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Cricket reduces the number of parameters required dramatically, produces stable and intuitive
forecast probabilities, and has a minimal effect on the explanatory power. Cross-validation
techniques are used to identify the variables to be included in the model. We demonstrate
the use of our model using two matches as examples, and compare the match result
probabilities generated using our model with those from the betting market. The forecasts
are similar quantitatively, a result that we take to be evidence that our modelling approach
is appropriate.
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1. Introduction

Unlike soccer, American football and tennis, relatively
little work has been published on forecasting in cricket.
This seems especially strange given that there are known to
be huge betting markets for cricket. The work that has been
done on forecasting in cricket has largely been concerned
with pre-match forecasting. However, in recent times, the
growth in the popularity of in-play betting in all sports,
where punters place bets during a game (or match), has
meant that models that enable forecasts to be made as the
game progresses are in high demand. Cricket is a sport that
lends itself particularly to in-play betting: unlike soccer,
for example, the discrete nature of the game means that
bookmakers and punters alike have ample opportunities to
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be active in markets during the game, and as such, cricket
attracts extremely large in-play betting volumes. For ex-
ample, the total amount bet during a typical major One-
Day International (ODI) involving Pakistan or India is in
the order of $1bn (according to a personal communication
from a betting industry insider in 2013). In this paper, we
present an in-play forecasting model for One-Day Interna-
tional cricket, and use the model to estimate the probabil-
ity of victory for a team at any moment during a game.

Of course, betting is not the only use of a forecasting
model. A forecasting model like that presented here could
be used for several purposes. Team coaches may use
in-play forecasting probabilities to assess the merits of
various different strategies or to analyse player and team
performances. In addition, the media could use the model
to identify key moments in a match and enhance the
television coverage further.

Previous work in One-day International (ODI) cricket
has focussed largely on the problem of resetting targets
in limited overs cricket following interruptions to play.
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The most well-known work in this area is of course
that of Duckworth and Lewis (1998, 2004). In fact, the
Duckworth-Lewis method, as their work has been named,
can be used as a forecasting tool itself, as it essentially
predicts the number of runs that are still to be scored in
an innings, given the number of balls remaining and the
number of wickets lost so far. Several other authors have
developed alternatives to the Duckworth-Lewis method,
and these can also be used for forecasting. For example,
Preston and Thomas (2002) use dynamic programming to
estimate the probabilities of different match outcomes at
any stage of the innings, and use this forecasting model to
revise targets in interrupted ODI cricket matches. Similarly,
Carter and Guthrie (2004) investigate the distribution of
the runs remaining to be scored in an innings at any given
stage of the innings. They then use this distribution to
estimate match outcome probabilities, and go on to use
these probabilities to revise targets in interrupted limited
overs cricket matches.

Some work has been done focussing directly on the
problem of forecasting. Brooks, Faff, and Sokulsky (2002)
estimate test match outcome probabilities using an or-
dered response model. Similarly, for test cricket, Scarf and
Shi (2005) forecast match outcome probabilities using a
multinomial logistic regression model, with the specific
aim of helping team management to decide on the most ap-
propriate time to declare in an innings. Following on from
Scarf and Shi (2005), Akhtar and Scarf (2012) present a
multinomial logistic regression based model for forecast-
ing the results of Test matches in which predictions are
made after each session of play. They estimate 15 separate
multinomial logistic models that could be used at 15 par-
ticular stages of the match (at the end/start of each ses-
sion). Such an approach allows for the covariates and their
estimated coefficients to vary, session by session. The work
that is related most closely to ours is that of Bailey and
Clarke (2006), who develop a forecasting model for pre-
dicting the margin of victory in limited overs cricket before
the match begins, then, with the help of the Duckworth and
Lewis (1998) method, update these predictions whilst the
game is in progress. However, our methodology differs fun-
damentally from theirs, in that the effect of a covariate on
the match outcome is allowed to evolve as the match pro-
gresses.

In this paper, we present an in-play forecasting model
for ODI cricket. The model produces forecasts of the
probabilities of different match outcomes (win or lose),
both once the match has begun, and at each stage through
the match as it progresses. The model that we adopt is
a dynamic logistic regression (DLR) model, in that the
parameters (the coefficients of covariates) are allowed to
evolve smoothly as the match progresses. To the best of
our knowledge, no such approach to the production of
forecasts of the outcome while the game is in progress
exists in the literature.

Before presenting our model, we first describe the data
that we obtained and the possible covariates that will
be experimented with in the modelling. Transformations
of the independent variables and the motivations for
these transformations are also given. In Section 3, we
describe the procedure for developing our dynamic logistic

regression model. In Section 4, we present the final model
specification and results. In Section 5, we present model
fit diagnostics and use two example matches to compare
our predicted probabilities with those of the betting
market. Section 6 concludes with some closing remarks
and discusses potential future work.

2. Data and covariates

We obtained ball-by-ball data for ODI matches played
between January 2004 and February 2010. The data were
collected from the commentary logs on the Espncricinfo
website. We did not include matches for which the data
were incomplete, or in which one of the teams had played
fewer than five matches prior to the time of play, or in
which play was interrupted. In total, we fit our model to
data from 606 ODI matches.

The data set includes several variables that could po-
tentially be used as covariates. We divide these variables
into two categories: pre-match covariates, which are mea-
sured prior to the start of the match, and in-play covariates,
which are measured only during play. In the next two sub-
sections, we explain how and why we experiment with
certain variables and functions of variables as covariates in
our models.

2.1. Pre-match covariates

Pre-match covariates are variables that can be mea-
sured prior to the start of the game. There are a number
of factors that might affect the probability of a match out-
come before the play has commenced, for example, home
advantage, winning the toss to decide whether to bat first
or second, a day-night effect, a team’s quality, and a team’s
current form.

In any format of cricket, it is commonly believed that
teams who are playing at home experience some sort
of advantage. Amongst other possible explanations, in
cricket, this is most likely to be because the home team
will typically have played many matches at the venue, and
therefore will be more familiar with the conditions.

Similarly, winning the toss in cricket is also considered
to be an advantage to a team. However, in the literature,
the effect of a binary covariate toss on the match outcome
has not previously attracted statistical significance (see
for example Akhtar & Scarf, 2012, and Bailey & Clarke,
2006). Nonetheless, we experimented with including a
toss variable. Our results on a toss variable agreed with
previous findings. However, an interaction term with
the binary variable day-night (dn) was found to be
statistically significant. In addition to experimenting with
an interaction effect between the variables toss and dn,
denoted by dnt, we also experimented with including all
other two-factor interaction effects between categorical
variables, but none of these were found to be statistically
significant.

In regard to the past performances of the teams, we use
the difference between the ICC official ODI ratings (rd) for
the two teams at the time of the match. The ICC official
ratings reflect a team’s performance based on the matches
they have played over the last three years. These ratings
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are calculated as the total number of points that a team
has earned divided by the total number of matches that
they have played over the last three years. A team earns
points at the end of each match. Broadly speaking, these
points depend on the result of the match and the strength
of the opposition. For example, a team can get more points
if they win against a higher ranked opposition team (for
more details, see the ICC official website).

The ICC official ratings go some way toward measuring
a team’s quality, but do not indicate a team'’s current form
explicitly. For example, in spite of having a low ICC rating
of 62 at the time of the ICC Asia Cup 2012 tournament,
Bangladesh beat India (with a rating of 117) and Sri Lanka
(with arating of 113), and narrowly lost in the final against
Pakistan. To accommodate such streaks of ‘good-form’, we
calculate a team’s current form as a weighted mean of
match outcomes over their last five games. Specifically, let
y: = 1if a team won the match played t matches ago, and
0 otherwise. We then define the team’s current form as

5

2 w(t, 0y
t=1

form = — (1)
> w(t, 0)

t=1
where w(t,6) = (1—0)""'and0 <6 < 1.

The current form of a team, as defined above, ranges be-
tween zero and one. A team will have form = 1ifthey have
won their most recent five matches and form = 0 if none
of these matches were won. The function w(t, 6) is a dis-
counting factor, so that the most recent match receives the
highest weight. This implies that, for a given 6, two teams
with the same numbers of wins in the last five matches
could have different values of the form, depending on the
order of their wins. The covariate in the model is the dif-
ference in form between the two teams, fd. The parameter
6 is estimated when fitting the model, as described later,
and is found to be 0.2041.

2.2. In-play covariates

The in-play covariates describe the changing state of
play (or the position of a team) with respect to the pro-
gression of an innings. Fundamentally, the current ‘state’ of
a cricket match can be summarised by three pieces of in-
formation: first, the number of runs scored (or the number
of runs required to win in the second innings), second, the
number of wickets lost, and third, the number of balls, de-
noted by k (or overs, denoted by u = k/6) remaining. The
state of play changes with each ball of the game, and the
relationship between runs, wickets and balls remaining is
not a simple one to describe.

We incorporate runs into our model using two vari-
ables, one for each innings. In the first innings, runs are
described by the run rate (runs per over), which we denote
by rpo. In the second innings, on the other hand, what mat-
ters is the number of runs per over required for the batting
team to win the match. We denote this variable by rrpo.

To incorporate information on the number of wickets
that a team has lost, we transform the ‘number of wickets
lost’ into wicket resources lost (wrl). One could simply use

the ‘number of wickets lost’, but this does not acknowledge
the unequal values of wickets in cricket. Indeed, this non-
uniformity is the subject of much of the literature on
cricket when targets have to be reset. In accordance with
this literature, we believe that the value of losing a wicket
should depend on which wicket has been lost and when in
the match the wicket was lost. This is partly due to teams
putting higher quality batsmen at the top of the order,
and partly because the relative importance of each wicket
partnership changes as an innings progresses. For example,
in a case where there are five overs left, losing the next
wicket should have a larger impact on the team’s expected
remaining runs (and therefore on its win probability) if the
batting team has already lost eight wickets than if it has
lost only one wicket. In such situations, we believe that it
is clear that the resource value of losing the next wicket
will have a different value depending upon which wicket
is lost and at what stage of the innings. We define wicket
resources lost, wrl, as the proportion of the expected runs
value lost in the remainder of the innings for the loss of w
wickets, as compared to the expected remaining runs with
no wickets lost in the remainder of the innings of u overs.
This can be written as

. Z(u,0) —Z(u, w)
- Z(u, 0)

where Z (u, w) is the expected runs in the remainder of the
innings with u overs to go and w wickets lost. Duckworth
and Lewis (1998) model the expected remaining runs, Z,
as a function of u and w, as a part of their method for
resetting targets in interrupted matches. McHale and Asif
(2013) extend this work and propose an alternative model
for the Duckworth-Lewis method. We use the McHale-Asif
version of the model for the expected remaining runs as a
function of u and w.

As defined above, wrl is a continuous variable ranging
from zero to one. We multiply it by 10 to give it an intuitive
meaning, as there are ten wickets available to each team
in cricket. Further, we note that the relationship between
wrl and w is dynamic with respect to the progression
of the innings. Fig. 1 demonstrates how the relationship
between wrl and w evolves (from top to bottom) as an
innings progresses. It can be seen that the relationship
between wrl and w is more linear in the early stages of
an innings (for example, 50 overs remaining) than for the
later stages of the innings. This implies that the top order
wicket partnerships have smaller wicket resources values
than lower order partnerships during the later stages of the
innings. This is somewhat intuitive, as a common strategy
in limited overs ODI cricket is to play defensively in the
early stages in order to save wickets in preparation for
more aggressive play in the later stages of the innings.

The Duckworth-Lewis model for Z can be used to es-
timate the expected remaining runs, for any u > 0 and
w = 0,1,...,9. One interesting example of this is to
suppose that there is an infinite number of overs remain-
ing, thus approximating a test match innings. The asymp-
totic behaviour of the Duckworth-Lewis model suggests
that the expected number of runs in this case, Z(o0, 0),
is around 290. The modified Duckworth-Lewis model of
McHale and Asif (2013) suggests this is around 340.

wrl , (2)
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Fig. 1. Plot of the relationship between wickets lost (w) and wicket resources lost (wrl) for each u = 50 (top line), 40, ..., 10, 5 (bottom line) overs

remaining.

Table 1

Variable names and definitions.

Variable Description

home A binary variable taking the value 1 if the reference team is playing at home, otherwise 0.

away A binary variable taking the value 1 if the reference team is playing at an away venue,
otherwise 0.

dn A binary variable taking the value 1 if the match is a day-night game, otherwise 0.

dnt dn x toss, an interaction term between the day-night and toss variables.

fd A continuous variable, ranging from —100% to 100%, representing the percentage difference
between the forms of the reference and opposition teams.

rd The difference in the ICC official ratings of the reference and opposition teams, immediately
prior to the match.

toss A binary variable taking the value 1 if the batting team wins the toss.

w The number of wickets lost.

wrl Wicket resources lost: a continuous positive increasing function, ranging from 0 to 10, of
two variables: w, wickets lost, and u, overs remaining.

po Runs per over scored by the reference team.

rrpo Runs per over required in order for the reference team to win the match.

Table 1 gives the variable names and definitions used in
the modelling process.

2.3. Data structure for modelling

To facilitate the modelling procedure, we organize the
complete ball-by-ball data into a series of data matrices
(one for each ball of each innings, first or second). Letting
k represent the number of balls remaining in the innings
and n(k) the number of observations for which there were
k balls remaining, each data matrix contains the observed
n(k) x 1 vector of response variables, y,, and a matrix
of independent variables, denoted by Xj. For ODI cricket,
there are K = 300 balls in each innings, so that the data
to be used in our dynamic logistic regression model, for
one inning, are organized into 300 data matrices. Table 2
is an extract of the data set for k = 150 balls remaining (or
u = 25 overs left) in the first innings of ODI.

In our data, we note that matrices may not all have
the same number of rows (sample size, n(k)), because
not all innings necessarily end with all of the pre-allotted
overs having been played. Fig. 2 shows a plot of how the
number of data points, n(k), varies with overs remaining.
Note that the x-axes for each of the plots in Fig. 2, and
in all figures in which the x-axis represents the stage of
the innings, are reversed (so that the plot view shows a

match progressing from left to right). Furthermore, cricket
analysts and fans traditionally think in terms of numbers of
‘overs’, and therefore the x-axis is shown in units of overs
remaining.

It is clear from Fig. 2 that the sample sizes decrease
more rapidly for the team batting second than for that
batting first. This is because the second innings can end in
more ways than the first innings: either the batting team
uses all of its wickets or overs (as in the first innings),
or it achieves the runs target. Modelling the distribution
of the number of balls played in an innings might be an
interesting problem to address in future work.

3. A dynamic logistic regression model

We adopt a logistic regression model for estimating
the probability of the batting team winning the match.
However, the model is dynamic, in the sense that the
parameters are allowed to vary as the match progresses.
We develop two different forecasting models, one for each
innings of ODI cricket. The reason why we use a separate
model for each innings is twofold: first, the batting team
(reference team) in each innings plays with a different
strategy. For example, Preston and Thomas (2002) argue
that the team batting in the first innings plays with the aim
of scoring as many runs as possible, in order to maximise
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Table 2

Extract of the data matrix for the first innings, given k = 150 balls remaining. The
‘win’ column forms the y; response vector, and the remaining columns (with an added
column of ones for the intercept term) comprise the X data matrix. Each row represents

a different match.

Win  toss home away dn rd w o wrl po
0 0 0 1 0 100 14 4 3.320 3.16
1 1 1 0 0 80.96 —1 5 4.402 3.44
1 0 0 1 0 100 5 2 1.454 5.28
1 1 1 0 1 3.05 14 2 1.454 5.12
0 1 0 0 1 13.09 —69 5 4.402 4.40
0 0 0 0 0 —29.75 0 2 1.454 3.96
1 1 1 0 0 —72.58 —-21 1 0.676 4.48
1 1 0 0 1 —29.75 -3 1 0.676 4.16
1 1 0 1 1 —9.28 —7 1 0.676 5.16
1 1 1 0 1 16.71 —6 4 3.320 2.72
1 1 1 0 1 100 57 2 1.454 5.56
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Fig. 2. Sample size (the number of matches, n(k)) for each number of overs remaining for the team batting (a) first, and (b) second.

its chances of winning. The team batting in the second
innings, on the other hand, plays with the aim of achieving
its target before either all of its wickets have been lost or
all of its pre-allotted overs have been played. Second, some
covariates, for example the number of runs required for
each of the remaining overs (rrpo) in order to win, exist
only in the second innings.

The dynamic nature of our model arises out of an
automated iterative process which merges separate and
independent logistic regression models.

Let py be the probability that the team batting, with k
balls remaining (k = K, K — 1, ..., 1), will win the match.
For ODI cricket, K = 300. For k balls remaining, we use a
logit link function, so that

logit(p) = Xy By (3)

where X; is a matrix of M 4+ 1 columns (M covariates
plus a vector of ones) and n(k) rows, and B, is a vector of
regression parameters.

Suppose that we fit K logistic models for each innings;
then, the estimated coefficient on the m™ covariate, ;23m(k),
would be different for each value of k. Indeed, one might
expect the values of the estimated coefficients to vary
deterministically with k. For example, we will see that the
effect of the rating difference covariate, rd, on the outcome
of the match decreases (in terms of the magnitude of the
estimated coefficient) as the end of the match approaches.
It is this ‘time-varying’ nature of the regression coefficients
that we wish to mimic. To do this, we add another level
of estimation to the logistic model, so that the series of

estimated coefficients, B, (k), varies smoothly with k. In
the next section, we look at the approach that we use to
do this.

The seemingly obvious alternative to our dynamic
logistic regression model would be to fit a single model
with an additional covariate representing the number
of balls remaining. However, the value of the response
variable (match outcome) with respect to the ball-by-
ball data in a specific innings of a specific match remains
unchanged, whilst the in-play covariates change after
each ball, meaning that the independence assumption of
observations is violated. Fitting a series of K independent
models is appealing, in that the sample of matches over
which the regression coefficients are estimated are played
independently.

3.1. Smoothing the series of estimated coefficients on covari-
ates

After fitting a series of independent logistic models, the
next step in building our dynamic logistic regression model
is to smooth the estimated coefficients on each covariate.

Let the coefficient on the m™ (m = 0,1,...,M)
covariate, estimated when there are k balls remaining, be
denoted by 3m (k). We approximate the series Bm (k) by a
smooth function, so that

B (k) = fin(k, o),

where o, is a vector of parameters and f;, is some function
that must be identified for each of the M covariates.
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We note that the identification of the functional form
of f, is somewhat subjective, as it depends on a visual
inspection of the scatterplot of the series of parameter
estimates ,Bm (k) for each m, and a subsequent testing of
the statistical significance of the series of estimates. For
example, polynomials of varying degrees proved to be
appropriate in many cases, however, one can also use
splines or other functions.

Once f;,;, has been chosen, we estimate the parameters
o, by minimising a weighted sum of squares, to account
for the heterogeneity present in the Bm(k). The weighted
sum of squares that we minimise is given by

K-1 /7 2
Bm(k) — fn (k, otm)
WSSE(m) = _ ], 4
m k;< s.e.(Bm(k)) ) @

where s.e.(,Bm(k)) is the standard error of the estimated
coefficient.

After fitting a series of 299 logistic models, each with M
covariates and an intercept term, we fit the model f; (k, a1)
to the series of estimates: ,81(299), 31(298), .. .,31(1), by
minimising the WSSE in Eq. (4) for the first covariate.

We note that the M 4+ 1 parameters are not estimated
independently for any k-balls-remaining logistic model.
Therefore, the remaining M estimated parameters, for
each k, must be updated prior to smoothing the next
series of estimated coefficients. Therefore, after fitting the
smoothing function for the first coefficient on covariate,
we refit the series of independent logistic models, but
under the parameter constraint B;(k) = fi(k, &;). After
updating the estimates of the remaining M parameters,
for each k, we then smooth the next series of estimates,
B2(299), B2(298), ..., B2(1),inasimilar way. This process
is continued until we have smoothed the estimated
intercept terms, B¢(299), B0(298), ..., Bo(1). We then
follow the same procedure for the second innings model.

The method for choosing which covariates should be in-
cluded in the model remains to be discussed. To do this,
prior to fitting the series of K independent logistic models
for an innings, we identify a best subset of candidate co-
variates that might be included in our DLR model. There
are various methods available for these purposes, such
as the Akaike information criterion, AIC (Sakamoto, Ishig-
uro, & Kitagawa, 1986); the Bayesian information crite-
rion, BIC (Akaike, 1977, 1978; Schwarz, 1978); Delete-d
Cross-Validation (CVd) with random subsamples of size
d = n(1 — 1/(In(n) — 1)) (Shao, 1997); and K-fold Cross
Validation, CVhtm (Hastie, Tibshirani, & Friedman, 2009).
Each of these methods has both advantages and disad-
vantages. Since our aim is to develop a model with the
maximum forecasting power, we use the Delete-d Cross-
Validation method. However, if the aim of the exercise had
been to examine how the effects of the different covariates
vary with the progression of the innings, then using the AIC
would have resulted in a model with more covariates. In
Section 4.1, we explain how the best subset of covariates
can be obtained using the CVd method; first, though, we
discuss some of the advantages of our DLR modelling ap-
proach.

3.2. Advantages of the proposed dynamic logistic regression
model

To allow the effect of each covariate to depend on the
stage of the innings, one could simply use the series of
independent separate logistic regression models (one for
each ball of an innings), and forecast the probabilities
in a standard way. However, one consequence of fitting
separate models is that there is an inherent instability in
the predicted probabilities of match outcomes that result
from the more volatile series of parameter estimates of
each covariate. Our model does not have this problem.

A second advantage is that the number of parameters
required for forecasting the match outcome in-play is
reduced dramatically. For example, if M + 1 parameters
are to be estimated for each k, then we need (M + 1) x 299
estimates to forecast the match outcome at any stage of the
first innings. Admittedly, this large number of parameters
is not really an issue during the first innings or in the
early part of the second innings, because these estimates
are being produced using large sample sizes. However,
it becomes problematic in the later stages of the second
innings.

The final advantage that we highlight is that, by using
a fitted functional value, f;; (&), the resulting effect of the
covariate on the predicted probability is more stable, and
possibly also more precise, as it depends not only on the
data matrix associated with k balls remaining, but also on
all of the data for the innings. Again, this is a particular
advantage in the final stages of the second innings, where
the estimates might have a higher variance due to the small
sample sizes.

4. Using the DLR to forecast the results of ODI cricket
matches

We develop two dynamic logistic regression models,
one for each innings. When building the model, the first
step is to decide on the best subset of covariates for each
innings. The second step is to fit a series of independent
logistic models. In Section 4.2, we explain how the series
of independent logistic models is reduced to a single DLR
model. Finally, model diagnostic measures are used to
validate the model. These steps are demonstrated in the
subsequent sections.

4.1. Choosing which covariates to include in the model

To obtain a series of ‘best’ independent logistic models
during the first innings, we run the bestglm() function in
R (R Core Team, 2012) for each k = 299, ..., 1, using
all possible covariates. The list of candidate covariates
for inclusion in our DLR model is: home, away, toss, dn
(day-night), fd (form difference), rd (rating difference),
wrl (wicket resources lost), rpo (runs per over), and all
possible two-factor interactions between the categorical
variables, for example dnt (dn x toss), or an interaction term
between wrl and rpo. For the second innings, the covariate
rpo is replaced with rrpo, required runs per over. Table 3
shows the frequency of appearance of each covariate in the
best logistic model for the first and second innings. Based
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Table 3
Number of times (or balls) that each covariate appeared in the best logistic
model in each innings. Cross-Validation Delete-d (CVd) model selection was
used to decide on the inclusion of the covariates.
home dnt fd rd wrl rpo Tpo
First innings 0 60 165 299 286 294 NA
Second innings 0 0 0 53 257 NA 299
a g b
8
o
[Te)
o =
& 3 =
wn
o
S -
o

50 40 30 20 10 0
u, overs left

u, overs left

u, overs left

Fig. 3. The estimated coefficients (points) for the series of 299 second innings logistic regression models with covariates rd, wrl, and rrpo, together with

the fitted curves (lines).

on the Cross-Validation Delete-d method, only five of the
covariates identified appear at least once in the series of
the 299 best logistic models. These covariates are dnt, fd,
rd, wrl, and rpo. It is interesting, and somewhat intuitive,
that the statistical significance of the pre-match covariates
generally decreases as the innings progresses. For example,
dnt is significant only for the first ten overs of the first
innings.

Perhaps the most surprising result that emerges from
Table 3 is that the home variable is not included in any of
the best logistic models using the CVd method. Even when
using the AIC for covariate selection, it appears only in the
early stages of the first innings. We speculate that the effect
of the home advantage may be absorbed into the in-play
covariates very early on in a game, as the away players
adjust quickly to their unfamiliar surroundings. Further
research regarding this point is beyond the scope of this
paper.

Upon inspection of Table 3, we chose to include five
variables in the DLR model for the first innings, namely dnt,
fd, rd, wrl and rpo, and three variables in the DLR model for
the second innings, namely rd, wrl and rrpo.

4.2. Smoothing the series of estimated coefficients

Once the best subset of covariates has been finalized,
we use an iterative process to develop a dynamic logistic
regression model for each innings. To present the process,
we will concentrate on the second innings, as it has fewer
covariates.

We start by fitting a series of 299 independent logistic
models, each with the covariates rd, wrl and rrpo, to
the associated series of 299 data matrices related to the
second innings. We then smooth the series of estimated
coefficients on rd using an appropriate smoothing curve
based on the weighted least squares method described in
Eq. (4). For example, Fig. 3(a) shows the series of estimated

coefficients on rd and the fitted smoothing function for the
299 independent logistic models. It can be seen clearly that
there is a strong deterministic evolution of the parameter
value associated with the rd covariate.

One complication in the case of the rd covariate is that
it is not statistically significant towards the end of the
innings. In this case, we adopt a curve that decays towards
zero, mimicking the behaviour of the series of parameter
estimates. Following a visual inspection of the scatterplot
of the series of estimated coefficients on rd (Fig. 3(a)), we
chose to fit a gamma-type function that is a positive non-
decreasing function of u, given by
gw) = c(ug — ) Te7 M0V, (5)
where ug > 50,a > 1,b > 0and c > 0 are the parameters
to be estimated.

After smoothing the series of estimated coefficients on
rd, we update the remaining estimates (the coefficients
on rrpo and wrl and the intercept term) by re-fitting the
logistic models for each k under the single parameter
constraint related to rd. The parameter constraint is to
set the value equal to that from the fitted gamma-type
function. After updating the estimates, we smooth the
estimated coefficients on the next covariate wrl. For this
covariate, after a visual inspection, we fit a weighted
polynomial on the updated estimates, and again fit a
series of 299 logistic models under the two-parameter
constraint (on rd and wrl), to obtain updated estimates
for the coefficients on rrpo and the intercept terms. We
continue the process of refitting and smoothing until all
of the covariates (including the intercept term) have been
smoothed. Fig. 3 provides a graphical representation of
smoothing the estimates using our proposed sequential
procedure.

In our sequential process of smoothing the estimates,
we note that smoothing the estimated coefficients on a
covariate has approximately no effect on the remaining
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Table 4

Model predicted win probabilities and the proportions of matches resulting in a win. The figures in
parentheses show the numbers of matches in each category. For example, there were 56 matches with
a predicted probability of victory of between 0 and 0.1 when there were 45 overs remaining of the
first innings. Of these 56 matches, 0.09 x 56 = 5 were won.

Predicted Overs remaining
probability First innings Second innings

45 25 5 45 25 5
0-0.1 0.09 (56) 0.04 (69) 0.04 (48) 0.06 (89) 0.04(161) 0.03(126)
0.1-0.2 0.06 (48) 0.19(67) 0.23(43) 0.12(51) 0.07 (43) 0.07 (14)
0.2-0.3 0.31(67) 0.18 (60) 0.16 (49) 0.27(51) 0.20(25) 0.33(9)
0.3-0.4 0.30(77) 0.35(62) 0.28 (57) 0.26 (54) 0.37(27) 0.71(7)
0.4-0.5 0.48 (84) 0.46 (59) 0.47 0.53(36) 0.59(22) 0.30(10)
0.5-0.6 0.67 (82) 0.59 (59) 0.57 (44) 0.59(51) 0.61(23) 0.46 (13)
0.6-0.7 0.61(62) 0.58 (66) 0.69 (75) 0.63 (46) 0.66 (32) 0.75(8)
0.7-0.8 0.64 (58) 0.81(69) 0.73(66) 0.74 (43) 0.75 (24) 0.46 (13)
0.8-0.9 0.89(37) 0.85(47) 0.88(57) 0.83(60) 0.86 (35) 0.83(24)
0.9-0.10 0.94(35) 096(45) 095(56) 098(124) 0.96(177)  0.98(99)

estimated coefficients. For example, we compare the
estimated coefficients on rrpo before and after smoothing
the estimated coefficients on rd, and find that such
smoothing has no statistically significant effect on the
estimated coefficients on rrpo. The same was found for
the covariate wrl. One consequence of this property is
that the order in which the covariates are smoothed has
little effect on the final model predictions. However, we
note that if the estimated intercept terms are smoothed
before the estimated coefficients then there is an adverse
‘knock-on’ effect on the estimated coefficients on the
covariates, and hence on the model predictions. Thus, we
recommend smoothing the intercept terms once all of the
estimated coefficients have been smoothed. An alternative
strategy would be to smooth the estimated parameters in
all possible orders and choose the one with the maximum
forecasting accuracy. We have developed purpose-written
R code to automate this process.

The number of parameters in our final DLR model for
the second innings is dramatically lower than that for the
independent models. Here, we reduce the 299 models with
a total of 4 x 299 = 1196 parameters to a single dynamic
logistic regression model with just 25 parameters. It is also
worth noting the goodness-of-fit of the smoothing curves.
The R? values are 0.987, 0.8711, 0.990, and 0.999 for the
rd, wrl, rrpo, and intercept terms, respectively. Clearly, this
DLR model is more attractive than the less parsimonious
alternative.

For the first innings, we follow the same procedure as
was used for the second innings, and develop a DLR model
with five covariates: dnt, fd, rd, wrl, and rpo.

5. Testing the model

A first step in assessing our model validity is to
compare the predicted probabilities with those observed.
For different categories of the predicted probability of
winning from our model, Table 4 shows the observed
proportion of matches that finish in a victory. In general,
the model-predicted probabilities and the corresponding
empirical probabilities are aligned well, in that, reading
down the columns, there is a monotonic increase in the
observed proportion of wins for each increase in predicted

probability band. There are some anomalies, but these are
small, or occur when the sample of matches is (very) small.

We present two further tests of our model. First, we use
leave-one-out cross-validation to examine the proportions
of match results that were predicted correctly by our
model as the matches progress, and second, we compare
the model predictions to those of the betting market.

5.1. Out-of-sample cross-validation

We now examine the proportions of correct out-of-
sample predictions made by the two dynamic logistic re-
gression models (one for the first innings and one for the
second innings) using the leave-one-out cross-validation
(LOOCV) method. We adopt an admittedly simple predic-
tion rule which predicts the winning team to be the one
with the highest probability of winning the match. To re-
duce the computation time for LOOCV, we consider over-
by-over data rather than ball-by-ball data. That is, we fit a
series of just 49 independent logistic models (rather than
299 logistic models), smooth the estimates, and finally
produce over-by-over estimated outcomes for the out-of-
sample match data. Fig. 4 shows the proportion of correct
predictions for each over of both innings.

The model’s predictive power is high from the start
of the game. For example, just ten overs into the first
innings, the model predicts the result correctly in over
72% of matches (see Fig. 4(a)). Interestingly, the model’s
predictive power increases from the start of the innings (as
the in-play covariates gather information) until around 18
overs remain. We believe that this is because the matches
that are easiest to predict will be ones in which the fifty
overs allocated are not completed by the batting side
because the team was bowled out (lost all of its wickets). In
these matches, the team batting second will tend to have
a big advantage, and therefore the prediction is easier to
make. For matches when the team batting first did use its
allocated fifty overs, predicting the winner is undoubtedly
more difficult. Hence, the predictive power decreases over
about the last 18 overs.

The over-by-over forecasting accuracy of the model
during the second innings is even greater, with the
proportion of results predicted correctly rising to over 82%
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Fig. 4. Leave-one-out cross-validation: proportion of ‘correct’ forecasts made using DLR models for (a) the first innings, and (b) the second innings.
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Fig. 5. Forecast probabilities of England winning versus South Africa for each ball of the game in the (a) first innings and (b) second innings. The solid lines
represent the implied bookmaker probabilities, whilst the dotted lines represent the forecast probabilities from our DLR model. Circles indicate the loss of

a wicket.

after ten overs. Fig. 4(b) shows a pattern similar to that
of the first innings model, whereby the predictive power
increases throughout the innings, only to fall during the
last few balls of the match. Our explanation for this is that
the matches that reach the final few balls are the ones in
which the outcome is particularly uncertain.

5.2. Comparison with the betting market

Perhaps the sternest test of a forecasting model in sport
is to compare it to the betting market. Numerous studies
have shown that betting markets are generally efficient, in
that it is not possible to beat the market systematically;
see for example Sauer (1998). Here, we compare the
probability forecasts generated using our dynamic logistic
regression models to those implied by the in-play odds
from the betting market (http://www.bet365.com) for two
ODI matches: the second ODI match of the NatWest series
between England and South Africa, played at the Rose Bowl
ground in Southampton on August 28th 2012, and the
second ODI of the series between Pakistan and Australia
in UAE on August 31st 2012. This exercise serves as a good
out-of-sample test of our model, as the data on these two
matches were not used either when fitting the model or
during the cross validation of model selection.

For our first example, South Africa won the toss and
elected to bat first; they set England a target of 287, and

went on to win the match. Fig. 5 shows the predicted
probabilities of England winning the match during the first
and second innings.

In general, our model forecasts follow a path similar
to that of the bookmaker’s forecasts, indicating that our
model is performing as one would hope. From around the
time when there were 40 overs remaining in the second
innings, our model appears to have been ‘outperforming’
the betting market, in that it is on the correct side of the
odds (predicting a defeat for England). Of course, to test the
model properly one would need to have a large sample of
games and test the model using some betting strategy.

Fig. 6 shows the estimated probabilities for our second
example, Pakistan versus Australia. Australia won the
toss and decided to bat first, setting a target of 249 for
Pakistan to win. Pakistan then went on to win the game
by seven wickets. As for the forecast probabilities for
our first example, it is a testament to our model that
the two predictions follow similar trajectories. In fact,
it is noticeable in this example that the model suggests
Pakistan’s win probability to be higher than that implied
by the bookmaker’s odds from around midway through the
first innings.

Although we only look at two matches, we believe that
there is sufficient evidence to suggest that our model is
performing well, and that events that occur during a match
(like a wicket, or a period of high scoring by the batting
team) are incorporated into the model appropriately. In
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future, it would be interesting to experiment with our
model as a tool for betting on large numbers of games, in
order to form the basis for a more complete test of market
efficiency.

6. Conclusions

In this paper, we present an in-play model for forecast-
ing the winner of One-Day International cricket matches
at any point through the game. The modelling approach
that we take is one in which the estimated coefficients
on covariates are allowed to evolve smoothly as a match
progresses. We call this model a dynamic logistic regres-
sion (DLR) model. Cross-Validation techniques are used for
model identification and the assessment of the forecast ac-
curacy. Furthermore, in two examples, our model produces
forecasts similar to those of the betting market.

Future work could concentrate on placing our dynamic
logistic regression model in a more theoretical framework.
In seeking improvements to the model presented here,
one may wish to adopt an alternative measure of team
strength to the ICC ratings at the time of the game. One
may also wish to incorporate a ‘pitch effect’ to account
for certain pitches that may favour high-scoring or low-
scoring games.

In addition to forecasting, models like the one presented
here could also be used to help inform strategy during
a game, or could be used as a part of probability
preservation methods for resetting targets in interrupted
cricket matches. Finally, our modelling approach could also
be used to develop a ranking system for teams and/or
players in ODI cricket.
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