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a b s t r a c t

Hyndman and Koehler (2006) recommend that the Mean Absolute Scaled Error (MASE)
should become the standard when comparing forecast accuracies. This note supports their
claim by showing that the MASE fits nicely within the standard statistical procedures
initiated by Diebold and Mariano (1995) for testing equal forecast accuracies. Various
other criteria do not fit, as they do not imply the relevant moment properties, and this
is illustrated in some simulation experiments.
© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Consider the case where an analyst has two compet-
ing one-step-ahead forecasts for a time series variable yt ,
namely ŷ1,t and ŷ2,t , for a sample t = 1, 2, . . . , T . The
forecasts have the associated forecast errors ε̂1,t and ε̂2,t ,
respectively. To examine which of the two sets of fore-
casts provides the best accuracy, the analyst can use cri-
teria based on some average or median of loss functions of
the forecast errors. Well-known examples include the root
mean squared error (RMSE) and the median absolute error
(MAE); see Hyndman and Koehler (2006) for an exhaustive
list of criteria, and also Table 1.

As there is always one set of forecasts that scores lower
on some criterion, it seems wise to test whether any ob-
served differences in forecast performances are statisti-
cally significant. To test statistically whether the obtained
values of these criteria are equal, the analyst can rely on
themethodology proposed by Diebold andMariano (1995)
(DM); see also Diebold (2015) for a recent review. This
methodology is based on the loss functions li,t = f (yt , ŷi,t)
for i = 1, 2. Denoting the sample mean loss differential
by d̄12, that is, d̄12 =

1
T

T
1(l1,t − l2,t), and a consistent
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estimate of the standard deviation of d̄12 by σ̂d̄12 , the DM
test for one-step-ahead forecasts is

DM =
d̄12
σ̂d̄12

∼ N(0, 1),

under the null hypothesis of equal forecast accuracy. Even
though Diebold and Mariano (1995, p. 254) claim that this
result holds for any arbitrary function f , it is quite clear that
the function should allow for propermoment conditions in
order to yield the asymptotic normality of the test. In fact,
as will be argued in Section 2 below, many of the functions
that are commonly applied in the forecast literature fail to
qualify as useful functions for the DMmethodology.

This note continues with a brief summary of typical
functions in Section 2, along with a concise discussion of
which of these functions are useful in theDM framework. It
is found that the absolute scaled error (ASE) recommended
by Hyndman and Koehler (2006) does have the favorable
properties, while various other criteria do not. Section 3
reports on limited simulation experiments which support
these insights. The main conclusion of this note is to
confirm that the use of the Mean ASE (MASE) criterion is
recommended.

2. Loss functions of realizations and forecasts

Hyndman andKoehler (2006) provide an exhaustive list
of the loss functions of realizations and forecasts, and a
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Table 1
Various criteria for comparing forecasts and realizations. The references are provided by Hyndman and
Koehler (2006).

In words Loss function Summary statistics

Squares ε̂2
i,t Mean squared error (MSE)

Root MSE (RMSE)
Absolute |ε̂i,t | Mean absolute error (MAE)

Median AE

Absolute scaled
 ε̂i,t

1
T

T
t=2 |yt−yt−1 |

 Mean absolute scaled error (MASE)

Relative to random walk
 ε̂i,t
yt−yt−1

 Mean relative absolute error (MRAE)
Median RAE
Geometric mean RAE

Symmetric absolute percentage 200 |yt−ŷi,t |
|yt+ŷi,t |

Symmetric mean absolute percentage error

Absolute percentage
 100ε̂i,t

yt

 Mean absolute percentage error (MAPE)
Median APE
Root mean squared percentage error
Root median squared percentage error
Fig. 1. Empirical distribution of the DM test statistic, DGP1.
concise summary of them is presented in Table 1 for conve-
nience. Basically, there are six distinct loss functions li,t =

f (yt , ŷi,t) that are commonly used in a variety of criteria.
The squared error and the absolute error have moment

properties that match the assumptions underlying the
asymptotic theory of the DM test. The same obviously
holds for the absolute scaled error, as the forecast errors are
all divided by the same number, and hence these absolute
scaled errors have the same moment properties as the
absolute error.

In contrast, the second set of three functions of realiza-
tions and forecasts in Table 1 do not have these nice prop-
erties. The random walk forecasts can become very close
to zero, and hence, the errors scaled by random walk fore-
casts have infinite moments. Only in very well-behaved
cases may the asymptotic distribution become a Cauchy
distribution. The asymptotic normality of the DM test is
guaranteed provided that the first two moments exist and
are finite, because of the central limit theorem, and these
conditions do not hold for the symmetric absolute percent-
age and absolute percentage error loss functions.

In summary, one can only expect the familiar DM test to
have an asymptoticN(0, 1) distribution for squared errors,
absolute errors and absolute scaled errors.

3. Simulations

To determine whether the above arguments hold,
consider the following simple simulation experiment.
Assume the data generating process (DGP):
yt = 5x1,t + 5x2,t + εt ,

where εt ∼ N(0, 0.25) and
DGP1: x1,t ∼ N(0, 1) and x2,t ∼ N(0, 1)
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Fig. 2. Empirical distribution of the DM test statistic, DGP2.
DGP2: x1,t ∼ N(10, 1) and x2,t ∼ N(−10, 1).

The data are created for t = 1, 2, . . . , 2000, where the first
1000 observations are used to estimate

Model 1: yt = β1x1,t + ϕ1,t

Model 2: yt = β2x2,t + ϕ2,t .

Then, one-step-ahead forecasts are created using a recur-
sive procedure. This procedure entails the estimation of the
parameters using the first T observations, after which a
forecast for T + 1 is created using the estimated param-
eters for T observations, and the actual true value of x1,t or
x2,t at T + 1. Then, the sample is shifted to 1001 observa-
tions and the procedure is repeated. In the end, there are
1000 one-step-ahead forecasts ŷ1,t and ŷ2,t .

The DM test value is computed using the six loss func-
tions in Table 1. This procedure is repeated 10,000 times,
and the corresponding empirical distributions of the DM
test statistics are created. Figs. 1 and 2 present the results.
Evidently, one can observe an empirical N(0, 1) distribu-
tion for squared errors, absolute errors and absolute scaled
errors, but the distributions in the bottom panel do not
come near a N(0, 1) distribution. Also, these latter three
distributions vary across the two DGPs as well, suggesting
that the associated DM test statistic does not have a unique
distribution under the null hypothesis.
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