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a b s t r a c t

The problem of finding appropriate weights for combining several density forecasts is an
important issue that is currently being debated in the forecast combination literature. A
recent paper by Hall and Mitchell (2007) proposes that density forecasts be combined
using the weights obtained from solving an optimization problem. This paper documents
the properties of this optimization problem through a series of simulation experiments.
When the number of forecasting periods is relatively small, the optimization problem often
produces solutions that are dominated by a number of simple alternatives.
Crown Copyright© 2015 Published by Elsevier B.V. on behalf of International Institute of

Forecasters. All rights reserved.
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1. Introduction

The question of finding weights for combining density
forecasts is non-trivial, and is currently being debated in
the forecast combination literature. The latest work in this
area is by Kapetanios, Mitchell, Price, and Fawcett (2015),
and examples of early contributions are provided by Tay
and Wallis (2000)and Corradi and Swanson (2006). The
reader is also invited to peruse the review by Timmermann
(2006) for a thorough review of the forecast combination
literature.

In a recent paper, Hall and Mitchell (2007) propose a
practical way of obtaining weights in a linear combination
of density forecasts. The weights are found by maximizing
the average logarithmic score of the combined density
forecast. Hall and Mitchell (2007) call these weights
‘‘optimal’’ because they minimize the ‘‘distance’’ between
the forecast and true (but unknown) densities, asmeasured
by the Kullback–Leibler Information Criterion (KLIC).
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AlthoughHall andMitchell (2007) showhow theseweights
can be used, the paper does not detail the theoretical
properties of the estimators of theweights. Themotivation
for the study relies on asymptotic theory, namely that the
number of time periods grows to infinity (T → ∞).
Geweke and Amisano (2011) propose an approach that is
similar to that of Hall and Mitchell (2007) using Bayesian
methods, and provide a theoretical justification for the use
of optimal linear combinations.

Several studies have followed in the footsteps of Hall
and Mitchell (2007) in developing weighting techniques
for density forecasts. For example, Jore, Mitchell, and
Vahey (2010) develop log-score recursive weights for
autoregressive models of output growth, inflation and
interest rates. Similarly, Garratt, Mitchell, Vahey, and
Wakerly (2011) apply these recursive weights to density
forecasts of inflation in various industrialized countries.
Bache, Jore, Mitchell, and Vahey (2011) employ weighting
techniques similar to those of Hall and Mitchell (2007)
for combining inflation forecast densities in linear opinion
pools.

Onewould assume that the combination of various den-
sity forecasts implies that several density forecasts would
be assigned positive weights in the combination. However,
this paper finds that the ‘‘optimal weights’’ of Hall and
Mitchell (2007) can behave unexpectedly when the num-
ber of forecasting periods is small. The weights can be such
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that only one density is selected (‘‘corner solution’’), rather
than combining the densities (‘‘mixing solution’’). Empiri-
cal work often provides evidence that combining densities
is a better strategy than selecting one model. Kascha and
Ravazzolo (2012) show that, although combinations do not
always outperform individual models, they are beneficial
because they are more accurate overall, and provide insur-
ance against inappropriate model selection. Pauwels and
Vasnev (2012) find that, when predicting the Fed’s deci-
sions to change the interest rate, the optimal weights of
Hall and Mitchell (2007) select only one model for 41 fore-
casting periods. After 41 periods, each of the models is al-
located a positive weight. While this result could be an
artefact of the specific empirical study, it nonetheless begs
for a formal investigation.

This paper examines the properties of Hall andMitchell
(2007) optimal weights when the number of forecasting
periods is not infinite. Simple simulations provide clear
insights; it turns out that ‘‘corner solutions’’ do occur
frequently, but disappear as the number of forecasting
periods increases (T → ∞). The paper is organized
as follows. An empirical illustration that motivates the
questions raised in this paper is presented in Section 2.
Section 3 provides simulation results to support the
argument made in the paper. Section 4 concludes.

2. Empirical illustration: Predicting FOMC monetary
policy decisions

The following empirical illustration discusses proba-
bility density forecast combinations, including the com-
bination using the optimal weights proposed by Hall and
Mitchell (2007). Early attempts toworkwith combinations
of probability forecasts have been made in the context of
aggregating probability distributions of expert opinions, as
was discussed by Genest and Zidek (1986) and Clemen and
Winkler (1999).

Pauwels and Vasnev (2012) use a conditional ordered
probit model to estimate the dynamics of the federal
funds target rate changes, following in the steps of Dueker
(1999), Hamilton and Jordà (2002), Monokroussos (2011),
Hu and Phillips (2004a), Kim, Jackson, and Saba (2009) and
Kauppi (2012). Dueker (1999) uses the model

r∗

t = x′

t−1β − ut (1)

y∗

t = r∗

t − rt−1, (2)

where ut ∼ N(0, σ 2), both y∗
t and r∗

t are unobservable,
and xt−1 contains observable information that is relevant
to the forecast, including initial claims for unemployment
insurance, annual growth ofM2, consumer confidence, and
annual growth of manufacturers’ new orders.

In Eq. (2), r∗
t is the optimal policy rate, which is assumed

to exist. rt is the federal funds target rate set by the Federal
Open Market Committee (FOMC) at its last meeting. Only
the FOMCmeeting months are forecasted. The time period
used in this example is from January 1994 to April 2010,
which represents 133 FOMC meetings.1

1 Pauwels and Vasnev (2012) present various robustness checks,
including forecasting up to December 2008, which was the last month in
which the Fed used the basis point target, before switching to the interval
target.
The Fed’s decisions about the target interest rate are
classified into three categories: ‘‘cut’’, ‘‘no change’’ and
‘‘hike’’. Hence,

yt =


−1 if y∗

t < µ1
0 if µ1 ≤ y∗

t ≤ µ2
1 if y∗

t > µ2,
(3)

is the observed decision of the Fed. For example, if the
difference between the optimal policy rate (r∗

t ) and the
actual federal funds target rate (rt−1) is greater than the
threshold µ2, then the model would predict a rate hike
(yt = 1).2

In the discrete choice model with the error distribution
Φ , the probability distribution of yt , Pr(yt = j), depends
on (xt; θ)with the parameter vector θ = (β′, µ1, µ2, σ

2)′.
For simplicity, it is denoted Pj,t(xt; θ). The parameters
are estimated by maximizing the log-likelihood for the
multiple-choice model.

Model combination is performed as follows. At each
time t , each model i ∈ {1, . . . ,N} produces a probability
forecast P (i)j,t (x

(i)
t ; θ(i)) for each state j = −1, 0, 1. The

vector of covariates x(i)t and the parameter vector θ(i) can be
different for each model. Hence, the combined one-step-
ahead probability forecast, P̂ (c)t , simply follows from

P̂ (c)t =

N
i=1

wiP̂
(i)
t (x

(i)
t ; θ̂

(i)
),

where P̂ (i)t =


P̂ (i)

−1,t , P̂
(i)
0,t , P̂

(i)
1,t

′

is a 3 × 1 vector of

estimated probabilities, θ̂
(i)

is the estimated parameter
vector of θ(i), and wi is a scalar that weights model i. The
weights wi are non-negative and sum to one. Note that
the notation wi is used for simplicity, as the weights can
change over time.

Among other methods, the weights wi can be con-
structed using the weights proposed by Hall and Mitchell
(2007). We denote those weights asw∗

i and call them opti-
mal, following the terminology of Hall andMitchell (2007),
but introduce them formally in the next section. Alter-
natively, the weights can be constructed by ranking the
scores of themodels’ forecasting performances, aswas pro-
posed by Pauwels and Vasnev (2012). If the log score is
used to evaluate the performance, then the weights are

wPV
i =

1/|S̄ li |
N
i=1

1/|S̄ li |
i = 1, . . . ,N, (4)

where the log scores S̄ li are averaged over all one-
step-ahead forecasts.3Hence, the better the score for a

2 When the vector xt contains integrated processes, the thresholds can
be scaled by the sample size, as was shown by Hu and Phillips (2004a,b)
and applied by Pauwels and Vasnev (2012).
3 If state j happens, then the log-score is given by S l = log(P̂j), similarly

to the study by Ng, Forbes, Martin, and McCabe (2013). For multiple
one-step-ahead forecasts, the logarithmic scores are averaged over the
number of forecasted periods for each model i.
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(a) Optimal weightsw∗

i . (b) Alternative weightswLP
i .

Fig. 1. Weights corresponding to the univariate models in the forecast combination. (For the color version of this figure, the reader is referred to the
electronic version of this article.)
Table 1
Out-of-sample performances of the forecasts between May 2002 and
April 2010.

Models Scores
Log Quad Eps

H&P −1.40 0.33 0.34
Equal weights −0.86 0.46 0.28
Optimal weightsw∗

i −0.88 0.47 0.28
Alternative weightswPV

i −0.83 0.48 0.27
Univariate models:

M2 −1.04 0.36 0.35
Unemployment claims −1.10 0.44 0.30
Consumer Confidence −1.12 0.33 0.37
New orders −0.93 0.40 0.32

Notes: The numbers in the table are the Log, Quadratic and Epstein scoring
rules, as used by Pauwels and Vasnev (2012). The scores are better for
bigger Log and Quadratic numbers and for smaller Epstein numbers.
The four variables used for the univariate models and the combination
models correspond to the four variables selected by Hu and Phillips
(2004a).H&P is amultivariatemodel with all four variables. Equal weights
combines the probability forecasts of the univariate models equally.
Optimal weights and Alternative weights refer to the models combining
probability forecasts. Each univariate model features one of the listed
variables as the main covariate. Only the FOMC meeting months are
forecasted.

forecasting model, the greater the weight given to its one-
step-ahead forecast. Furthermore, the composition of the
weights changes over time as the scores are averaged.
Quadratic, Epstein andBrier scores can beused to construct
alternative weights, see Pauwels and Vasnev (2012).

Fig. 1 shows the changes in the weights for the four
models, with each featuring one covariate. Fig. 1(a) shows
the weights w∗

i , and Fig. 1(b) displays the weights wPV
i .

For the optimal weight w∗

i of Hall and Mitchell (2007),
we see that all of the weight is on unemployment claims
for 41 of the 67 forecast FOMC meeting outcomes, with
the three other covariates receiving zero weight. It is
only once 41 periods have been forecast that the other
models receive non-zero weights. In contrast, when using
wPV

i , the weights are shared across the four models,
with unemployment claims receiving the largest weight
(40%). Furthermore, in this particular empirical illustration,
the forecast combination model using wPV

i tends to
outperform the one usingw∗

i (see Table 1). After a lengthy
training period, however, the weights w∗

i start to perform
as well aswPV

i , see Table 2.
Two important questions arise from this illustration.

First, why do the optimal weights w∗

i select one model
Table 2
Out-of-sample performances of the forecasts between May 2009 and
April 2010.

Models Scores
Log Quad Eps

Optimal weightsw∗

i −0.70 0.40 0.21
Alternative weightswPV

i −0.69 0.42 0.20

Notes: There are eightmeetings during the period fromMay 2009 to April
2010. For further details, refer to the notes to Table 1.

but neglect others for the first 41 one-step-ahead forecast
periods? This would suggest that the one forecasting
model should outperform forecast combinations for at
least the first 41 periods. Second, does this result hold in
general? The next section attempts to shed some light on
these questions.

3. Analysis of optimal weights in simulations

Hall and Mitchell (2007) propose a set of weights for
density forecast combination by maximizing the average
logarithmic score of the combined density forecast. They
call the weights ‘‘optimal’’ because they minimize the dis-
tance, measured by the estimated Kullback–Leibler Infor-
mation Criterion (KLIC), between the combined forecast
density and the unknown true density. A similar idea is
used by Geweke and Amisano (2011). We follow Hall and
Mitchell (2007) and use the optimal weights terminology,
though optimality theory is not provided.

Suppose that there are N density forecasts, git(·),
produced by models or analysts i = 1, . . . ,N of a real-
valued variable yt at time t , where t = 1, . . . , T and T
is the total number of forecasted periods.4 The combined
density forecast is defined as the finite mixture

pt(·) =

N
i=1

wigit(·), (5)

wherewi are a set of non-negative weights that sum up to
one.

4 In the empirical illustration in Section 2, the density forecasts of yt
are discrete, which means that git (yt ) is the forecasted probability of the
observed outcome Pj,t (yt = j).
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Definition 1 of Hall and Mitchell (2007) gives the
weights vector w∗

= (w∗

1, . . . , w
∗

N) as the solution of the
optimization problem

w∗
= arg max

(w1,...,wN )

1
T

T
t=1

ln pt(yt), (6)

where 1
T

T
t=1 ln pt(yt) is the average logarithmic score

of the combined density forecast over the sample t =

1, . . . , T .
Everitt (1996) lists the numerous difficulties that are

associatedwith a general finitemixture problem, including
slow convergence, a failure to reach the global optimum,
and the absence of a solution. Hall and Mitchell (2007)
warn that the optimization problem ‘can be difficult’. We
now investigate these difficulties in simulations.

3.1. Autocorrelated time series

We follow the experimental design of Smith andWallis
(2009, Section 3.1) closely; specifically, their case 2. We
draw a sequence of T + 1 observations from a strictly
stationary AR(2) process

zt = φ1zt−1 + φ2zt−2 + ϵt (t = 1, . . . , T + 1),

where the {ϵt} are independent and identically distributed
standard-normal variates and φ1 and φ2 are given param-
eters that are subject to the stationarity conditions φ1 +

φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1. The variance of the
process is given by

σ 2
z = var(zt) =

1 − φ2

(1 + φ2)[(1 − φ2)2 − φ2
1 ]
,

and the first two autocorrelation coefficients are

ρ1 = corr(zt , zt−1) =
φ1

1 − φ2
and

ρ2 = corr(zt , zt−2) = φ1ρ1 + φ2.

The aim is to forecast zT+1, and two point forecasts are
easily available:

y1 = ρ1zT and y2 = ρ2zT−1.

The forecast errors are

e1 = zT+1 − y1 and e2 = zT+1 − y2,

with variances

σ 2
1 = var(e1) = σ 2

z (1 − ρ2
1 ) and

σ 2
2 = var(e1) = σ 2

z (1 − ρ2
2 ),

respectively. The density forecasts can be defined as

g1(z) = ψ(z; y1, σ 2
1 ) and g2(z) = ψ(z; y2, σ 2

2 ),

where ψ(z;µ, σ 2) is the normal density function with a
mean of µ and a variance of σ 2, and the combined density
forecast is

p(z) = wg1(z)+ (1 − w)g2(z).

Because there are only two models, the subscript i for the
weights is redundant. Thus, we can use w to denote the
weight allocated to g1(z).
We are interested in the properties of the estimated
weightw∗ and the corresponding density forecasts for dif-
ferent values ofφ1 andφ2 across different values of T . Fore-
cast combinations using equal weights and weights wPV

are used for comparison. The forecasting horizon T varies
from 3 to 50, and the weights w∗ given by Eq. (6) and wPV

given by Eq. (4) are estimated using historic observations
(z1, . . . , zT ).

In order to obtain a better understanding of the
uncertainty caused by the estimation of weights, we do not
estimate the parametersφ1 andφ2. Instead, these are set to
their true values, such that any uncertainty shown in the
simulations is caused by weight estimation.

This experiment is repeated 10,000 times. For given
values of φ1 and φ2, each replication produces the
following forecasts for every point T :

1. density forecast g1(z) from model 1,
2. density forecast g2(z) from model 2,
3. combined density forecast p(z)with equal weightw =

1/2,
4. combined density forecast p(z)withw = w∗,
5. combined density forecast p(z)withw = wPV .

The forecasts are then evaluated at point zT+1 using log
scores. The results are averaged across all simulations. In
addition, we look at the percentage of corner solutions
produced by the optimization problem.

Fig. 2 presents the results for φ1 = φ2 = 0.4. Fig. 2(b)
shows that the performances of g1, g2, and forecasts with
equal and wPV weights are stable across different values
of T . The performance of the combination with weight
w∗ continues to improve as more historical observations
become available. This improvement can be attributed to
the declining incidence of the corner solutions produced by
the optimization problem, as shown in Fig. 2(a). Although
the corner solutions in this situation are not theoretically
optimal (because the data generating process (DGP) is
an AR(2) model), they are observed frequently in the
simulations. This property of the optimization problem
corrects itself gradually as more historical observations
become available.

Fig. 3 presents the results for φ1 = 0.5, φ2 = −0.8.
Again, the behaviors of the forecasts are stable, with the
exception of the combinationwithweightw∗, see Fig. 3(b).
The performance of the combination with the weight w∗

quickly improves as more historical observations become
available. In this situation, forecast g2 is considerably more
important than forecast g1, so it is not surprising that
corner solutions represent half of the solutions even for
T = 50 (see Fig. 3(a)). However, for T < 15, the corner
solutions still have a negative impact on the performance
ofw∗.

The numerical results are presented in Tables 3 and 4.
In Table 3, φ1 = φ2 for values ranging between −0.9 and
0.4. In Table 4, φ1 = 0.5 and φ2 ranges between −0.9 and
0.4. Because only the performance of the combinationwith
the weightw∗ changes across T , we report its log score for
T = 5, 25, 50, while we report the log scores of the other
forecasts only for T = 50.

From Table 3, we can observe that when φ1 = φ2, the
individual performances of the forecasts g1 and g2 are sim-
ilar, but complement each other in the combinations with
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(a) Share of corner solutions. (b) Log scores of different forecasts.

Fig. 2. φ1 = φ2 = 0.4. (For the color version of this figure, the reader is referred to the electronic version of this article.)
(a) Share of corner solutions. (b) Log scores of different forecasts.

Fig. 3. φ1 = 0.5, φ2 = −0.8. (For the color version of this figure, the reader is referred to the electronic version of this article.)
Table 3
Performances of difference forecasts, measured by the average log score when φ1 = φ2 ∈ [−0.9, 0.4].

φ1 = φ2 Forecasts Forecast combinations
g1 g2 w = 1/2 w = wPV w = w∗

T = 5 T = 25 T = 50

−0.9 −2.25093 −2.25019 −2.13054 −2.13362 −2.31262 −2.22474 −2.19715
−0.8 −1.93359 −1.93248 −1.83505 −1.83732 −1.96490 −1.91038 −1.88871
−0.7 −1.75641 −1.75569 −1.67809 −1.67980 −1.77979 −1.73746 −1.72142
−0.6 −1.64407 −1.64316 −1.58384 −1.58470 −1.64991 −1.62915 −1.61791
−0.5 −1.56394 −1.56513 −1.52092 −1.52163 −1.56851 −1.55542 −1.54721
−0.4 −1.50540 −1.50568 −1.47613 −1.47630 −1.50964 −1.50056 −1.49499
−0.3 −1.46795 −1.46844 −1.45055 −1.45084 −1.46600 −1.46647 −1.46266
−0.2 −1.44024 −1.44092 −1.43217 −1.43199 −1.44294 −1.44179 −1.43814
−0.1 −1.42287 −1.42289 −1.42060 −1.42044 −1.43039 −1.42263 −1.42247
0 −1.41930 −1.41930 −1.41930 −1.41938 −1.41847 −1.41922 −1.41938
0.1 −1.42324 −1.42332 −1.42049 −1.42080 −1.42038 −1.42286 −1.42312
0.2 −1.43703 −1.43720 −1.42446 −1.42448 −1.43607 −1.43343 −1.43352
0.3 −1.46521 −1.46546 −1.43209 −1.43205 −1.46061 −1.45571 −1.45134
0.4 −1.50590 −1.50678 −1.43484 −1.43512 −1.50636 −1.48240 −1.46963

Notes: The table reports forecasts g1, g2 and combinations with equal (w = 1/2) andwPV weights for T = 50. The improvement in the combined forecast
with the weightw∗ is reported for T = 5, 25, 50. The log scores are negative by definition, with numbers closer to zero indicating better performances.
equal or wPV weights. The combination with the weight
w∗ producesworse results than the individual forecasts for
small values of T , but its performance improves as more
historical information becomes available.

Table 4 shows that one forecast is superior (i.e., fore-
cast g2 is better for φ2 < −0.5, and forecast g1 is better for
φ2 > −0.5), whereas the combinations with the equal and
wPV weights have similar performances. The performance
of the combination with the weightw∗ is inferior for small
values of T but improves quickly, reaching the level of the
best forecast when T = 50. This result is as expected, be-
cause the sum used in the optimization problem in Eq. (6)
converges to the expected log score,meaning that the solu-
tion minimizes the KLIC distance between the true density
and the combined probability forecast.

3.2. Markov switching data generating process

For simplicity, consider an AR(1) model

y(1)t = ρy(1)t−1 + νt , νt ∼ i.i.d.N(0, 1), (7)
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Table 4
Performances of difference forecasts, measured by the average log score when φ1 = 0.5 and φ2 ∈ [−0.9, 0.4].

φ2 Forecasts Forecast combinations
g1 g2 w = 1/2 w = wPV w = w∗

T = 5 T = 25 T = 50

−0.9 −2.25082 −1.84008 −1.91819 −1.89494 −1.94143 −1.85616 −1.84598
−0.8 −1.93156 −1.68331 −1.70640 −1.69774 −1.75995 −1.69819 −1.68697
−0.7 −1.75548 −1.61830 −1.60921 −1.60683 −1.67562 −1.63464 −1.61939
−0.6 −1.64088 −1.58219 −1.55324 −1.55345 −1.61127 −1.58862 −1.57783
−0.5 −1.56293 −1.56213 −1.51902 −1.51935 −1.56962 −1.55242 −1.54471
−0.4 −1.50597 −1.54849 −1.49467 −1.49460 −1.53285 −1.51800 −1.51103
−0.3 −1.46578 −1.53960 −1.47736 −1.47664 −1.50365 −1.48604 −1.47852
−0.2 −1.43895 −1.53400 −1.46479 −1.46344 −1.48122 −1.46012 −1.45213
−0.1 −1.42351 −1.53092 −1.45555 −1.45378 −1.46738 −1.44438 −1.43630
0 −1.41844 −1.52996 −1.44871 −1.44683 −1.46310 −1.43943 −1.43138
0.1 −1.42343 −1.53103 −1.44357 −1.44192 −1.46765 −1.44368 −1.43551
0.2 −1.43881 −1.53424 −1.43946 −1.43837 −1.47978 −1.45478 −1.44587
0.3 −1.46559 −1.53999 −1.43548 −1.43520 −1.49822 −1.47021 −1.45904
0.4 −1.50459 −1.54901 −1.42933 −1.43026 −1.52061 −1.48586 −1.47046

Notes: The table reports forecasts g1, g2 and combinations with equal (w = 1/2) andwPV weights for T = 50. The improvement of the combined forecast
with the weightw∗ is reported for T = 5, 25, 50. The log scores are negative by definition, with numbers closer to zero indicating better performances.
with ρ = 0.3, and an MA(1) model

y(2)t = εt , εt = θεt−1 + νt , νt ∼ i.i.d.N(0, 1), (8)
with θ = 0.7, assuming that the parameters are known
and therefore there is no estimation noise. The true DGP
combines the two models in Eqs. (7) and (8) by switching
from one model to the other. The switch in DGP between
the models in Eqs. (7) and (8) is uncertain. The probability
that the prevailing model that determines the DGP will
remain the same in the next period is 0.7, and the
probability that there will be a switch to the alternative
model is 0.3.

This Markov switching DGP has a stationary state in
which the system follows model 1 for half of the time
and model 2 for the other half. In this situation, it is
theoretically optimal to combine the two models, because
neither of the models captures the true DGP on its own.
This can be seen from the simulation results in Fig. 4,where
there are almost no corner solutions after 36periods.When
T = 36, the average w∗ across simulations is 0.499,
reflecting the fact that each of themodels captures the DGP
on its own roughly half of the time. Note, however, that the
optimization problem in Eq. (6) still yields corner solutions
in 20% of the simulations even after 24 forecasting periods
(two years of monthly data).

3.3. Mixing DGP

Finally, if the true DGP in each period is a mix of the
AR(1) model in Eq. (7) and the MA(1) model in Eq. (8),
and hence the actual observations are generated as an
ARMA(1,1) model

yt = αy(1)t + (1 − α)y(2)t ,

then the solution of the optimization problem in Eq. (6),
w∗, should converge to α. This is in fact what is observed in
both Fig. 5(a), where α = 0.5 and the average weight after
36 forecasting periods is 0.503, and Fig. 5(b), where α =

0.3 and the average weight after 36 forecasting periods is
0.26. Note also that the convergence is slower for α = 0.3,
with approximately 20% of corner solutions occurring after
36 forecasting periods.
Fig. 4. The shares of corner and mixing solutions for two misspecified
models across different forecasting periods. The DGP switches from one
model to another with a probability of 0.3.

4. Concluding comments

The idea of using a training sample for parameter esti-
mation before forecasting out-of-sample is acknowledged
widely in the forecasting literature. The simulation and
empirical results considered in this paper indicate the ne-
cessity of using a training sample for the optimal weights
of Hall and Mitchell (2007) when combining forecasts. If
no such training sample is used, one risks ending up with
a corner solution. This is an artefact of the optimization
problem given by Eq. (6) when the number of forecast-
ing periods, T , is small. When T is sufficiently large, the
asymptotic theory used by Hall and Mitchell (2007) and
Geweke and Amisano (2011) to justify the optimal weights
is valid, and the optimal weights have the expected prop-
erties. If one wishes the weights to behave as would be
expected from theory, the authors’ practical recommen-
dation is to use at least 36 data points (three years of
monthly data) when solving the optimization problem. Al-
ternatively, one can use the weights proposed by Pauwels
and Vasnev (2012), which do not need this extensive train-
ing period.



L.L. Pauwels, A.L. Vasnev / International Journal of Forecasting 32 (2016) 391–397 397
(a) α = 0.5. (b) α = 0.3.

Fig. 5. The shares of corner and mixing solutions for two misspecified models across different forecasting periods. The DGP is mixing using parameter α,
which is equal to the theoretically optimal weight.
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