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a b s t r a c t

Accurate forecasts of the numbers of cancer deaths are critical not only for allocating
government health and welfare budgets, but also for providing guidance to the related
industries. We suggest a framework for predicting the annual numbers of cancer deaths by
modeling individual survival times. A Weibull mixture model with individual covariates
and unobserved heterogeneity is proposed for examining the effects of demographic
variables on individual survival times andpredicting the annual number of cancer deaths by
adopting a bottom-up strategy.We apply the suggested framework to a survival analysis of
lung and bronchus cancer patients in the United States and provide a comparison with the
forecast results obtained from previous studies. A comparison of our results with those of
various benchmarks shows that our proposedmodel performs better for predicting annual
numbers of cancer deaths. Furthermore, by segmenting patients based on age, sex, and
race, we are able to specify the differences between groups and assess the group-specific
survival probabilities within a given period. Our results show that older, female, and white
patients survive significantly longer than younger, male, and black patients. Also, patients
diagnosed in recent years survive significantly longer than those diagnosed a long time
ago.
© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
ier
1. Introduction

Worldwide, approximately one death in eight is due
to cancer. The estimated total number of cancer deaths
worldwide in 2008 was 7.6 million, and the growth and
aging of the population mean that this number is expected
to reach 13.2 million in 2030 (American Cancer Society,
2011). It is predicted that around 585,720 people will die
of cancer in the United States in 2014, a rate of about 1,600
per day (Siegel, Jiemin, Zou, & Jemal, 2014). Since billions
of dollars are spent on research, treatment, prevention,
and other cancer-related costs, accurate predictions of
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the numbers of cancer deaths are important for effective
planning, resource allocation, and communication (Tiwari
et al., 2004). Accurate predictions of the numbers of cancer
deaths are beneficial for the public sector because they
enable more precise allocations of health and welfare
budgets. If the predicted number of deaths does not match
the actual number of cancer deaths, then the planned
budgets could be either too high or inefficient, leading
to difficulties for governments. Accurate predictions are
also critical in the private sector. For example, accurate
forecasts of the numbers of cancer deaths allow insurance
firms to predict the need for cancer insurance.

For these reasons, there has been a considerable
amount of research in recent years relating to the forecast-
ing of the numbers of cancer deaths using aggregate-level
data. Chen et al. (2012) compared the levels of accuracy
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of five time series models for four-year-ahead projections
of the numbers of cancer deaths. The models were as fol-
lows: (1) the state spacemodel, (2) the Bayesian state space
model (Schmidt & Pereira, 2011), (3) two versions of the
joinpoint regression model (Kim, Fay, Feuer, & Midthune,
2000), (4) the Nordpred model (Møller et al., 2003), and
(5) a vector autoregressivemodel using the Hilbert–Huang
transform (Huang et al., 1998). Chen et al. (2012) showed
that the joinpoint model with themodified Bayesian infor-
mation criterion had the smallest error among the various
models tested. Tiwari et al. (2004) improved the existing
state space model and revealed that the average squared
deviations across cancer sites for the newmodel were sub-
stantially lower than those of other benchmark models.
However, so far, such models have used only aggregate-
level mortality data. On the other hand, Verdecchia, De
Angelis, and Capocaccia (2002) proposed the prevalence,
incidence, and analysis model (PIAMOD) for predicting
numbers of deaths using incidence data. The model first
fitted the incidence based on age, period, and cohort, then
derived the numbers of deaths.

Some studies have used survival analysis to focus on
the individual hazard or survival rate. The most prominent
model in survival analysis is the proportional hazards re-
gression model, proposed by Cox (1972). Since then, the
Cox model has been used widely for specifying a linear
relationship between hazard or survival rates and covari-
ates in a variety of fields, such as engineering, economics,
and sociology. In biometrics, there have been studies of
methods for modeling an individual’s lifetime (Hakulinen
& Tenkanen, 1987; Prentice & Kalbfleisch, 1979), which
have generally involved the use of parametric models. One
of the most popular of these is the Weibull model (Cox,
1972). Royston and Parmar (2002) developed flexible para-
metric models based initially on the assumption of a pro-
portional hazards scaling of covariate effects. This class of
modelswas based on a transformation of the survival func-
tion using a link function.

When subjects are taken from a heterogeneous popu-
lation, however, a model that allows us to deal with the
unobserved heterogeneity should be considered. If we ig-
nore heterogeneity, our estimates could be spurious (Lan-
caster, 1992). Lancaster (1979) used a Weibull-gamma
mixture or finite mixture model using Bayesian methods
to capture the unobserved heterogeneity. Frailty models
have also been used widely to address the issue of het-
erogeneity. The models assume that different individuals
have different frailties; frailer individuals tend to die ear-
lier than those who are less frail. Vaupel, Manton, and Stal-
lard (1979)were the first to introduce the concept of frailty
and apply it to population data. When the population is
a mixture of susceptible and non-susceptible individuals,
the frailty model can be used to extend the cure model,
leading to the so-called cure frailty model. Duchateau
and Janssen (2007) introduced several examples of frailty
models, from those assuming parametric distributions, in-
cluding gamma, Weibull, and lognormal distributions, to
nonparametric frailty models. They also reviewed frailty
models that remove the assumption that the frailty is con-
stant over time, the so-called time-varying frailty mod-
els. These hazard or frailty models can explain individual
survival patterns. However, there has been little or no re-
search into the use of individual survival times for predict-
ing total numbers of failures or deaths.

In this paper, we propose a Weibull mixture model
with individual covariates and unobserved heterogeneity
for examining the effects of demographic variables on in-
dividual survival times and predicting the annual numbers
of cancer deaths by adopting a bottom-up strategy. Our
model is applied to data on lung and bronchus cancer pa-
tients in the United States, and specifies the relationship
between survival times, demographic variables (age, sex,
race, and registries), and incidence-related variables (year
of diagnosis and stage of tumor progression). We then ob-
tain four-year-ahead forecasts for 2006, 2007, 2008, 2009,
2010, and2011. Theperformance of ourmodel is compared
to those of other benchmarks that previous research has
shown to be accurate in predicting the numbers of deaths.
Moreover, we segment the whole patient dataset into sev-
eral groups based on age, sex, and race, in order to exam-
ine the heterogeneity between groups and calculate group
survival probabilities for the next three years.

The remainder of the paper is organized as follows. In
Section 2, we provide a description of the Surveillance,
Epidemiology, and End Results (SEER) dataset used in the
analysis. In Section 3, we develop ourmodeling framework
and explain how the annual number of deaths is forecast.
In Section 4, we describe our empirical analysis and
specify the parameter estimates and forecast results. This
is followed by a discussion of the implications of our study,
and we conclude with a summary of this research and its
limitations, as well as a review of its contributions to the
public and private sectors.

2. Data description

The dataset is retrieved from the SEER database of
the National Cancer Institute.1 It consists of information
about patients who were diagnosed with cancer between
1973 and 2011 from nine registries2 in the United States,
representing approximately 10% of the US population. We
make use of the data only until 2011 because the incidence
and mortality data are generally available with a lag of
three to four years, due to the time required for data
collection, compilation, quality control, and dissemination
(Siegel et al., 2014). The data gathered range from
demographic variables, such as age at diagnosis, sex, race,
marital status, and registry, to cancer incidence-related
variables, such as year of diagnosis, survival time, and stage
of tumor progression. The data are right-censored,with the
follow-up cutoff date fixed at December 31, 2011.

We focus on patients diagnosedwith lung and bronchus
cancers.3 There are a total of 396,202 patients; however,

1 http://www.seer.cancer.gov/. Released April 2014, based on the
November 2013 submission.
2 The registries are from Atlanta, Connecticut, Detroit, Hawaii, Iowa,

New Mexico, San Francisco-Oakland, Seattle-Puget Sound, and Utah.
3 These cancer types are classified as ‘‘Lung’’ in the ‘‘CS schema v0204’’

classification. This classification includes the types of cancer defined by
the ICD-10 codes C340, C341, C342, C343, C348, C349, and D022.

http://www.seer.cancer.gov/
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(a) Age distribution. (b) Sex distribution.

(c) Race distribution. (d) Survival time distribution (year).

Fig. 1. Age, sex, race, and survival time distribution of lung and bronchus cancer patients.
those registered in the Seattle-Puget Sound and Atlanta
areas are excluded from our analysis because their data
were not gathered from the origin year of 1973.4 Also, we
do not include patients over the age of 85 because their
deaths may not be cancer-related. When patients were
registered, most of their tumors (99%) were found to be
malignant. As Fig. 1(a) shows, 80% of the patients were
between 50 and 80 years old. Fig. 1(b) and (c) show that
the number of males was one and a half times the number
of females, and the proportion ofwhite patientswas 84% of
the total. In Fig. 1(d), it can be seen that 89% of patients did
not survive for more than five years, while 61% died within
one year, and 83% died within three years.

3. Model

3.1. Specification

In survival analysis, many studies have modeled sur-
vival times using an exponential distribution. Since the
exponential model defines the survival probability based
on a single parameter, it has the advantage of simplicity.
However, it has the limitation that survival times sampled
from the exponential distribution have a constant hazard
rate, which assumes that all subjects are equally likely
to die, regardless of how many years they have survived.
This is undoubtedly unrealistic in many situations. On the

4 Thedata fromSeattle-Puget Soundwere gathered from1974; the data
from Atlanta were gathered from 1975.
other hand, theWeibullmodel can account for hazard rates
both increasing and decreasing. TheWeibull distribution is
shaped by twoparameters: the rate parameter (denoted by
λ, λ ≥ 0), which is the inverse of the scale parameter; and
the shape parameter (denoted by c, c ≥ 0), which pro-
vides flexibility in the hazard rate. The probability density
function (PDF) and the survival probability of the Weibull
distribution with λ and c are given by:

f (t|λ, c) = λctc−1 exp

−λtc


(1)

S (t|λ, c) = exp

−λtc


. (2)

Since the idea that all subjects should show the same
survival patterns is an extremely restrictive assumption,
we allow for differences in the rate parameter across
subjects. When accounting for individual rate parameters,
estimates in survival analysis may be spurious if the
unobserved heterogeneity is ignored (Lancaster, 1992). On
the other hand, if we address survival times using only the
unobservedheterogeneity, it is impossible to specifywhich
subjects survive longer, and why. Therefore, the individual
rate parameter λi is assumed to be a multiplicative
form of two components, λ1i and λ2i, which represent
individual covariate effects and unobserved heterogeneity,
respectively.

The first component, λ1i, is represented as a linear com-
bination of individual covariates. That is, λ1i = exp


xTi γ


,

where xi is a vector containing covariates related to the ob-
servable characteristics of subject i, and γ is a vector of all
parameters associated with the covariates. Since λ2i plays
a role in the rate parameter as an intercept, we exclude
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Table 1
Description of covariates.

Covariate Description

ageji
1, if the ith subject’s age ranges from 10 × (j − 1) to
10 × j, where j = 1, . . . , 8
0, otherwise

sexi
1, if the ith subject is male
0, otherwise

raceji
1, if the ith subject is race j, where j = 1 (white) and 2
(black)
0, otherwise

stagei
1, if the ith subject is at a stage of malignant potential
2, if the ith subject is at a stage of carcinoma in situ
3, if the ith subject is at a stage of malignant

yearji
1, if the ith subject is diagnosed in year j, where
j = 1973, . . . , 2010
0, otherwise

regji

1, if the ith subject is registered in registry j, where j = 1
(San Francisco-Oakland), 2 (Connecticut), 3 (Detroit),
4 (Hawaii), 5 (Iowa), and 6 (New Mexico)
0, otherwise

the constant term from xi in order to avoid an identifi-
cation problem. The covariates comprise one continuous
variable, the stage of tumor progression, and 55 dummy
variables regarding age, sex, race, year of diagnosis, and
registry. More details are provided in Table 1.

The second component, λ2i, representing unobserved
heterogeneity in the likelihood of survival, is assumed to
be drawn from a gamma distribution:

g (λ2i|α, β) =
βα

Γ (α)
λα−1
2i exp (−βλ2i) , (3)

where α and β are the shape and rate parameters. We use
the gamma distribution both because it is the conjugate
prior for the Weibull distribution, and for its flexibility.
Thus, our proposed model can be summarized as follows.

Ti ∼ Weibull (λi, c)
λi = λ1iλ2i

λ1i = exp

xTi γ


, λ2i ∼ Gamma (α, β) ,

(4)

where Ti is a random variable representing the individual
survival time. By integrating the PDF over Eq. (3) given c, γ ,
and λ2i, the PDF and survival probability for subject i, who
survives for time ti, given c, γ, α, and β , can be derived as

f (ti|c, γ, α, β) =


λ2i

f (ti|c, γ, λ2i) g (λ2i|α, β) dλ2i

= ctc−1
i exp


xTi γ

  α

β + tci exp

xTi γ



×


β

β + tci exp

xTi γ

α

(5)

S (ti|c, γ, α, β) =


β

β + tci exp

xTi γ

α

. (6)
3.2. Estimation

We estimate the parameters of the aforementioned
models using maximum likelihood estimation (MLE). If a
subject died before the cutoff date, his contribution to the
likelihood function is the PDF of the survival time. On the
other hand, for a subject who is still alive at the cutoff date,
all we know is that the survival time exceeds the difference
between his birth date and the cutoff date. Therefore, his
contribution to the likelihood is considered to be the sur-
vival probability of the number of years before censoring
occurred. Consequently, the log-likelihood function can be
represented as:

LL =

n
i=1

δi log f (ti) +

n
i=1

(1 − δi) log S (ti) , (7)

where ti is the survival time and δi is the censoring indica-
tor variable, which is set to one if a subject died before the
cutoff date and zero otherwise.

3.3. Forecasting

In this section, we propose amethod for obtaining four-
year-ahead forecasts of annual numbers of cancer deaths.
We begin by defining an individual probability of death,
then derive it using our model. If a subject i is diagnosed in
year τ 0

i , his or her probability of death, Pτ
i , can be regarded

as the difference between the probabilities of surviving for
more than τ − τ 0

i years and τ − τ 0
i + 1 years. From Eq. (6),

Pτ
i can be represented as:

Pτ
i = S


τ − τ 0

i


− S


τ − τ 0

i + 1


=


β

β +

τ − τ 0

i

c exp xTi γ
α

−


β

β +

τ − τ 0

i + 1
c exp xTi γ

α

. (8)

In order to obtain the above probability, we estimate
the parameters c, γ, α, and β from in-sample data using
Eq. (7). The covariates of the out-of-sample subjects, xi, are
assumed to be known, and are also used to calculate Pτ

i .
After obtaining Pτ

i from Eq. (8), it is possible to predict
the annual numbers of cancer deaths. If subject i died in
year τ , Pτ

i calculated from the model will be close to one.
On the other hand, the probability will be close to zero in
other years. Therefore, the number of cancer deaths in year
τ , Nτ , can be predicted as the sum of Pτ

i , given that the
subjects were diagnosed in each year τ 0

i :

Nτ =


i

Pτ
i

=


i


β

β +

τ − τ 0

i

c exp xTi γ
α

−


β

β +

τ − τ 0

i + 1
c exp xTi γ

α
. (9)
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Table 2
Estimation results.

Parameter Estimate (t-statistics) Parameter Estimate (t-statistics)

Shape parameter (c) 1.15*** (361.81)

Covariate effect (λ1i)
Age
0–9 −0.18 (−0.17) 40–49 −1.10*** (−66.17)
10–19 −0.06 (−0.24) 50–59 −1.02*** (−80.50)
20–29 −3.25*** (−17.04) 60–69 −0.83*** (−72.08)
30–39 −1.36*** (−38.87) 70–79 −0.46*** (−40.68)

Sex 0.30*** (47.57)

Race
White 0.19*** (11.54) Black 0.34*** (17.95)

Year of diagnosis
1973 0.81*** (24.97) 1992 0.37*** (12.81)
1974 0.71*** (21.99) 1993 0.35*** (12.05)
1975 0.69*** (21.79) 1994 0.33*** (11.48)
1976 0.62*** (19.75) 1995 0.32*** (11.08)
1977 0.58*** (18.54) 1996 0.36*** (12.60)
1978 0.51*** (16.64) 1997 0.32*** (11.09)
1979 0.57*** (18.54) 1998 0.32*** (11.03)
1980 0.51*** (16.91) 1999 0.27*** (9.44)
1981 0.49*** (16.30) 2000 0.27*** (9.51)
1982 0.47*** (15.72) 2001 0.29*** (10.06)
1983 0.43*** (14.64) 2002 0.25*** (8.74)
1984 0.46*** (15.80) 2003 0.21*** (7.37)
1985 0.46*** (15.58) 2004 0.21*** (7.23)
1986 0.42*** (14.50) 2005 0.17*** (6.01)
1987 0.44*** (15.34) 2006 0.11*** (3.77)
1988 0.43*** (15.03) 2007 0.08*** (2.73)
1989 0.40*** (13.73) 2008 0.05 (1.60)
1990 0.37*** (12.90) 2009 0.03 (0.91)
1991 0.36*** (12.71) 2010 0.08*** (2.78)

Registry
San Francisco-Oakland −0.19*** (−11.02) Hawaii −0.17*** (−7.29)
Connecticut −0.33*** (−19.05) Iowa −0.14*** (−7.87)
Detroit −0.18*** (−10.80) New Mexico 0.01 (0.46)

Tumor stage 0.32*** (2.84)

Unobserved heterogeneity (λ2i)
Shape (α) 0.78*** (108.27)
Rate (β) 1.01*** (2.65)

Log-likelihood (N = 396, 202) −522,223
*** Significant at the 1% level.
4. Results

4.1. Estimation results

Table 2 reports parameter estimates for our proposed
model. Most of the coefficients are statistically significant
at the 1% level, with the expected signs. Very few of the
coefficients for age (<10 and 10–19) and year of diagnosis
(2008 and 2009) are insignificant. This means that subjects
who are aged less than 10 or between 10 and 19 have the
same survival pattern as subjects over 80 years old. It can
also be seen that there is no difference in the effect of the
year of diagnosis among subjects diagnosed in 2008, 2009,
and 2011. The fact that α and β are statistically significant
is interpreted as showing that there is an unobserved
heterogeneity in the rate parameter across subjects.
The shape parameter estimate is greater than one,
meaning that our data show an increasing hazard rate.
To validate this result, we observe the empirical hazard
rates of subjects who were diagnosed in 1973, 1983, and
1993, and display the rates in Fig. 2. Fig. 2 shows that
the empirical hazard rates increase over time, which is
consistent with the results from our proposed model. This
is also supported by the findings of Follmann and Goldberg
(1988), who reported that ignoring the unobserved
heterogeneity can lead to a spurious decreasing hazard
rate.

We then examine the signs and magnitudes of the
covariate parameter estimates in connection with the
expected lifetime. The expected value of theWeibull distri-
bution is λ−1/cΓ (1 + 1/c); this is inversely proportional
to λ, given that c remains fixed. Since λ is proportional
to the covariate parameter estimates


i.e., λ = exp


xTγ


,



D.B. Jun et al. / International Journal of Forecasting 32 (2016) 168–179 173
Fig. 2. Empirical hazard rates in 1973, 1983, and 1993.
the correlation between the expected lifetime and those
estimates will be negative if we assume a constant unob-
served heterogeneity. That is, if the covariate parameters
are estimated to have positive (negative) signs, then the
expected lifetime will decrease (increase). In the case of
the sex covariate, for which the reference group is female,
the value of 0.30 means that, on average, female subjects
survive 1.30 times5 longer than male subjects. For the race
covariate, where the reference group is other races,6 the
values of 0.19 and 0.34 mean that other races survive 1.18
times longer than white subjects and 1.34 times longer
than black subjects, respectively. The fact that the esti-
mates for year of diagnosis tend to decrease as the year in-
creases shows that subjects who were diagnosed recently
will survive longer than those who were diagnosed a long
time ago. This situation may arise as a result of continuous
advances in medical technology.

4.2. Forecast results

To obtain four-year-ahead forecasts for 2006, 2007,
2008, 2009, 2010, and 2011, we use data until the end
of 2002, 2003, 2004, 2005, 2006, and 2007, respectively.
We first calculate an individual probability of death using
Eq. (8), then obtain the annual number of cancer deaths
using Eq. (9). As has been mentioned, we assume that
the covariates of out-of-sample subjects are known, and
use them to calculate the probability of death. When
trying to use diagnosis year covariates in the out-of-sample
period, however, there are no corresponding parameter
estimates. For example, when we obtain a four-year-
ahead forecast for 2006 made in 2002, estimates for the
diagnosis year parameters are available only up to 2001;
therefore, we must derive additional parameter estimates
from 2002 to 2005. We first find an appropriate model
for fitting the observable estimates (1973–2001), then
extrapolate theunobservable estimates (2002–2005) using
the fitted model. In order to find the proper model, we

5 EFemale (T ) /EMale (T ) =
λFemale/λMale

−1/c
= exp


−βMale

−1/c
=

exp (−0.30)−1/1.15
= 1.30.

6 Other races includes American Indian/AK Native and Asian/Pacific
Islander. For more information, see http://seer.cancer.gov/seerstat/
variables/seer/race_ethnicity.
plot the fitted graphs obtained from four models: (a)
f (t) = θ0 + θ1t + θ2t2 + θ3/t , (b) f (t) = θ0 +

θ1t + θ2t2, (c) f (t) = log (θ0 + θ1t), and (d) f (t) =

exp (θ0 + θ1t). Fig. 3 shows that Model (a) is better at
fitting diagnosis year estimates than the other models are.
We also calculate the root mean squared errors (RMSEs) of
the suggestedmodels; the RMSEs ofModels (a), (b), (c), and
(d) are 0.0007, 0.0018, 0.0037, and 0.0025, respectively.
Therefore, we conclude that Model (a) is appropriate for
extrapolating unobservable diagnosis year estimates. This
result is consistent even when we change the in-sample
period.

We replicate four benchmark models for the purpose
of comparison. The first benchmark is the damped trend
exponential smoothing method. When we compare the
fifteen exponential smoothing methods from the classi-
fication described by Hyndman, Koehler, Ord, and Sny-
der (2008), our data are shown to follow damped trend
exponential smoothing, which is equivalent to the au-
toregressive integrated moving average (ARIMA) (1, 1,
2) process (Hyndman et al., 2008). The second bench-
mark is the joinpoint regression model proposed by
Kim et al. (2000). The model is fitted by least squares
at a given number of change-points, called joinpoints,
then the number of joinpoints is estimated. The Join-
point software (http://surveillance.cancer.gov/join-point)
shows that there are two joinpoints, at the years 1975
and 1989, and forecasts are obtained by reflecting these
change points. The third benchmark is the Bayesian state
space model. This model assumes that the number of can-
cer deaths follows a Poisson distribution, the parameter of
which follows a random walk. We estimate the parame-
ter using the Markov Chain Monte Carlo (MCMC) method.
Convergence is achieved within 10,000 iterations, then an
additional 90,000 iterations are used to predict the num-
ber of deaths. We pick out every 10th iteration in order
to reduce the autocorrelation. Two of the models, the join-
point regression and the Bayesian state space, were shown
in a previous study (Chen et al., 2012) to performwell. The
last benchmark is the prevalence, incidence, and analysis
model (PIAMOD) proposed by Verdecchia et al. (2002). Un-
like the other benchmarks, this onemakes use of incidence
data for predicting the number of deaths. Themodel begins
by fitting an age, period, and cohort (APC) model to inci-
dence data, then estimates the prevalence from the fitted

http://seer.cancer.gov/seerstat/variables/seer/race_ethnicity
http://seer.cancer.gov/seerstat/variables/seer/race_ethnicity
http://seer.cancer.gov/seerstat/variables/seer/race_ethnicity
http://seer.cancer.gov/seerstat/variables/seer/race_ethnicity
http://seer.cancer.gov/seerstat/variables/seer/race_ethnicity
http://seer.cancer.gov/seerstat/variables/seer/race_ethnicity
http://seer.cancer.gov/seerstat/variables/seer/race_ethnicity
http://seer.cancer.gov/seerstat/variables/seer/race_ethnicity
http://seer.cancer.gov/seerstat/variables/seer/race_ethnicity
http://surveillance.cancer.gov/join-point
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Fig. 3. Fitted lines of diagnosis year estimates, in-sample: 1973–2002.
Fig. 4. Four-year-ahead forecasts of annual lung and bronchus cancer deaths for 2006–2011.
Table 3
Four-year-ahead forecast performances for 2006–2011.

Model RMSE MAE MAPE (%)

Proposed model 137.8 122.6 1.15
Damped trend exponential smoothing 369.6 347.8 3.24
Joinpoint 418.8 414.9 3.87
Bayesian state space 160.3 133.7 1.25
PIAMOD 186.7 172.4 1.61

Notes: RMSE =
1
6

2011
τ=2006

Nτ − Nτ

2
, MAE =

1
6

2011
τ=2006

Nτ − Nτ

 ,
MAPE =

100
6

2011
τ=2006

|Nτ −Nτ |
Nτ

.

incidence and relative survival rate. The number of deaths
is then derived from the fitted incidence, prevalence, and
relative survival rate. APC models7 for each period are se-
lected based on likelihood ratio statistics, as was shown by
Verdecchia, Capocaccia, Egidi, and Golini (1989).

Three measurements, the root mean squared error
(RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE), are used to compare forecasting
performances; the comparison results are shown in
Table 3. All three measurements prove that our proposed
model performs best for forecasting the annual number of

7 APC models for each period are fitted as follows (in-sample period:
degree of age/period/cohort): 1973–2002: 5/0/2, 1973–2003: 7/0/4,
1973–2004: 7/0/4, 1973–2005: 7/0/4, 1973–2006: 7/0/6, 1973–2007:
7/0/6.
cancer deaths. Among the benchmarks, the Bayesian state
space model performs best. The same result can be seen
in Fig. 4. Fig. 4 shows the actual and predicted numbers
of cancer deaths from 2006 to 2011, comparing the
numbers from our proposed model to those from the four
benchmarks. While both the damped trend exponential
smoothing method and the joinpoint model overestimate
the actual numbers of deaths, our proposedmodel predicts
that number very well. Although the predictions from the
Bayesian state space model are closer to the actual values
than are those fromour proposedmodel for 2007 and2008,
they seem to overestimate andunderestimate thenumbers
of deaths in 2006 and 2009, respectively.

Fig. 5 shows that our proposedmodel has the narrowest
95% prediction interval, being about one third of that
of PIAMOD. In Fig. 5(d), the Bayesian state space has
the widest prediction interval, because the parameter of
the Poisson distribution is assumed to follow a random
walk. This is consistent with the finding of Schmidt and
Pereira (2011). All of these results emphasize that it is
very important to consider both covariates andunobserved
heterogeneity for survival analysis.

5. Implications

We divide the subjects into eighteen groups, character-
ized by race (white, black, and other race), sex (male and fe-
male), and age (50s, 60s, and 70s). We begin by estimating
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(a) Proposed model. (b) Damped trend exponential smoothing. (c) Joinpoint.

(d) Bayesian state-space. (e) PIAMOD.

Fig. 5. 95% prediction intervals of annual lung and bronchus cancer deaths for 2006–2011.
the effect of the diagnosis year on the survival time for each
group. The estimation results for the individual groups are
not consistent with those from the whole data set; as can
be seen in Table 4, not all groups show significant diag-
nosis year effects. Interestingly, there are hardly any diag-
nosis year effects for groups 7 to 18. This means that, for
blacks and other subjects, there are no differences in sur-
vival times between subjectswhowere diagnosed recently
and those diagnosed a long time ago. This result suggests
that advances in medical technology have only influenced
the survival times ofwhite subjectswho belong to groups 1
to 6. In addition, there are also differences within these six
groups. In the case of group 1, white male subjects in their
fifties, there are significant diagnosis year effects just until
1976. On the other hand, groups 2 and 3, white male sub-
jects in their sixties and seventies, show significant effects
until 2001 and 1998, respectively. The aging of populations
could be one explanation for this phenomenon.

Next, we derive the probability of surviving more than
t (t = 1, 2, 3) years for the subjects in each group who are
diagnosed in the latest year that we can observe. Suppose
that Tg is a randomvariable representing the survival times
of group g(g = 1, 2, . . . , 18). From Eq. (6), their survival
probabilities are computed as:

S

t|cg ,γg ,αg ,βg


=

 βgβg + tcg λ1g

αg

, (10)

where αg and βg are the estimated shape and rate
parameters of the gamma distribution in each group,
andcg is the estimated shape parameter of the Weibull
distribution. λ1g is defined as


1/Ng

Ng
i=1 exp


xTiγg


,

where Ng is the size of group g and γg is an estimated
vector of the regression parameters. Fig. 6 shows the
probabilities of surviving for more than 1, 2, and 3 years
for each group. Not only do we see that white subjects
are likely to survive longer than black subjects, we also
find that female subjects are likely to survive longer than
male subjects. Furthermore, it is observed that, overall,
older subjects have shorter survival times. These results
are consistent with the estimation results in Table 2.

6. Concluding remarks

In this paper, we propose a Weibull mixture model
with individual covariates and unobserved heterogene-
ity in order to examine the effects of demographic
variables on individual survival times, and to predict the
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Fig. 6. Probabilities of surviving for more than 1, 2, and 3 years for each group. Note. The survival probabilities are calculated from 2011.
annual number of cancer deaths by adopting a bottom-up
strategy. A comparison of our results with those from the
four benchmarks – the damped trend exponential smooth-
ing method, the joinpoint regression model, a Bayesian
state space model, and PIAMOD – reveals that our pro-
posed model performs best for predicting annual numbers
of cancer deaths. Furthermore, by segmenting the patients
based on age, sex, and race, we are able to specify the
differences between groups, and assess the group-specific
survival probabilities within a given period. Our results
show that older, female, and white patients survive signif-
icantly longer than younger, male, and black patients, re-
spectively. Also, patients diagnosed in recent years survive
significantly longer than those diagnosed a long time ago.

Despite the demonstrated predictive performance of
our proposed model, this study has two limitations. First,
whenpredicting the annual number of deaths,we assumed
that the incidence of out-of-sample subjects, including
covariates, is known. If we did not allow our model to
use these data, the prediction accuracy would decrease.
Second, unlike the benchmarks, our model requires a great
deal of data, including individual information. Though
individual data are often highly accessible in developed
countries, such might not be the case in some developing
countries. In such countries, the applicability of our model
is restricted. However, as Parkin (2006) mentioned, cancer
registration has come to be the norm over the last 60
years, and it seems reasonable to expect future expansion
in both the geographic coverage and the scope of work.
The exponential growth observed in computing powerwill
also make our model more efficient in dealing with large
amounts of data.

Nevertheless, our study is distinctive in its adoption of
a bottom-up strategy for predicting aggregate-level units.
This differs from the method of predicting the number of
deaths using only a time series model, as our proposed
model shows how aggregate numbers can be obtained
from individual-level units. Since we made use of a larger
amount of individual information, our model enables us
not only to specify the differences between groups based
on age, sex, and race, but also to obtainmore precise results
than are possible when using the other benchmarks. We
believe that our study can shed light on important issues
in both the public and private sectors. For governments, it
maybebeneficial in enabling health andwelfare budgets to
be set in a more precise way. By utilizing predictions such
as the four-year-ahead annual numbers of cancer deaths,
governments will be able to hedge financial risks. With
regard to the private sector, our segmentation results can
provide guidance to insurance firms, allowing them both
to target existing customers more efficiently and to attract
new customers by supplying customized cancer insurance
products.
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