knowledge
of aircraft uncertainty already when aircraft sequences are calcu-
lated. Modeling techniques together with efficient algorithms are
available.
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