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a b s t r a c t

The main purpose of this paper is to present an asymmetric logit probability model to estimate and
predict the daily probabilities of delay in aircraft arrivals. The proposed model takes into account sta-
tistical regularity, noting that more arrivals are on time than delayed, thus reflecting an asymmetric
pattern of behaviour. The data analysed were obtained from the BTS and IATA databases for December
2014, corresponding to delays within the US airspace system for each carrier, measured at various US
airports. The model was evaluated by analysing both inesample and outeofesample data, for main and
control samples. The performance of the proposed asymmetric Bayesian logit model was compared with
that of two others: frequentist logit and symmetric Bayesian logit. The main conclusion drawn is that the
model we propose obtains the best fit, according to the statistics considered, and identifies a novel
delaying factor, namely distance, which is not identified by the other models analysed.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Most studies addressing dichotomous outcomes, such as success
vs. failure, use classical logit and probit models, and therefore as-
sume that the responses are symmetric. Nevertheless, in practice,
the real proportion of (for example) successes and failures may not
be symmetric. If this is the case, application of these classical
models can led to model misspecification and a misinterpretation
of the marginal effects and unidentified predictors, the conse-
quences of which could be very significant. In the present study, we
examine data corresponding to aircraft arrival and departure de-
lays, which often present just this kind of asymmetry.

Arrival and departure delays in the airspace system are impor-
tant variables because they cause significant losses to airlines and
create problems for passengers, airports and staff. Delays can be
categorised into gate delay, taxieout delay, eneroute delay, ter-
minal delay and taxiein delay (see Mueller and Chatterji, 2002).
Since traffic management decisions are influenced by the predicted
demand, better demand forecasting is always desirable. Departure
time uncertainty is the major cause of demand prediction error;
therefore, increased departure time reliability will directly increase
s (J.V. P�erezeRodríguez),
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the accuracy of demand prediction (Mueller and Chatterji, 2002). In
consequence, scheduling and policy decisionmakers should seek to
minimise the risk of delay and thus improve the forecasting accu-
racy of departure times when a probabilistic delay time model is
used. Accordingly, it is important to determine the causes of delays
in the airspace system, such as factors related to aircraft, airline
operations, changes of procedure and traffic volume.

Several approaches can be taken to analyse this issue. On the
one hand, we can attempt to estimate the actual duration of the
delay. For example, Allan et al. (2001) analysed several de-
terminants of flight delay at one US airport (Newark International
Airport) and showed that adverse weather conditions influenced
flight delays. On the other hand, Mueller and Chatterji (2002)
modelled delay assuming it to be a random variable that follows
a statistical distribution. Their study, seeking to improve delay
prediction, analysed the departure, eneroute and arrival delays of
aircraft that operated out of one of ten major U.S. hub airports.
Kwan and Hansen (2011) analysed causal factors including airport
congestion, total traffic and eneroute weather. The estimation re-
sults obtained suggested that airport congestion, measured by
arrival queuing delay, was a major contributor to average delay
(about 32%). Nevertheless, these authors concluded that a model
with a single explanatory variable is inadequate to describe the
reality of a system. Wong and Tsai (2012) analysed flight delay
propagation employing a survival method (the Cox proportional
hazard model). These authors developed departure and arrival
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delay models that showed how flight delay propagation can be
formulated through repeated chain effects in aircraft rotations
performed by a Taiwanese domestic airline. Other papers have also
analysed delay propagation using other econometric methods; see,
for example, Xu et al. (2005, 2007), Liu and Ma (2008) and Cao and
Fang (2012), among others, who used a Bayesian network approach,
Pyrgiotis et al. (2013), who analysed a network of airports using a
queuing model, and Derudder et al. (2010) and Diana (2011), who
analysed the prediction of arrival delays using spatial analysis.

Another possibility is to analyse the probability of delay. To our
knowledge, only a few studies have taken this approach. Among
them, Abdel-Aty et al. (2007) identified the periodic patterns of
arrival delay for non-stop domestic flights at the Orlando Inter-
national Airport during 2002e2003. Using logistic regression,
their results showed that time of day, day of week, season, flight
distance, precipitation at Orlando International Airport and
scheduled time intervals between successive flights were signifi-
cantly correlated with arrival delay. In this field, too, Tu et al.
(2008) attempted to model flight departure delay probability
distributions, but did not assess all of the relevant aviation and
meteorological parameters. In another study, Wesonga et al.
(2012) analysed the probability of arrival and departure delay at
Entebbe airport (Uganda), using a multiple parametric approach to
determine the probability of aircraft delay. In this study, a robust
approach was used to include the apparently significant meteo-
rological and aviation parameters while computing the exact
probabilities of delay.

Motivated by the desire to improve the accuracy of demand
prediction, both eneroute and at airports, using probabilistic delay
forecasting, we analyse departure and arrival data for U.S. airports
with different volumes of traffic and significant delays. Following
both Abdel-Aty et al. (2007) and Wesonga et al. (2012), we also use
logistic regressions. Specifically, we analyse not only how the
airport factor and the airline factor can influence delays, but also
the distance between airports, departure delay and daily patterns.
However, unlike the latter studies, our paper is conducted using an
asymmetric logit model. This choice was made because it has been
observed that the proportion of onetime flights (leaving/arriving
within 15 min of the scheduled time) is generally higher than that
of delayed ones.

This study examines data corresponding to air traffic delay
statistics compiled in the United States, and uses an asymmetric
logit model in the belief that this provides better results than the
standard fitted logit model.1

The rest of this paper is organised as follows. Section 2 presents
the methodology, including a brief description of the three proba-
bilistic logit models analysed, with respect to aircraft delay: the
classical logit model, the symmetric Bayesian logit model and the
asymmetric Bayesian logit model. Section 3 presents the data
included in the analysis and the sampling procedure. Section 4
presents the estimation performed, the main results obtained and
their discussion. Finally, in Section 5 we summarise the main
conclusions drawn.
1 This approach has been successfully used in other studies; for example, Chen
et al. (1999) applied a Bayesian approach and an asymmetric link in analysing bi-
nary response data, when one response is much more frequent than the other.
Similarly, Bermúdez et al. (2008) applied asymmetric logistic regression to model
fraudulent behaviour, using a Spanish insurance database. In the area of health care,
S�aezeCastillo et al. (2010) used an asymmetric logistic link to predict infection rates
in a General and Digestive Surgery hospital department. More recently,
P�erezeS�anchez et al. (2014) analysed the risk factors of automobile insurance
claims, considering an asymmetric link in the logistic regression.
2. Methodology: logistic models

2.1. Classical models

Logistic regression has long been the standard method for
studying the relationship between a binary response variable and
one or more predictors or explanatory variables, using a cumulative
density function (cdf), termed J. Let x be a vector of explanatory
variables and y the response variable taking values in f0;1g. This
can be expressed as Prðy ¼ 1jx;bÞ ¼ Jðx0bÞ. Then, by taking J as
the cdf of the logistic distribution, we obtain the logistic regression.
In this case, the probability density function is symmetric about
zero. Thus, the cdf approaches 1 at the same rate as it approaches 0.
However, in many practical situations this is not a reasonable
outcome, because data are often positively or negatively skewed
and contain a substantial proportion of zeros (nonezeros) with
respect to the proportion of nonezeros (zeros). This asymmetry
may arise in diverse practical situations and then the logit model is
not really appropriate. Since the pioneering study by Prentice
(1976), various new models of dichotomous choice have been
proposed to overcome this problem (under logit and probit as-
sumptions), greatly assisted by advances in computer technology
and software development. See, for example, Stukel (1988, 1990),
Chen et al. (1999), Fern�andez and Steel (1998), Fletcher et al.
(2005), Baz�an et al. (2006, 2010) and Kumar and Manju (2015).

As observed by Stukel (1988) and Chen et al. (1999), the use of
an asymmetric link function is recommended for binary response
data when one response is much more frequent than the other.

The classical logit model is based on the following ideas. Let y ¼
ðy1; y2;…; ynÞ0 denote an n� 1 vector of a dependent dichotomous
variable, and let xi ¼ ðxi1;…; xikÞ0 denote the k� 1 vector of cova-
riates for the set i. Here, xi1 may be 1, which corresponds to an
intercept. A fit regression model is used to estimate the probability
of belonging to a group included in yi. In this study of flight delays,
if yi ¼ 1 the ith flight lands late, and yi ¼ 0 otherwise. We assume
that yi ¼ 1 with probability pi and yi ¼ 0 with probability 1� pi.
The regression model is given by pi ¼ Fðx0 ibÞ, where F is the inverse
of the standard logistic cumulative function (link function), and b ¼
ðb1;…; bkÞ0 is a k� 1 vector of regression coefficients, which rep-
resents the effect of each variable xi on the model. Thus, the like-
lihood function, denoted as lðyjx; bÞ, is given by

lðyjx; bÞ ¼
Y
i¼1

n �
F
�
x0ib

��yi�1� F
�
x0ib

��1�yi ; (1)

where FðsÞ ¼ 1=ð1þ e�sÞ;�∞< s<∞, is a symmetric function with
respect to zero. Regression coefficients are usually estimated by
numerical evaluation of the likelihood function. In the present case,
thus, the model provides the probability of each flight landing with
delay. The next step is to consider a cutoff in this probability in
order to determine whether a flight will land on time or not. The
logit model was evaluated using STATA econometric software.
2.2. Bayesian models allowing symmetry and asymmetry

The regression logit model outlined above is too simple to be
used for any serious empirical work when the sample data present
asymmetry between the two values of the binary response variable.
In this context, the Bayesian approach is a powerful tool providing
more flexible models in regression analysis.

The main idea of the Bayesian regression model (Zellner, 1971;
Koop, 2003) is to consider that the regression coefficients are
random and fit a distribution function (the prior distribution). We
propose two alternative Bayesian estimations of the logit model.



Table 1
Descriptive statistics for variables used in the models.

Variables (definition) Mean s.d. Min. Max.

Arrival delay (equals 1 if arrival delay) 0.237 0.425 0 1
Departure delay (equals 1 if departure delay) 0.225 0.417 0 1
Distance (between airports, in miles) 815.18 602.35 31 4983
LgAirLine (equals 1 if large airline) 0.535 0.499 0 1
MedAirLine (equals 1 if mediumesized airline) 0.333 0.471 0 1
SmAirLine (equals 1 if small airline) 0.131 0.338 0 1
LgAirport (equals 1 if large airport) 0.236 0.425 0 1
MedAirport (equals 1 if mediumesized airport) 0.181 0.385 0 1
SmAirport (equals 1 if small airport) 0.106 0.308 0 1
RestAirport (equals 1 if other airports) 0.476 0.499 0 1
Tuesday (equals 1 if Tuesday) 0.163 0.369 0 1
Wednesday (equals 1 if Wednesday) 0.153 0.360 0 1
Thursday (equals 1 if Thursday) 0.130 0.337 0 1
Friday (equals 1 if Friday) 0.138 0.345 0 1
Saturday (equals 1 if Saturday) 0.115 0.319 0 1
Sunday (equals 1 if Sunday) 0.129 0.335 0 1
Monday (equals 1 if Monday) 0.170 0.376 0 1
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Firstly, using a symmetric link function and secondly, an asym-
metric link function, in which the first model appears as a special
case.

From the asymmetric standpoint, an approach based on data
augmentation (see Albert and Chib, 1993) can be used. In this case,
it is easily shown that the asymmetric logit link is equivalent to
considering the following:

yi ¼
�
1; wi � 0;
0; wi <0; (2)

where wi ¼ x0ibþ dzi þ εi; zi � G; εi � F and i ¼ 1;2;…;n. We as-
sume that zi and εi are independent and that F is the standard lo-
gistic cumulative distribution function. Moreover, G is the
cumulative distribution function of the halfestandard normal dis-
tribution with pdf given by

gðziÞ ¼
2ffiffiffiffiffiffi
2p

p e�z2i =2; zi >0: (3)

In this model, d2ð�∞;∞Þ is the skewness parameter and so the
skewness of the regression model is measured by dzi. If d>0, the
probability of pi ¼ 1, i.e., the probability that the ith flight will be
delayed, increases. On the other hand, if d<0, the probability of it
not being delayed increases. Obviously, the symmetric logit model
is a special case of the previous model obtained for d ¼ 0.

The following likelihood function is thus obtained:

lðyjx;b; dÞ ¼
Y
i¼1

n Z∞
0

�
F
�
x0ibþ dzi

��yi�1� F
�
x0ibþ dzi

��1�yi gðziÞdzi:

(4)

In the context of Bayesian analysis, a prior distribution must
be specified for b and d, say, pðb; dÞ. We assume noneinformative
and centred normal prior distributions for both parameters in
order to facilitate comparison with frequentist estimations, i.e.,
bj � Nð0; s2j Þ;cj ¼ 1;…; k, and d � Nð0; s2d Þ, considering

sj >0;cj ¼ 1;…; k, and sd sufficiently large, noting the absence of
prior knowledge about the parameters of interest, which facilitates
comparison with the frequentist model.

By combining these prior assumptions with the likelihood
shown in (4), we obtain the posterior distribution for the param-
eters b and d, which is proportional to the prior times the
likelihood,
pðb; djy; xÞflðyjx; b; dÞpðb; dÞ ¼
8<
:
Y
i¼1

n Z∞
0

�
F
�
x0ibþ dzi

��yi ½1� Fðx0ibþ dziÞ�1�yigðziÞdzi

9=
;pðb; dÞ: (5)

2 Windows Bayesian inference using Gibbs Sampling, developed jointly by the
MRC Biostatistics Unit [University of Cambridge, Cambridge, UK] and the Imperial
College School of Medicine at St. Mary's, London (Lunn et al., 2000).

3 The data used here can be obtained from: http://www.transtats.bts.gov/, the
Office of the Assistant Secretary for Research and Technology (OST-R).

4 The FAA is more interested in delays indicating surface movement inefficiencies
and will record a delay when an aircraft requires 15 min or longer over the standard
taxieout or taxiein time (Out to Off time, or On to In time, respectively).
This posterior distribution summarises all the information, both
prior and dataebased, possessed about the unknown parameters, b
and d.

In simple Bayesian models, it is usually easy to derive the pos-
terior distribution directly when conjugate prior distributions are
used. However, for more complex assumptions, we need to factor
the posterior distribution and simulate it in parts, generally the
marginal posterior distribution of the parameters (or hyper-
parameters), and then simulate the other parameters conditional
on the data and the simulated parameters. This procedure is facil-
itated by using the Gibbs sampler algorithm, which is a special
component wise Metropolis Hasting algorithm (a MarkoveChain
simulation method) that provides a posterior simulation for
pðb; djy; xÞ. We can sample ðb; dÞ from this posterior distribution
using the WinBUGS package,2 based on Gibbs sampling applying
Markov Chain Monte Carlo (MCMC) methods (see Carlin and
Polson, 1992; Gilks et al., 1995, for further details).

3. Data

3.1. Databases

In this study, we consider two sets of data. First, the airline
onetime performance data obtained from the Bureau of Trans-
portation Statistics (BTS), which compiles delay data for the benefit
of passengers in the USA.3

In particular, we focused on information related to arrivals at
U.S. airports in December 2014 (477183 observations). This data-
base contains characteristics associated with origin and destination
airports, airline names, arrival and departure delays, distance (in
miles) between airports, the day of the week (we considered six
dummies and the reference category, Mondays), among other fac-
tors. A delayed flight is defined as one in which the aircraft fails to
release its parking brake within 15 min of the scheduled departure
time.4

The second database comprises passenger traffic information
published by IATA (the International Air Transport Association)
with data from 2013 including company size and airport size. From

http://www.transtats.bts.gov/


Fig. 1. Density functions for aircraft arrivals/departures.

Fig. 2. Daily proportions of delay and onetime.

5 This conclusion is reached by using the F goodness of fit test for k-equal ex-
pectations per day. We obtained F ¼ 264:59, p ¼ 0:000 for departure delays, and
F ¼ 372:14, p ¼ 0:000 for arrival delays. In both cases, we reject the null hypothesis.

6 This is due to the fact that in the month analysed (December, 2014) the traffic
was more important on the 23rd (Tuesday). To analyse this issue, we then tested
the differences in proportions on departure delays in two ways. First, one for the
23rd versus all other days (z ¼ �46:62, p ¼ 0:000). And second, one for the 23rd
versus all other Tuesdays in the month (z ¼ �33:81, p ¼ 0:000). Both results indi-
cate that there was a significant difference in delays between Tuesday 23rd and the
other weekdays during December. In the same way, we studied the arrival delays
and the results for the two tests were z ¼ �52:30, p ¼ 0:000 and z ¼ �36:27,
p ¼ 0:000, respectively, and thus the same conclusions were reached.
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these data, we constructed the variables as follows. First, the air-
lines were divided into three groups, according to the size data
published for 2013: the variable “large airlines” was assigned the
value one for companies with 60,000e120,000 scheduled passen-
gers (Delta Air Lines, Southwest Airlines, United Airlines, American
Airlines, China Southern Airlines, Ryanair, China Eastern Airlines
and Lufthansa). The variable “mediumesized airlines”was assigned
the value one for airlines with 20,000e60,000 passengers (31
companies). The reference category for “small airlines”, assigned
the value 0, included the remaining companies. Airport size was
also expressed in four categories, using the 2013 data: “large air-
ports” were defined as those with over 60 million scheduled pas-
sengers (Atlanta, ChicagoeO’Hare, Los Angeles, DallaseFort Worth
and Denver); “mediumesized airports” received 40 to 60 million
passengers (New York JFK, San Francisco, Las Vegas, PhoenixeSky
Harbor, HoustoneGeorge Bush, CharlotteeDouglas, Miami and
OrlandoeInternational), and “small airports” had 25 to 40 million
passengers (Newark, MinneapoliseSaint Paul, SeattleeTacoma,
DetroiteWayne, Philadelphia and Boston). The reference category,
in this case, included all remaining airports (those with fewer than
25 million passengers).

Table 1 shows the descriptive statistics obtained for the vari-
ables included in each of the models considered. Many of them are
dichotomous variables and one is continuous (distance, in miles,
between airports). For the dichotomous variables, the mean rep-
resents the proportion of ones in the variable. For example, 23.7%
and 22.5% represent the proportion of arrival and departure delays
on December 2014, respectively. The average distance between
airports was 815.18 miles.

Fig. 1 shows that density functions for departure and arrival
delay are asymmetric to the right and that themode is equal to zero
minutes; in other words, that the aircraft predominantly arrive on
time. The pattern observed for aircraft arriving at and departing
from other airports was similar to that shown in Fig. 2 (interday
delay and onetime patterns for arrivals and departures). The
average proportions of delay were around 0.22 on departure and
0.23 on arrival, i.e., 0.78 and 0.77 are the onetime proportions for
departures and arrivals, respectively. The main conclusionwe draw
from these findings is that the interday patterns for arrival and
departure delays are not uniformly distributed5 and that arrivals
and departures are more likely to be delayed on a Tuesday than on
any other day in the month analysed.6

3.2. Sampling procedure

The two databases were matched and the models were esti-
mated using the following sampling procedure.

Due to the computational burden of dealing with 477183
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observations for one month using Markov Chain Monte Carlo
(MCMC), we decided to randomly select two samples for com-
parison purposes. First, we named as the main sample one
formed by 90,000 randomly chosen observations. Second, we
constructed another randomly selected sample formed of the
same number of observations. This sample was named the con-
trol sample.

In both the main and the control samples, three models were
estimated: standard (or frequentist), symmetric noneinformative
Bayesian and asymmetric noneinformative Bayesian models. The
estimation in these samples was considered inesample.

To evaluate the predictive ability of the models estimated, we
randomly selected another sample, termed the outeofesample,
which was formed by 5000 randomly selected observations, none
of which formed part of the inesample observations.

The following procedure was then applied: 1) Estimate the pa-
rameters of the inesample models. 2) Use the estimated parame-
ters in the outeofesample to construct a measure of predictive
ability.

3.3. Some causal factors on the probability of arrival delay

A flight is considered delayed when it arrived 15 or more mi-
nutes after the scheduled time. Delayed minutes are calculated for
delayed flights only. Several variables were employed as flight
probability delay factors. Previous studies have shown that arrival
delays may be related to departure delays, the time period
(weekday or weekend) and total traffic and passengers.

Following Abdel-Aty et al. (2007) we considered two variables.
First, the day of the week was used to investigate the daily pattern
(deterministic). Second, we considered the distance (in miles) be-
tween airports, in order to investigate the effect of long and short
flight distances on arrival delay.

Other variables used were related to passenger numbers at
airports and transported by airlines, and also whether there were
arrival delays associated with departure delays. The latter can be
considered a proxy variable of the propagation delay. For
example, arrival delays could be highly correlated with regard to
earlier flights (departure delays). Given that the punctuality of
one flight is sensitive to earlier flight delays - because delays tend
to propagate over time - the departure delay must be taken into
account as a factor related to the propagation delay. Therefore,
departure delay was taken as a dummy variable with a value of 1
if the departure delay was 15 min later than the scheduled time.
Following BTS, such a delay might be caused by meteorological
factors (i.e., significant meteorological conditions, actual or
forecast, that delayed or prevented the operation of a flight, such
as tornado, blizzard or hurricane); those attributable to the na-
tional aviation system (i.e., non-extreme weather conditions,
airport operations, heavy traffic volume and air traffic control
factors); other operational factors that are the airline's re-
sponsibility (e.g. maintenance or crew problems, aircraft clean-
ing, baggage loading, fuelling, etc.); or delays or cancellations
caused by evacuation of a terminal or concourse, re-boarding of
aircraft because of a security breach, inoperative screening
equipment and/or long queues (in excess of 29 min) at screening
areas. Some of these variables are highly correlated with depar-
ture delay. For example, the weather conditions variable has a
linear correlation coefficient equal to 0.82 with departure delay.
Accordingly, the weather conditions variable was omitted
because this information is implicity included in the departure
delay variable.

Finally, we included two variables representing the volume of
passengers. First, the airport type, regarding the number of pas-
sengers, which is a categorical variable that allows us distinguish
the size of the airport in terms of the volume of passengers at each
airport. Second, the airline type, by number of passengers, which is
another categorical variable and allows us to indicate the impor-
tance of travelling with airlines carrying large (or small) numbers of
passengers.
4. Results

4.1. Estimation and prediction results

The models for both the main and the control samples were
estimated. The results obtained in both samples were robust, with
no significant differences, in terms of signs or relevant factors, and
therefore we focused on the main sample. For this reason, the re-
sults obtained for the control sample are shown in the Appendix
(Table 5).

Table 2 shows the inesample estimates for the main sample,
obtained by each of the three models: standard (or frequentist),
symmetric noneinformative Bayesian and asymmetric non-
einformative Bayesian.

In each of these estimates, noneinformative prior distributions
were assumed, i.e., s2j ¼ 108;cj ¼ 1;…; k, and s2d ¼ 108. The pos-

terior distributions for Bayesian models were simulated using
WinBUGS in two samples. A total of 500,000 iterations were car-
ried out (after a burnein period of 100,000 simulations) for each
sample. Three different chains were performed and the conver-
gence was evaluated for all parameters using tests provided within
the WinBUGS Convergence Diagnostics and Output Analysis
software.

To assess the goodness of fit and the forecast obtained by the
frequentist and the Bayesian logit models, four different mea-
sures were applied: (1) the percentage of correct fits; (2) the
percentage of correct predictions; (3) three statistical fit mea-
sures, the deviance (DIC), the Akaike (AIC) and the Bayesian (BIC)
information criterions; and (4) the cestatistic (area under the
ROC curve) which measures the goodness of fit in the logistic
model curve.

As expected, because the prior information is noneinformative,
the symmetric Bayesian results were very similar to those obtained
by the standard frequentist estimations. As shown in Table 2, ac-
cording to the frequentist and symmetric Bayesian estimations, the
intercept, departure delays, large airlines, mediumesized airlines,
large airports, mediumesized airports, Tuesday flights, Saturday
flights and Sunday flights are all statistically significant in
explaining the probability of arrival delay of a flight, at the 1%
significance level. Only the Friday flights appear (at 10%) as a new
positive factor in the symmetric Bayesian estimations. With respect
to the positive relationship, the greater the departure delay, the
greater the probability of an arrival delay; in addition, large and
mediumesized airports are more prone to delays than small ones
(those with fewer than 25 million passengers) and there is more
probability of delay on a Tuesday than a Monday during the ana-
lysed month. Moreover, large and mediumesized airlines have a
lower probability of delay than small ones, and this probability also
decreases at weekends (with respect to Mondays). It is noteworthy
that the distance between airports is not a significant factor in delay
probability, according to the frequentist and symmetric Bayesian
models.

In the asymmetric Bayesian estimations, the d parameter, which
indicates the possible asymmetry of the model, is statistically sig-
nificant. This model detected the same results as the frequentist
and symmetric Bayesian ones in terms of relevant factors, but also
detected two new ones: the greater the distance between airports,
the greater the probability of a delay occurring (at 1% significance)



Table 2
Inesample logit estimation results for each model in the main sample.

Variables Frequentist Symmetric Bayesian Asymmetric Bayesian

bb Robust s.e. pevalue bb MC error s.d. bb MC error s.d.

Intercept �2.280*** 0.044 0.000 �2.280*** 0.000 0.044 4.699*** 0.036 0.457
Departure delay 4.121*** 0.024 0.000 4.123*** 0.000 0.024 55.38*** 0.377 4.504
Distance 5, 10�6 2, 10�5 0.800 5, 10�6 0.000 2, 10�5 9,10�4��� 7,10�6 10�4

LgAirLine �0.664*** 0.035 0.000 �0.664*** 0.000 0.035 �3.162*** 0.022 0.301
MedAirLine �0.242*** 0.036 0.000 �0.243*** 0.000 0.036 �1.311*** 0.014 0.230
LgAirport 0.108*** 0.029 0.000 0.108*** 0.000 0.029 0.813*** 0.006 0.148
MedAirport 0.234*** 0.032 0.000 0.234*** 0.000 0.032 1.287*** 0.008 0.182
SmAirport �0.001 0.041 0.967 �0.001 0.000 0.041 0.286* 0.004 0.182
Tuesday 0.297*** 0.039 0.000 0.297*** 0.000 0.039 1.358*** 0.011 0.221
Wednesday 0.028 0.041 0.492 0.028 0.000 0.041 0.104 0.007 0.190
Thursday �0.048 0.043 0.262 �0.048 0.000 0.043 �0.222 0.007 0.192
Friday 0.063 0.041 0.121 0.063* 0.000 0.041 0.133 0.007 0.196
Saturday �0.167*** 0.045 0.000 �0.168*** 0.000 0.045 �0.722*** 0.007 0.200
Sunday �0.168*** 0.044 0.000 �0.168*** 0.000 0.043 �0.570*** 0.007 0.196
d �44.99*** 0.307 3.676

DIC 54195.07 54223.10 15351.90
AIC 54223.07 54240.0 8658.0
BIC 54354.78 54370.0 8799.0
% correct fit 90.36 90.36 100
% correct prediction 90.56 90.56 90.56

*** indicates 1% significance or relevance level.
** indicates 5% significance or relevance level.
* indicates 10% significance or relevance level.
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and the fact of landing at a small airport increases the probability of
delay (at 10% significance). As expected, the signs of the relevant
factors are unchanged but the estimated coefficients differ
considerably from those of the other two models. This difference is
further accentuated in the estimation of the intercept. Furthermore,
the parameter d, which measures the skewness of the data, is sta-
tistically significant and negative at the 1% level of significance,
after adjusting the estimated probability of delay, i.e, decreasing
this probability and correcting the evident asymmetry in the data.
We believe that in the first twomodels the estimated intercept may
contain part of the asymmetry effect made apparent in the asym-
metric model. The results for the control sample (Table 5) are
similar to these, in sign and relevant factors, but the Friday flight
becomes positive again for delay.

For our database, we obtained a DIC of 54223.07 for the fre-
quentist logit model and a correct fit rate of 90.36%. With Bayesian
estimation, the deviance information criterion (DIC) measures
were 54223.10 and 15351.90 for the symmetric and asymmetric
models, respectively, i.e, the DIC value obtained for the asym-
metric model was notably lower than the one obtained for the
noneasymmetric models. The same pattern was obtained for the
other criteria. The major reduction in these measures indicates a
significant increase in the level of fit. Furthermore, the asymmetric
model obtained better classification results, with 100% correct fit.
Thus, the leverage of this model is much better than that of the
Table 3
In-sample descriptive statistics for the estimated probabilities in the main sample.

Frequentist Symmetric Bayesian Asymmetric Bayesian

mean 0.2402 0.2368 0.2368
s.d. 0.3124 0.3112 0.3946
skewness 1.3201 1.3214 1.2854
kurtosis 2.7912 2.7909 2.7093
p25 0.0593 0.0538 0.0131
p50 0.0789 0.0762 0.0212
p75 0.1207 0.1201 0.0479
p90 0.8256 0.8153 0.9916
cestatistic 0.8793 0.8806 1.0000
symmetric models. Finally, the measure of correct predictions
shows that all three models performed well, with an overall value
of 90.56%. The threshold probability used to fit and predict a delay
was the sample frequency of delay, namely 0.237 (0.234 for the
control sample).

Table 3 shows the mean, standard deviation, skewness, kurtosis
and some percentiles for the estimated probabilities obtained by
the models. This table also shows the cestatistics (area under the
ROC curve) obtained. The best fit is again obtained with the
asymmetric Bayesian model.

4.2. Discussion of results

In this study, several logistic regression models were estimated
by employing data from the US airspace system for each carrier at
different US airports, combined with IATA data. Three models were
analysed: first, the frequentist and the noneinformative symmetric
Bayesian models. When the prior distribution is noneinformative,
these two models conclude in the same way. Both are based
exclusively on the sample information and the estimations ob-
tained (for themain and control samples), logically, are very similar.
The third model, proposed in this paper, is the noneinformative
asymmetric Bayesian model. The results obtained indicate that this
latter model produces a better inesample fit than the other sym-
metric models, while the predicting capacity remains unchanged as
regards the outeofesample fit.
Table 4
Airports and airlines' estimated probabilities under the asymmetric Bayesian model
in the main sample.

Airport/Airline N Prðy ¼ 1Þ s.d.

Large airports 21251 0.224 0.384
Mediumesized airports 16339 0.260 0.408
Small airports 9582 0.214 0.377
Other airports 42828 0.239 0.397
Large airlines 48140 0.230 0.391
Mediumesized airlines 30017 0.231 0.389
Small airlines 11843 0.277 0.417



Fig. 3. Average estimated probability of delay, by airport and day of week.
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Several factors, proposed in earlier studies, were considered
relevant to the probability of delay (see subsection 3.3). Departure
delay was the most significant factor obtained in our models, and
Fig. 4. Average estimated probability of
thereforewe conclude that prior flight delays present a high degree
of dependence (propagation delay). In prior research, this variable
is generally omitted from probability models. However, as it is
delay, by airline and day of week.
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correlated with meteorological factors (see subsection 3.3), this
variable is a significant factor in explaining the probability of arrival
delay. Second, regarding the coefficient of distance, our results
indicate that this factor has a positive impact on probability of
arrival delay with odd-ratio of expð9:10�4Þ ¼ 1:001 which in-
dicates that by increasing one mile, the probability changes very
little. Abdel-Aty et al. (2007) considered the distance between re-
gressors to estimate the pattern of single flight delay as a categor-
ical variable, using the following distances: less than 750 miles,
750e1000 miles and greater than 1000 miles. These authors found
that the odds of delay for a flight with a distance of 750e1000miles
were higher than those for flights with other ranges. This may be
because longer flights have more opportunities to save time during
the flight and thus avoid arrival delay. Third, regarding the co-
efficients of airport type and airline type, we found that large air-
lines had a 96 times greater probability of onetime arrival than
small ones (expð�3:162Þ ¼ 0:04) and that mediumesized airports
had a 262.2 times greater probability of arrival delay than those
with fewer than 25 million passengers (expð1:287Þ ¼ 3:622).
Table 4 shows the estimated probabilities (Prðy ¼ 1Þ) under
asymmetric Bayesian estimation, taking into account the sizes of
the airports and airlines. N represents the number of observations
and s:d: is the standard deviation of the estimated probabilities. The
average probability of arrival delay is higher for mediumesized
airports and small airlines. However, small airports and large air-
lines have lower average probabilities. Finally, regarding the day of
the week coefficients, results indicate that Tuesday is the most
significant variable. The odds ratio for this day is expð1:287Þ ¼ 3:62
which is higher than that for the other time periods. This finding
supports a daily pattern of delay, whichwas also reported by Abdel-
Aty et al. (2007). However, these authors found Friday to be the
most significant in their sample, possibly because December 24th
(Christmas Eve) and 31st were on a Wednesday and the demand
was more intensive than on the Tuesday. Figs. 3 and 4 show the
average asymmetric Bayesian estimated probabilities of delay by
day of theweek, for airports and airlines, respectively. In both cases,
the probability is higher on Tuesdays, with the exception of small
airlines (Friday).
Table 5
Inesample logit estimation results for each model in the control sample

Variables Frequentist Symmet

bb Robust s.e. pevalue bb
Intercept �2.280*** 0.044 0.000 �2.284*

Departure delay 4.123*** 0.024 0.000 4.125***

Distance 2, 10�5 2, 10�5 0.398 10�5

LgAirLine �0.706*** 0.035 0.000 �0.705*

MedAirLine �0.286*** 0.036 0.000 �0.285*

LgAirport 0.086*** 0.030 0.004 0.086***

MedAirport 0.233*** 0.031 0.000 0.233***

SmAirport 0.020 0.041 0.613 0.020
Tuesday 0.265*** 0.039 0.000 0.265***

Wednesday 0.041 0.040 0.308 0.041
Thursday �0.011 0.043 0.796 �0.011
Friday 0.097** 0.041 0.018 0.097***

Saturday �0.176*** 0.044 0.000 �0.176*

Sunday �0.116*** 0.043 0.007 �0.117*

d

DIC 53909.76 53937.7
AIC 53937.76 53950.0
BIC 54069.46 54080.0
% correct fit 90.38 90.38
% correct prediction 90.56 90.56

*** indicates 1% significance or relevance level.
** indicates 5% significance or relevance level.
* indicates 10% significance or relevance level.
5. Summary and conclusions

This study analyses the use of an asymmetric Bayesian logit
model to estimate the probability of aircraft delay, taking into ac-
count the asymmetric pattern of arrival delays at U.S. airports. To
the best of our knowledge, asymmetric Bayesian logit models have
not previously been applied in this setting and with these
intentions.

We evaluated this model by comparing its results with
those obtained by the frequentist and symmetric Bayesian
approaches.

The main results obtained show that, according to the fre-
quentist and standard Bayesian logit methods, the departure
delay, the size of the airline, the size of the airport and the day of
the flight (Tuesdays and weekends) are statistically significant
factors (at the 1% significance level) to explain the probability of
delay. Our study shows that arrival delay is strongly related to the
originedeparture delay. The latter delay is attributed to operating
procedures (i.e., the first flight segment of the day typically de-
parts late).

In our asymmetrical Bayesian model, we also identify an
important new delay factor with respect to the frequentist and
symmetric Bayesian models, namely the distance, in miles, be-
tween airports (statistically significant at 1%). Furthermore, the
importance of incorporating asymmetry into the model is clearly
corroborated by the information criteria, the percentage of correct
fit and the cestatistic based on the ROC curve.
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Appendix
ric Bayesian Asymmetric Bayesian

MC error s.d. bb MC error s.d.

** 0.000 0.043 �0.674 0.160 2.856
0.000 0.024 16.05*** 0.775 13.78
0.000 1, 10�5 3,10�4��� 2, 10�5 3, 10�5

** 0.000 0.035 �1.329*** 0.038 0.685
** 0.000 0.036 �0.575*** 0.018 0.336

0.000 0.029 0.291*** 0.012 0.230
0.000 0.032 0.435*** 0.012 0.228
0.000 0.040 0.123 0.006 0.141
0.000 0.039 0.506*** 0.014 0.273
0.000 0.040 0.090 0.003 0.100
0.000 0.043 �0.015 0.001 0.091
0.000 0.041 0.136** 0.002 0.099

** 0.000 0.045 �0.363*** 0.011 0.219
** 0.000 0.043 �0.189*** 0.004 0.117

�10.58*** 0.747 1.329

�29377.30
33134.00
33275.11
100
90.56
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