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a b s t r a c t

This study tracked the static efficiency and dynamic productivity changes of 14 US airlines from 2006 to
2015. Moreover, we estimated the principal economic drivers of the environmental variables to increase
the US domestic airlines' efficiency using the double bootstrap regression analysis. The major aspects of
this study are as follows: First, network legacy carriers have the highest efficiency, whereas low-cost
carriers are lowest. Nonetheless, network legacy carriers still have room to improve scale inefficiency.
Second, the fluctuations in technical change, rather than in efficiency change, tended to have greater
effect on the fluctuation of Malmquist productivity index for US domestic airlines. Third, M&A between
US airlines have both positive and negative effects in terms of efficiency and economies of scale. Fourth,
cost environmental factors have a negative effect on US airlines' efficiency, while revenue factor is a
positive effect. The results of this study may help US airline industry practitioners to understand the US
domestic airline environment from an operator's perspective.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

US airlines have experienced unprecedented turbulence over
the past 15 years from the 9/11 terrorist attacks and subsequent
drastic reduction in air travel volumes to the global financial crisis
and skyrocketing oil prices in 2008e2009 (Belobaba et al., 2015;
Jang et al., 2011). These sequences of major events have caused
the efficiency and productivity of US airlines to fluctuate. This
change in operational efficiency has induced mergers among US
carriers in order to survive in the competitive airline industry and
enhance competitiveness and efficiency (Barros et al., 2013;
Lenartowicz et al., 2013; Merkert and Morrell, 2012). Indeed, over
the past decade, several mergers among US airlines have occurred
(e.g., DeltaeNorthwest, UnitedeContinental, and SouthwesteAirTran)
to varying degrees of success.

A vast amount of previous studies employ data envelopment
analysis (DEA) models to quantify the efficiency and productivity of
US airlines (Assaf and Josiassen, 2012; Barros et al., 2013; Cheng,
2010; Duygun et al., 2016; Franke, 2004; Lee and Worthington,
2014; Li et al., 2015; Min and Joo, 2016). Furthermore, some of
recent studies have suggested the successful implementation of
mergers and acquisitions (M&A) based on annual static efficiency,
while others have found dynamic productivity changes in the
airline sector (Barbot et al., 2008; Barros and Couto, 2013; Belobaba
et al., 2011; Pires and Fernandes, 2012).

The survival strategy of individual airlines is to respond actively
to changes in the technology and market structure of the airline
service industry. This study, therefore, suggests strategic opera-
tional plans to cope with the fluctuations in the internal and
external environment and identify best-practice US airlines that
others can emulate.

The objective of the study is threefold: First, this study in-
vestigates the efficiency and productivity of 14 US airlines from
2006 to 2015 and measures changes in the operational efficiency of
each carrier in order to suggest tailored strategic initiatives. Second,
this study analyzes the long-term effect of M&A between US air-
lines by incorporating bootstrapping efficiency scores and RTS
(returns-to-scale) perspectives. Finally, we estimates the principal
economic drivers of the environmental variables to increase the US
domestic airlines' efficiency by double bootstrap regression anal-
ysis suggested by Simar and Wilson (2007). To reveal how external
determinants impact on efficiency is essential for airline operation
practitioners to identify performance improvement strategies.

This research offers quadruple main findings. First, the effi-
ciency analysis by airline group shows that network legacy carriers
(NLCs) have the highest efficiency followed by ultra low-cost
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carriers (ULCCs) and low-cost carriers (LCCs) under the variable
returns-to-scale (VRS) assumption. Second, the comparison of the
M&A performance of three merged airlines indicates that M&A
have positive or negative effects on economies of scale and effi-
ciency levels, which suggest that new service innovation is still
required to enhance airline efficiency and achieve the optimum
economies of scale. Third, the result of bootstrapped truncated
regression suggest that environment factors have a positive or
negative effect on US domestic airlines' efficiency. The cost such as
fuel expense and number of full-time equivalent employee has a
negative effect on efficiency, while operating revenue have a pos-
itive effect. Fourth, productivity change of US airlines mainly de-
pends on a change of technological change (TC). Furthermore,
ULCCs have the highest productivity growth, whereas LCCs have
experienced a lowest efficiency change.

The remainder of this paper is organized as follows. Section 2
describes the methodologies used in our study. Section 3 defines
the input/output variables necessary for DEA and explores the
characteristics of the decision-making units (DMUs). Section 4
presents the empirical result, namely the analysis of annual effi-
ciency and productivity change in US airlines as well as the M&A
performance of airlines by using bootstrapping DEA And we inves-
tigate the main driver of environmental factor to increase the effi-
ciency. Section 5 discusses and suggests managerial implications.

2. Methodology

In this study, we used output-oriented DEA to estimate and
compare the contemporaneous efficiency score of US domestic
airlines from 2006 to 2015 (F€are et al., 1994; Tulkens and Vanden
Eeckaut, 1995). Moreover, this paper builds on a two-stage DEA to
determine potential determinants of efficiency of US domestic
airlines from 2006 to 2015. The first stage is concerned with
bootstrapped DEA approaches to measure the efficiency of the US
domestic airlines (Simar and Wilson, 2007). To measure the
robustness of the data, Simar and Wilson (1998, 2000) introduced
bootstrapping DEA as a tool to extract the sensitivity of DEA scores
to the randomness attributed to the distribution of efficiency.
Bootstrapping, a statistical method based on empirical data, em-
ploys the repeat sampling of correlation estimations in order to
improve the estimates of confidence intervals and threshold ac-
curacy (Staat, 2006). Therefore, we use an alternative bootstrapping
method to improve the DEA efficiency estimates and thus evaluate
the DMU, are described as follows:

� Step 1. Use DEA to calculate efficiency scores.
� Step 2. Draw with replacement from the empirical distribution
of efficiency scores. Simar and Wilson (1998) suggest that
smoothing the empirical distribution provides results that are
more consistent.

� Step 3. Divide the original efficient input levels by the pseudo-
efficiency scores drawn from the (smoothed) empirical distri-
bution to obtain a bootstrap set of pseudo-inputs.

� Step 4. Apply DEA using the new set of pseudo-inputs and the
same set of outputs and calculate the bootstrapped efficiency
scores.

� Step 5. Repeat from steps 1e4 B times and use bootstrapped
scores for statistical inference and hypothesis testing (B is a large
number).

In the second stage of our analysis, we regress the bias-corrected
efficiency scores q

_
_

i, derived from the bootstrap algorithm on a set
of environmental factors using the following regression model
(Barros and Peypoch, 2009; Hall, 1986; Lee andWorthington, 2014;
Simar and Wilson, 2007):
q
_
_

i ¼ aþ zibþ εi i ¼ 1;…;n (1)
where εi � N ¼ ð0; s2
ε
Þ with left-truncation at 1� zib; a is a con-

stant variable; zi is a vector of environmental variables that is ex-
pected to affect bootstrapped efficiency score of US domestic airline
i and b refers to a vector of parameters with some statistical noise εi.
Simar and Wilson (2007) detail the bootstrap truncated regression
algorithm, also described in a step-by-step approach in Lee and
Worthington (2014) and Barros and Peypoch (2009).

While DEA measures annual efficiency by focusing on the
optimal inputs and outputs, Malmquist index (MI) analysis con-
centrates on productivity change to investigate the inputeoutput
relationship during a specific period (Asmild and Tam, 2007). Thus,
this study additionally adopts the output-oriented MI model sug-
gested by F€are et al. (1994) to measure the change in total pro-
ductivity. The reader is referred to F€are et al. (1994) and Lovell
(1993) for standard conventions and details of DEA and MI.

3. Input and output data

To compare the static efficiency and dynamic productivity of the
14 US domestic airlines, financial and non-financial data were
collected from the Bureau of Transportation Statistics (www.rita.
dot.gov/bts) and Airline Data Project from MIT (www.web.mit.
edu/airlinedata/) during 2006e2015. The air transportation in-
dustry is a large-scale service factory (Schmenner, 1986) and a
service operation system generating maximum performance with
limited resources for air transportation services. In airline analysis,
five common industry metrics to measure the efficiency of an
airline operation are the load factor, available seat miles (ASM),
revenue passenger miles (RPM), cost per available seat mile
(CASM), and yield per revenue passenger (Barbot et al., 2008;
Barros and Peypoch, 2009; Lee and Worthington, 2014; Li et al.,
2015; Mallikarjun, 2015). Based on the previous literature review
and data availability, we obtain an input variable and three output
variables. The CASM are significant input factor. In addition, reve-
nue per ASM (RASM), passenger yield, and load factor (L/F) are
useful indices for estimating the business competences of carriers
(e.g., profitability and market share) as well as strategic importance
of major service operations.

The definition of input/output variables is as follows (http://
web.mit.edu/airlinedata):

� CASM: Measure of unit cost in the airline industry. CASM is
calculated by dividing the operating expenses of an airline by
ASM. In general, management uses CASM excluding fuel or
transport-related expenses to better isolate and directly
compare operating expenses.

� RASM: Also called “unit revenue,” it is obtained by dividing
operating income by ASM.

� Passenger Yield: A measure of airline revenue derived by
dividing passenger revenue by revenue passenger miles (RPMs).
This measure is useful in assessing changes in fares over time.

� Load Factor (L/F): The percentage of available seats that are filled
with revenue passengers. The load factor measures the capacity
utilization of airline transport service.

Moreover, the 14 US domestic airlines can be classified into
three group according to their business models, as follows:

� NLCs or full service network carriers (hub-and-spoke airlines)
focus on providing a wide range of pre-flight and onboard ser-
vices, including different service classes and connecting flights:
American Airlines (AA), Alaska airlines (AS), Continental Air
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Lines (CO), Delta Air Lines (DL), Northwest Airlines (NW), United
Air Lines (UA), and US Airways (US)

� LCCs focus on cost reductions in order to implement a price
leadership strategy in the markets they serve: JetBlue Airways
(B6), AirTran Airways (FL), Virgin America (VX), and Southwest
Airlines (WN)

� ULCCs generally has been used to differentiate some low-cost
airlines whose model deviates further from that of a standard
low-cost carrier, with ultra low-cost carriers having minimal
inclusions in the fare and a greater number of add-on fees:
Frontier Airlines (F9), Allegiant Air (G4), Spirit Air Lines (NK)

Table 1 presents the descriptive statistics related to the changes
in input (CASM), output (RASM, yield, L/F) used in the first stage
and environment factors (fuel expense, passenger revenue per
employee, full-time equivalents, operating revenue) of US domestic
airlines during 2006e2015 used in the second regression stage.
Additionally, this study used the software package of MaxDEA 6
and STATA 14 to measure the DEA estimations and truncated
bootstrapped second-stage regression suggested by Simar and
Wilson (2007).

This table shows that the mean scores of all variables are stable
until 2008 and then decrease after the global financial crisis in
2009, reaching a trough in 2009, which indicates that the aftermath
of this crisis peaked in 2009. After 2010, the values of those vari-
ables steadily increase.

4. Empirical results

4.1. Efficiency of US airlines

This studymeasured the technical efficiency (TE), pure technical
Table 1
Input/output and environmental variables for US domestic airlines from 2006 to 2015.

Input/output variables 2006 2007 2008

Input CASM (Cents per ASM) Max 12.1727 10.5960 9.277
Min 4.7830 5.2096 6.271
Ave. 6.6387 6.4632 7.759
S.D. 1.7985 1.3375 0.878

Output RASM (Cents per ASM) Max 18.6971 16.2609 12.03
Min 6.4607 6.9398 7.732
Ave. 10.1731 10.0509 10.21
S.D. 2.8448 2.2851 1.247

Yield (Cents per RPM) Max 23.6939 20.1122 14.13
Min 7.9786 8.3124 8.635
Ave. 12.8036 12.5150 12.56
S.D. 3.6425 2.8197 1.672

Load Factor Max 0.8366 0.8389 0.895
Min 0.7271 0.7258 0.711
Ave. 0.7963 0.8040 0.815
S.D. 0.0359 0.0353 0.043

Environment variables 2006 2007 2008

Environment Fuel Expense (Million) Max 3700.99 3831.49 5036.
Min 101.59 152.14 194.2
Ave. 1526.13 1623.21 2099.
S.D. 1118.11 1132.34 1572.

Passenger_Revenue (Million) Max 11,397.9 11,354.5 11,08
Min 178.35 12.23 330.9
Ave. 4773.35 4598.02 4671.
S.D. 3561.37 3654.49 3614.

Full-time Employee Equivalents Max 72,757 71,818 70,92
Min 841 1133 980
Ave. 26,381.1 26,843.2 24,62
S.D. 22,039.5 21,875.8 21,57

Total Operating Revenue (Million) Max 22,493.4 22,832.8 23,69
Min 229.86 16.15 369.2
Ave. 8808.8 8682.6 9263.
S.D. 7542.1 7869.7 8203.
efficiency (PTE), and scale efficiency (SE) scores of 14 US airlines
from 2006 to 2015 using the output-oriented DEAmodel, as seen in
Table 2.

Northwest Airlines (NW) and Continental Air Lines (CO) were
pure technical efficient before merger with Delta Air Lines (DL) and
United Air Lines (UA). After merger with NW, DL has changed
efficient DMU under the VRS assumption, showing that acquirer
DL's PTE maintained 1. However, post-merger UA, has kept ineffi-
cient DMU. In addition, Alaska airlines (AS) was an efficient DMU
with a TE score of 1 during 2012e2015.

Moreover, a close look at the main driver of inefficiency in NLCs
reveals that the inefficiency is mostly attributed to scale in-
efficiency (PTE > SE) with decreasing returns-to-scale (DRS). A
possible source of DRS in some periods is that larger carriers were
unable to make use of their installed capacity in low demand. In
this case, contraction in the size of airline service operations such as
elimination of overcapacity and adjustment of overlapping route
may increase their efficiency levels at the cost of a less than pro-
portional reduction of achieved output levels.

Meanwhile, Southwest Airlines (WN) as LCCs maintained a pure
technical efficient during overall analysis periods. On the contrary,
JetBlue Airways (B6) and Virgin America (VX) had comparatively
higher pure technical inefficiency with PTE < SE during the analysis
period. The extent of pure technical inefficiency in VX is the tune of
54.1%, whereas B6 is 40.0%. This result indicates that these two
carriers failed to allocate service resources efficiently and had a
poor input utilization (i.e. managerial inefficiency) (Kumar, 2011).
Therefore, these two carriers need to strategic approach to improve
managerial performance.

In general, ULCCs is much more efficient than NLCs and LCCs.
Allegiant Air (G4), Frontier Airlines (F9), and Spirit Air Lines (NK)
2009 2010 2011 2012 2013 2014 2015

4 7.0078 7.2180 8.7282 8.6217 8.3429 9.5503 6.9098
6 4.9873 4.5956 6.9166 7.1661 6.8554 6.8052 4.9831
2 6.0072 6.3612 7.7463 7.8496 7.6207 7.6238 5.9513
7 0.6324 0.7606 0.5443 0.5159 0.5259 0.7726 0.6480
20 10.2137 11.2845 12.2735 12.5047 13.2545 14.2855 14.2713
6 7.0953 6.9150 7.8018 7.3968 7.6169 7.5010 5.9826
07 9.0264 9.8630 10.9365 10.9171 11.3035 11.6798 10.8300
0 1.0324 1.3417 1.3924 1.6519 1.7335 2.0219 2.6243
86 12.9117 14.2342 14.9938 15.0999 16.1452 16.5026 16.3869
0 7.9089 8.3073 9.0643 8.5985 8.7279 8.6412 7.0686
46 10.9970 11.8606 12.9735 12.8776 13.2907 13.6479 12.6912
8 1.4467 1.7562 1.7897 2.0914 2.2564 2.5066 3.0730
5 0.8971 0.8993 0.9094 0.8957 0.9149 0.8971 0.8709
6 0.7596 0.7928 8077 0.7954 0.8009 0.8239 0.8234
4 0.8232 0.8335 0.8449 0.8498 0.8534 0.8578 0.8536
7 0.0328 0.0250 0.0279 0.0308 0.0333 0.0232 0.0155

2009 2010 2011 2012 2013 2014 2015

20 3057.64 4185.29 4992.41 5798.40 5693.75 6416.95 3796.86
7 144.33 198.66 323.24 263.65 385.19 387.81 277.73
96 1245.87 1557.98 2035.45 2325.13 2419.87 2455.69 1706.60
08 1013.66 1343.35 1628.75 2104.86 1985.22 2079.56 1479.27
4.0 9560.84 11,671.8 12,775.9 15,309.7 16,522.3 17,443.2 19,185.7
7 374.70 454.67 532.12 631.12 708.08 800.96 823.79
12 3898.30 4692.87 5204.07 6335.20 6691.53 7174.22 8088.97
01 3024.65 3975.90 4281.43 5472.73 5772.23 6186.21 7510.39
5 66,519 76,742 80,158 87,966 87,405 84,472 98,885

1421 1585 1571 1799 1978 1938 2546
2.9 23,684.6 25,329.1 25,885.6 33,619.7 30,165.1 33,315.6 35,156.8
0.9 20,299.8 24,511.2 25,211.8 31,502.6 30,308.4 30,394.7 37,244.9
6.1 19,898.3 31,893.7 35,230.4 37,160.2 38,287.1 40,426.5 41,084.4
5 536.47 635.46 745.04 869.24 957.82 1099.67 1221.51
9 7870.8 9640.1 10,753.0 13,144.8 13,679.9 14,372.6 15,809.1
2 6781.1 9667.1 10,519.9 13,470.2 13,820.8 14,391.6 16,626.9



Table 2
Contemporaneous efficiency score of US domestic airlines during 2006e2015.

DMU 2006 2007 2008 2009 2010

TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS

NLCs AS 0.870 0.963 0.904 DRS 0.925 0.978 0.945 DRS 0.910 1 0.910 DRS 0.991 1 0.991 DRS 0.970 1 0.970 DRS
AA 0.895 0.978 0.915 DRS 0.903 0.988 0.914 DRS 0.879 0.977 0.899 DRS 0.874 0.998 0.875 DRS 0.891 0.999 0.892 DRS
CO 0.947 1 0.947 DRS 0.944 1 0.944 DRS 0.933 0.988 0.944 DRS 0.934 1 0.934 DRS 1 1 1 CRS
DL 0.896 0.967 0.927 DRS 1 1 1 CRS 1 1 1 CRS 0.859 0.994 0.864 DRS 0.869 0.999 0.870 DRS
NW 0.930 1 0.930 DRS 0.983 1 0.983 DRS 0.851 1 0.851 DRS 0.825 1 0.825 DRS N/A N/A N/A N/A
UA 0.936 0.989 0.946 DRS 0.919 0.992 0.926 DRS 0.842 0.972 0.866 DRS 0.943 0.998 0.945 DRS 0.876 1 0.876 DRS
US 0.862 1 0.862 DRS 0.880 1 0.880 DRS 0.829 0.970 0.854 DRS 0.882 0.997 0.884 DRS 0.865 1 0.865 DRS

LCCs FL 0.797 0.920 0.866 DRS 0.861 0.929 0.928 DRS 0.854 0.945 0.904 DRS 0.884 0.959 0.922 DRS 0.823 0.971 0.848 DRS
B6 1 1 1 CRS 1 1 1 CRS 0.980 0.984 0.995 DRS 0.977 0.995 0.983 DRS 0.955 0.964 0.990 DRS
WN 1 1 1 CRS 1 1 1 CRS 1 1 1 CRS 0.994 1 0.994 DRS 0.982 1 0.982 DRS
VX N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.952 0.959 0.992 DRS 0.880 0.943 0.933 DRS

Ultra-LCCs G4 0.854 0.979 0.873 DRS 0.927 1 0.927 DRS 0.908 1 0.908 DRS 1 1 1 CRS 1 1 1 CRS
F9 0.840 0.954 0.881 DRS 0.897 0.957 0.938 DRS 0.890 0.963 0.924 DRS 1 1 1 CRS 0.990 0.994 0.996 IRS
NK 0.752 0.992 0.758 DRS 0.950 0.994 0.955 DRS 1 1 1 CRS 0.999 1 0.999 IRS 0.759 0.932 0.814 DRS

DMU 2011 2012 2013 2014 2015

TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS

NLCs AS 0.947 0.988 0.959 DRS 1 1 1 CRS 1 1 1 CRS 1 1 1 CRS 1 1 1 CRS
AA 0.856 0.968 0.885 DRS 0.958 0.997 0.961 DRS 0.939 0.983 0.956 DRS 0.917 0.993 0.923 DRS 0.910 0.989 0.920 DRS
CO 1 1 1 CRS N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
DL 0.889 0.979 0.908 DRS 0.931 1 0.931 DRS 0.982 1 0.982 DRS 0.836 1 0.836 DRS 0.960 1 0.960 DRS
NW N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
UA 0.890 0.989 0.901 DRS 0.926 0.980 0.945 DRS 0.917 0.971 0.945 DRS 0.908 0.988 0.919 DRS 0.912 0.998 0.913 DRS
US 0.831 0.986 0.843 DRS 0.937 0.999 0.938 DRS 0.981 0.998 0.983 DRS 0.953 1 0.953 DRS N/A N/A N/A N/A

LCCs FL 0.768 0.940 0.817 DRS N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
B6 0.927 0.965 0.960 DRS 0.950 0.974 0.975 DRS 0.926 0.961 0.964 DRS 0.878 0.973 0.903 DRS 0.870 0.978 0.889 DRS
WN 0.938 1 0.938 DRS 0.993 1 0.993 DRS 1 1 1 CRS 1 1 1 CRS 0.997 1 0.997 DRS
VX 0.923 0.952 0.970 DRS 0.918 0.919 0.999 DRS 0.966 1 0.966 IRS 0.916 0.951 0.964 DRS 0.824 0.949 0.868 DRS

Ultra-LCCs G4 0.914 1 0.914 DRS 1 1 1 CRS 1 1 1 CRS 0.990 1 0.990 DRS 0.992 1 0.929 DRS
F9 0.941 1 0.941 DRS 0.967 1 0.967 DRS 1 1 1 CRS 0.972 1 0.972 DRS 0.900 1 0.900 DRS
NK 1 1 1 CRS 0.970 1 0.970 IRS 0.969 0.976 0.992 DRS 1 1 1 CRS 1 1 1 CRS
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have almost maintained a PTE score of 1 during 2011e2015, as seen
in Table 2. Furthermore, the ration of constant returns-to-scale is
33.33%, compared to NLCs (7.2%) and LCCs (21.1%). Indeed, the
overall technical inefficiency of ULCCs was caused by scale in-
efficiency (93.3%) compared with 6.7% attributed to pure technical
inefficiency. The scale inefficiency of ULCCs comprised 56.67% for
DRS and 10.0% for IRS, which implies indicating that ULCCs should
achieve their optimal scale by downsizing in the same vein as NLCs.
In addition, NK was in the increasing returns-to-scale regions in a
specific period, indicating that NK needs to expand business size in
order to increase TE.

4.2. Robustness test of US airlines

While standard DEA is relatively simple to estimate, it has long
been criticized for being a non-statistical or deterministic tech-
nique given that it does not allow for random error in the efficiency
estimation (Assaf and Josiassen, 2012; Lee and Worthington, 2014).
To overcome these problems, we examined bootstrapping DEA
score to verify the statistical significance of the efficiency scores by
controlling for the bias in standard DEA and to suggest a statistical
reliability range. We followed Simar and Wilson (1998) by using
2000 bootstrap replications to obtain the bootstrapping results
with an adequate coverage of the confidence intervals, as seen in
Table 3. According to Lee and Worthington (2014), this study
mainly measures the bootstrapping VRS-DEA scores, because the
assumption of VRS appears appropriate given that our study in-
cludes US domestic airlines of a range of sizes. Table 3 indicates the
comparison on the PTE score changes in US domestic airlines by
bootstrapping DEA.

NLCs had the highest efficiency score (0.9849) and LCC was the
lowest (0.9612), as seen in Table 3. The bootstrapped VRS-DEA
score of NW is on the top, while FL also had lowest score.
Furthermore, we conducted ANOVA to compare the efficiency dif-
ferences among US airlines based on the bootstrapped PTE values.
According to Scheffe's multiple comparisons, the mean differences
among airline groups are statistically significant
(Sig. ¼0.000 < 0.05). NLCs have the highest efficiency with all
positive numbers of mean difference (I-J) and LCCs the lowest ef-
ficiency with all negative numbers.

4.3. M&A effect based on the bootstrapping VRS-DEA

Table 5 compares the efficiency fluctuation of pre- and post-
M&A between airlines, based on the bootstrapping VRS-DEA in
Table 3. For instance, Northwest Airlines (NW) was a pure technical
efficient DMUwith DRS before merging with Delta Air Lines (DL) in
2010, while DL had scale inefficiency with DRS. However, after the
merger with NW, DL changed to efficient DMU under VRS
assumption, by eliminating overlapping flights, as seen in Table 2.
In addition, the average bootstrapping PTE of post-merger DL
(0.9872) was slightly higher than that of pre-merger (0.9799), as
seen in Table 4. However, post-merger DL is still in the region of
DRS, requiring downsizing their operations. Therefore, the merger
between NW and DL was only a qualified success until now, indi-
cating a room for efficiency improvement remains.

Meanwhile, the average bootstrapping PTE score of Continental
Air Lines (CO) and United Air Lines (UA) was 0.9867 and 0.9841,
respectively; however, the bootstrapping VRS-DEA score of
acquirer UA slightly decreased to 0.9805 after the merger with CO.
In general, the air routes of UA and CO are complementary with
hubs in different US cities. UA and CO had fewer overlapping routes
than case of DL and NW. Nonetheless, network synergies between
UA and CO failed to lead to increased market share and efficiency



Table 3
Bootstrapped PTE scores of US domestic airlines during 2006e2015.

DMUs 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Mean Group mean

NLCs AS 0.9551 0.9723 0.9901 0.9911 0.9918 0.9794 0.9831 0.9878 0.9893 0.9895 0.9829 0.9849
AA 0.9705 0.9843 0.9716 0.9948 0.9951 0.9617 0.9915 0.9789 0.9891 0.9858 0.9823
CO 0.9862 0.9934 0.9803 0.9946 0.9854 0.9802 N/A N/A N/A N/A 0.9867
DL 0.9603 0.9860 0.9827 0.9907 0.9944 0.9710 0.9908 0.9887 0.9888 0.9894 0.9843
NW 0.9884 0.9894 0.9830 0.9954 N/A N/A N/A N/A N/A N/A 0.9891
UA 0.9801 0.9880 0.9669 0.9950 0.9940 0.9808 0.9765 0.9664 0.9844 0.9947 0.9827
US 0.9766 0.9853 0.9647 0.9946 0.9961 0.9785 0.9936 0.9930 0.9946 N/A 0.9863

LCCs FL 0.9139 0.9241 0.9402 0.9560 0.9679 0.9360 N/A N/A N/A N/A 0.9397 0.9612
B6 0.9769 0.9852 0.9751 0.9913 0.9580 0.9589 0.9693 0.9571 0.9701 0.9757 0.9717
WN 0.9780 0.9840 0.9827 0.9953 0.9812 0.9792 0.9875 0.9884 0.9886 0.9890 0.9854
VX N/A N/A N/A 0.9559 0.9391 0.9449 0.9128 0.9912 0.9465 0.9468 0.9482

Ultra-LCCs G4 0.9699 0.9917 0.9823 0.9906 0.9817 0.9795 0.9847 0.9880 0.9929 0.9921 0.9853 0.9809
F9 0.9470 0.9526 0.9572 0.9911 0.9873 0.9824 0.9895 0.9874 0.9914 0.9958 0.9782
NK 0.9869 0.9881 0.9826 0.9915 0.9255 0.9818 0.9845 0.9706 0.9925 0.9883 0.9792

Table 4
Scheffe's multiple comparisons of the post-hoc tests.

(I) DMU (J) DMU Mean difference (I-J) Std. error Sig. 95% Confidence interval

Lower bound Upper bound

NLCs LCCs 0.01928a 0.0035 0.000 0.01067 0.02789
ULCCs 0.00342 0.0036 0.635 �0.00546 0.01230

LCCs NLCs �0.01928a 0.0035 0.000 �0.02789 �0.01067
ULCCs �0.01586a 0.0040 0.001 �0.02585 �0.00587

ULCCs NLCs �0.00342 0.0036 0.635 �0.01230 0.00546
LCCs 0.01586a 0.0040 0.001 0.00587 0.02585

a The mean difference is significant at the 0.05 level.

Table 5
Comparison of the VRS efficiency scores in pre- and post-mergers between US
airlines.

Pre-M&A Post-M&A

Code Mean of B_DEA Code Mean of B_DEA

Between NLCs DL 0.9799 DL 0.9872
NW 0.9891
CO 0.9867 UA 0.9805
UA 0.9841

Between LCCs FL 0.9397 WN 0.9884
WN 0.9834
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for the acquirer. Moreover, UA still had scale inefficiency during
entire analysis periods (see Table 2) from an RTS perspective.
Consequently, this result demonstrates that post-merger UA needs
to restructure each airline's original route and cost structure to
maximize the network synergies and to achieve economies of scale.

In the case of mergers between LCCs, the average bootstrapping
PTE score of AirTran Airways (FL) was 0.9397 before being merged
with Southwest Airlines (WN) in 2012. WN also reported an
average bootstrapping PTE of 0.9834 before the merger, as seen in
Table 4. After the merger, WN experienced an increased efficiency
score (0.9884) as well as scale efficiency in 2013e2014. Accordingly,
the merger between FL and WN was a successful M&A strategy,
reducing overall operating costs by the cost synergy and optimal
economies of scale.
4.4. Truncated bootstrapped second-stage regression

To examine that environmental variables exert a significant
impact on measured US domestic airline efficiency, we adopted the
double bootstrap approach suggested by Simar and Wilson (2007).
On the base of bootstrapped VRS-DEA score in the first stage, we
calculated the regression coefficients through Simar and Wilson's
bootstrap procedure in the second stage. Considering US domestic
airlines' operating characteristics and data availability, four envi-
ronmental variables were developed for the second-stage regres-
sion analysis, as seen in Table 1. An environmental data is obtained
from the Form 10-K filed by each airline with the US Securities and
Exchange Commission (SEC) and Airline Data Project fromMIT. The
estimated specification for the regression is:

q
_
_

i ¼ b0 þ b1Fuel Expi þ b2PR Empi þ b3FTEi þ b4Op Revi þ εi

(2)

where q
_
_

i is the bootstrapped bias-corrected VRS-DEA score;
Fuel Expi is a natural logarithm of fuel expense; PR Empi is a pas-
senger revenue per employee; FTEsi is a full-time equivalent
employee (FTE); and Op Revi is an operating revenue. In this model,
the all independent variable is in its log-transformed state to help
fitting the variable into model, and the dependent variable is in its
original metric. We apply a bootstrapped truncated regressionwith
2000 replications as proposed by Simar andWilson (2007) to check
for structural reasons for efficiency differences. The estimated co-
efficients and significance levels are shown in Table 6.

The signs of the coefficients show that passenger revenue per
employee and FTE have a significant negative impact on efficiency,
whereas operating revenue has a positive coefficient. In general,
the airline business is labor intensive. Thus, salaries, wages and
benefits for FTE were a largest expenses and represented approxi-
mately 25e31% of operating expenses (from 10-K of each airline).
Additionally, pension plans and other postretirement benefit
funding obligations for FTE might adversely affect liquidity and
financial condition of US airlines. Consequently, the increasing
employee led to rise the CASM, implying that the efficiency would
be reduced.

Moreover, passenger revenue per employee affect has a negative
relationshipwith efficiency, implying that higher labor productivity



Table 6
Truncated bootstrapped second-stage regression (dependent variable: VRS score).

Variable Coefficient Std. err. z p > jzj 95% Confidence interval

Lower bound Upper bound

ln Fuel_Exp �0.0186046 0.0156441 �1.19 0.234 �0.0492665 0.0120573
ln PR_Emp �0.1024115* 0.0402665 �2.54 0.011 �0.1813323 �0.0234906
ln FTEs �0.0992265* 0.0390563 �2.54 0.011 �0.1757754 �0.0226775
ln Op_Rev 0.1208237** 0.0368977 3.27 0.001 0.0485055 0.1931419
Constant 1.62336** 0.2678492 6.06 0.000 1.098386 2.148335
Sigma 0.024617 0.0036852 6.68 0.000 0.0173942 0.0318398

Number of observation ¼ 120, Total number of bootstrap replication ¼ 2,000, Wald c2 (5) ¼ 14.727, Prob > c2 (5) ¼ 0.005.
*p < 0.01, **p < 0.05.
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could trigger lower efficiency of US airlines. This index is a ratio that
is calculated as airline's passenger revenue divided by the current
number of employees. Thus, we can estimate that this result was
primarily due to offset in part by the number of FTE as one of pri-
mary components in CASM. This is a typical case that incremental
CASM is beyond its passenger revenue per employee.

Meanwhile, airline fuel expense was not statistically significant.
In general, airline business is dependent on the price and avail-
ability of aircraft fuel. High volatility in fuel costs and increased fuel
prices could have a significant negative impact on airline's oper-
ating results and liquidity. However, the cost and availability of jet
fuel is beyond airline's control, because it is subject to many eco-
nomic and political factors. Although fuel expense was not statis-
tically significant, it has a negative effect on efficiency, indicating
that cost factors such as fuel expense and number of employee are
the main driver of efficiency reduction.
4.5. MI change in US airlines

This study examined MI to investigate the multi-period pro-
ductivity changes of 14 US airlines. It is important to evaluate
changes in the total productivity of US airlines to understand
whether the MI of individual airlines is improving or worsening
during the analysis periods (Chen and Ali, 2004). Table 7 shows that
the geometric mean of the technical change (TC) of US airlines for
the 10-year period increased by 0.59%, and that of efficiency change
(EC) increased by 0.33%. Consequently, MI increased by 0.92% on
the strength of the uplift in technical change. Most US airlines
except Continental Air Lines, AirTran Airways, and JetBlue Airways,
maintained TC >1, indicating technological advances throughout
the analysis period. In particular, Virgin America had high pro-
ductivity growth, showing 3.11% growth inMI with TC¼ 0.9988 and
EC ¼ 1.0322, whereas the MI of AirTran Airways dropped by 1.93%
Table 7
Changes in the TC, EC, and MI of US airlines from 2006 to 2015.

Group DMU EC TC MI

NLCs AS 1.0156 1.0144 1.0302
AA 1.0018 1.0174 1.0192
CO 1.0061 0.9911 0.9972
DL 1.0077 1.0158 1.0236
NW 0.9867 0.9982 0.9850
UA 0.9971 1.0173 1.0144
US 1.0111 0.9955 1.0066

LCCs FL 0.9959 0.9848 0.9807
B6 0.9847 1.0047 0.9893
WN 0.9996 1.0077 1.0073
VX 0.9841 1.0166 1.0004

ULCCs G4 1.0168 1.0032 1.0200
F9 1.0077 1.0173 1.0251
NK 1.0322 0.9988 1.0311

Geometric Mean 1.0033 1.0059 1.0092
with TC ¼ 0.9848 and EC ¼ 0.9959.
The overall efficiency change of ULCCs had a value above 1,

implying that these carriers are efficiently operated. On the con-
trary, most LCC had a low efficiency change score, indicating that
these airlines must take action to increase internal operation effi-
ciency, such as improving market competitiveness, cost structure,
and capacity utilization.

Fig. 1 shows the yearly fluctuating patterns of technical change,
efficiency change, and Malmquist index, indicating that each index
repeatedly increased and decreased with a certain cycle. A fluctu-
ation of efficiency change curve is stable, compared to technical
change and Malmquist index, as seen in Fig. 1. Meanwhile, an un-
stable oscillation of Malmquist index has a similar pattern as
technical change. This result indicates that Malmquist index for US
domestic airlines was mainly due to a technical change.
5. Discussion and conclusion

In this study, we employed the DEA and MI model to measure
the efficiency and productivity change of US airlines during
2006e2015 and seek sources of inefficiency within individual US
airlines to provide insights for airline operators. In addition, we
adopted bootstrapped DEA to estimate the M&A effects among US
airlines. Finally, we use a double bootstrap regression analysis
suggested by Simar and Wilson (2007) to reveal external de-
terminants impact on efficiency. The results presented herein
suggest the following three managerial implications.

First, most NLCs and ULCCs have relatively high bootstrapped
VRS-DEA values compared with LCCs, as described in Fig. 2. In
addition, most NLCs (except Northwest Airlines and Continental Air
Lines) and ULCCs have the Malmquist Index > 1 values, while LCCs
(except Northwest Airlines and Virgin America) have a low
Malmquist index values.

That is, most LCCs except Southwest Airlines have a relatively
low efficiency and productivity. This result suggests that LCCs need
0.6
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Fig. 1. Productivity changes for US domestic airlines during 2006e2015.



K. Choi / Journal of Air Transport Management 59 (2017) 18e2524
to renovate their service operation systems to make them more
suitable for their business scale and achieve service innovations,
which offers price advantages and customer convenience
simultaneously.

For instance, JetBlue Airways as mega-LCCs has a low efficiency
and productivity, while ultra-LCCs with lower base fares, such as
Frontier Airlines, Allegiant Air, and Spirit Air Lines, have a relatively
high efficiency and productivity, as shown in Fig. 2. Additionally,
the efficiency change score of JetBlue airlines has dropped
approximately 1.5% (Table 7), although JetBlue Airways has shown
technical advances over the past 10 years. This result suggests that
JetBlue Airways is required to make strategic approaches to
enhance efficiency by diversifying into new markets and adjusting
the cost structure.

Second, US airlines have sought new ways to survive in subse-
quent external influences such as the 9/11 terror attacks, global
financial crisis, and skyrocketing oil prices over the past 15 years. To
overcome these environmental risks, airlines tend to choose M&A
to reduce unnecessary costs and overlapping routes, thereby raising
competitiveness. That is, a motivation of mergers among airlines
includes network synergies as well as cost synergies. Network
synergies arise from expanding routes/destinations and efficient
scheduling. In additional, mergers among airlines have been one
alternative for reducing overall operating costs by maximizing the
cost synergy and achieving economies of scale.

Despite its popularity and potential benefits, however, many
M&A efforts have not achieved their desired results. For instance,
Delta Air Lines and Northwest Airlines, which filed a Chapter 11
bankruptcy protection because of their accumulated deficit of $10
billion in 2005, have achieved a more increased efficiency than that
before the merger, even though acquirer Delta Air Lines is still in
decreasing returns-to-scale region. These two airlines had 12
Fig. 2. Categorization for US domestic airlines
overlapping nonstop routes, 597 overlapping connecting routes
and 44 endpoint airports where both sides had more than 10% of
the passengers. Therefore, Delta Air Lines needs to eliminate their
overlapping network and to reduce their operating cost.

Since the 2008 financial crisis, additional M&A among US air-
lines with poor financial performance have continued. For example,
following the merger between United Air Lines and Continental Air
Lines, the efficiency of United Air Lines is lower than that before-
hand. Furthermore, despite expecting to maximize network syn-
ergies by eliminating overlapping routes domestically and
internationally (Lenartowicz et al., 2013), scale inefficiency re-
mains, which indicates that United Air Lines needs to adjust its
input resources to achieve optimal scale and implement multifac-
eted service innovation to improve the synergy effect. On the
contrary, the merger between AirTran Airways and Southwest
Airlines is an exemplary by maximizing a cost synergy effects, even
though their airline service policies and business model differed
(e.g., seat options, classes available).

In general, each airline merger created a different level of syn-
ergy, depending on each airline's original route and cost structure
(Lenartowicz et al., 2013; Merkert and Morrell, 2012). Moreover,
Mergers between airlines, however, often cause conflicts between
organizational cultures and service operation systems in addition
to employment issues. Therefore, strategic M&A initiatives among
airlines with different business models should be developed to
maximize the network and cost synergy effects of post-M&A, and
eliminate waste in all aspects of operations (De Bondt and
Thompson, 1992).

Third, a result of bootstrapped truncated regression suggest that
cost factor such as fuel expense and number of full-time equivalent
employee has led the US domestic airlines' efficiency to reduce,
whereas operating revenue increase the airlines' efficiency in a
based on MI and bootstrapped VRS-DEA.
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revenue perspectives. Thus, these environmental variables have
practical implications for US airline operations and are helpful in
developing a sophisticated framework for executing the strategic
operation management to maximize their efficiency.

For example, LCCs have reached their limits to growth even
though they have enjoyed sustained growth over the past decade
(De Wit and Zuidberg, 2012; Fu et al., 2015; Min and Joo, 2016).
Specifically, mega-LCCs such as Southwest Airlines and JetBlue
Airways are now in a vulnerable position in the face of the pressure
of fixed costs, which might affect their existing point-to-point
strategies and route density. Generally, a business model for LCCs
and ULCCs is the cost reduction with low fares and fewer comforts
compared to NLCs. In order to improve the efficiency, these airlines
should focus their cost efforts on internal cost management ini-
tiatives for airline resource such as airplane and full-time equiva-
lents, occupied major part of CASM. Moreover, JetBlue Airways has
a relatively low revenue per available seat miles, and Virgin
America has the lowest load factor among DMUs seen since 2012
(www.web.mit.edu/airlinedata/). Therefore, JetBlue Airways and
Virgin America require a new revenue management to derive
revenue from seat sales and to encourage improvement in load
factors in the market.

This result addresses strategic operational plans tailored to in-
dividual US airlines to improve static efficiency and dynamic pro-
ductivity in a rapidly changing environment. The results of this
study may help US airline industry practitioners to understand the
US domestic airline environment from an operator's perspective.
Nonetheless, this study have a limitation that we failed to consider
airline service quality in this study, despite its importance in the
airline industry. Studies, therefore, have a limit on measuring effi-
ciency and productivity without considering airline service quality.
Further research must include airline-related other factors as well
as airline service quality to confirm the findings of this study.
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