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a b s t r a c t

We present a simple methodology for modeling the time variation in volatilities and other
higher-order moments using a recursive updating scheme that is similar to the familiar
RiskMetricsTM approach. The parameters are updated using the score of the forecasting
distribution, which allows the parameter dynamics to adapt automatically to any non-
normal data features, and increases the robustness of the subsequent estimates. The new
approach nests several of the earlier extensions to the exponentially weighted moving
average (EWMA) scheme. In addition, it can be extended easily to higher dimensions and
alternative forecasting distributions. The method is applied to Value-at-Risk forecasting
with (skewed) Student’s t distributions and a time-varying degrees of freedom and/or
skewness parameter. We show that the new method is as good as or better than earlier
methods for forecasting the volatility of individual stock returns and exchange rate returns.
© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The time variation in second and higher-order mo-
ments is an important phenomenon for assessing (tail) risk,
constructing hedge strategies, andpricing assets. Exponen-
tially weighted moving average (EWMA) methods have
proved to be useful tools for capturing such time varia-
tion in a parsimonious and effective way. Here, we develop
a new empirical methodology that extends and improves
upon the standard EWMA approach. Our framework uses
the higher-moment properties of the forecasting distribu-
tion to drive the dynamics of volatilities and other time-
varying parameters. This ensures that the new method is
robust to outliers if a non-normal forecasting distribution
is used, as is typically the case when forecasting financial
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asset returns. The new method is easy to implement and
remains similar in spirit to the highly familiar EWMA ap-
proach of RiskMetricsTM.

The score-driven EWMA (SD-EWMA) model that we
propose builds on a new observation-driven methodol-
ogy, namely the generalized autoregressive score (GAS) dy-
namics; see Creal, Koopman, and Lucas (2011, 2013) and
Harvey (2013). In particular, we consider an integrated
version of the score-driven dynamics. The analogy is sim-
ple: just as the standard EWMA approach is a special case
of the IGARCH(1,1) model of Bollerslev (1986) and Engle
(1982), the proposed SD-EWMA approach is a special case
of the IGAS(1,1) model of Creal et al. (2013). Its key feature
is the fact that the time-varying parameter dynamics are
driven by the score of the forecasting distribution. Empiri-
cal evidence of the usefulness of score-driven dynamics is
provided by Creal, Schwaab, Koopman, and Lucas (2014),
Harvey and Luati (2014), and Lucas, Schwaab, and Zhang
(2014), for example, while Blasques, Koopman, and Lucas
(2015) demonstrate the information-theoretic optimality
properties of score-driven updates.
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The intuition for using the score is straightforward. As
an example, consider forecasting a time-varying variance
of a fat-tailed distribution. If one uses the standard EWMA
approach, a large absolute return has a major impact
on the next period’s estimated variance, due to the use
of squared returns in the variance updating equation.
Given the integrated nature of the EWMA dynamics, this
impact affects a large number of the subsequent volatility
estimates. If one accounts for the fat-tailedness of the
return distribution by using a score-driven propagation
mechanism for the variances, the impact of incidental
tail observations is reduced substantially. This mitigation
or robustifying mechanism is particularly important in
our current context with integrated (infinite memory)
dynamics.

Our methodology is computationally simple and re-
mains similar in spirit to the standard EWMAapproach.We
also show that the SD-EWMAapproach encompasses other
proposals in the literature for themodeling of time-varying
parameters, such as the normal-based standard EWMA, the
robust EWMA of Guermat and Harris (2002) based on the
Laplace distribution, and the skewed EWMA of Gerlach, Lu,
and Huang (2013) based on the asymmetric Laplace distri-
bution. Given that we are interested in modeling the time
variation in financial risk measures, we explicitly develop
an SD-EWMA model based on the fat-tailed skewed Stu-
dent’s t distribution; see for example Poon and Granger
(2003) for stylized facts about financial returns. However,
it is clear that themodeler can easily substitute his/her own
favorite forecasting distribution instead, such as the nor-
mal inverse Gaussian (NIG) or the generalized hyperbolic
(GH) distribution. We illustrate this by also making the
skewness and degrees of freedom parameter of a skewed
Student’s t forecasting distribution time-varying.

We apply our approach to forecasting of the Value-
at-Risk (VaR) for individual stock returns and foreign
exchange rate returns. It turns out that the (skewed)
Student’s t based SD-EWMA schemes work best for
most of the series considered. All of the SD-EWMA
methods uniformly improve on the normal-based EWMA
method. We show that both the shape of the conditional
distribution and the score-driven updates can be helpful
for improving the value-at-risk forecasting performance.

Compared to previous methods, such as those of Jensen
and Lunde (2001) andWilhelmsson (2009), the SD-EWMA
approach has the distinct advantage that it provides a
unifying framework that embeds previous proposals from
the literature, such as those of Gerlach et al. (2013) and
Guermat and Harris (2002). In addition, the generality of
the SD-EWMA approach also allows for a straightforward
generalization to higher dimensions, estimating score-
driven versions of both volatilities, covariances and
correlations, and other higher-order moments.

The remainder of the paper is set up as follows. In Sec-
tion 2, we introduce the basic methodology and convey
the main idea, using the Student’s t distribution as a lead-
ing example. Next, we extend the framework to the fore-
casting of distributionswith time-varying skewness and/or
kurtosis. In Section 3, we briefly review the tests used in
our forecasting experiment for assessing the performances
of quantile forecasts. In Section 4, we provide our empiri-
cal application to Value-at-Risk forecasting. Section 5 con-
cludes.
2. Score-driven exponentially weighted moving aver-
ages

2.1. Standard Gaussian EWMA approach

Consider a time series yt ∈ R observed over the
sample period t = 1, . . . , T . In our setting, yt typically
holds financial returns, such as stock returns or foreign
exchange rate returns. We assume that yt has a time-
varying conditional distribution p(yt |Ft−1; ft , θ), where
Ft−1 is the information set available at time t − 1, ft is
a vector of time-varying parameters, and θ is a vector of
static parameters. For example, Ft−1 may include lags of
yt and of exogenous variables, and ft may include time-
varying means and/or volatilities, while θ may hold the
remaining parameters that characterize the distribution,
such as skewness and excess kurtosis parameters.

The standard RiskMetricsTM approach sets ft = σ 2
t and

uses the exponentially weighted moving average (EWMA)
scheme

σ 2
t+1 = λσ 2

t + (1 − λ)y2t , 0 < λ < 1. (1)

The EWMA scheme in Eq. (1) corresponds to a zero-
intercept IGARCH model,

σ 2
t+1 = ω + ay2t + bσ 2

t

= ω + a(y2t − σ 2
t ) + (a + b)σ 2

t , (2)

with ω = 0, b = λ, and a = 1 − b, such that a + b =

1. Thus, the volatility is a weighted sum of past squared
observations. In particular, the term (y2t − σ 2

t ) is directly
proportional to the score of the normal distribution with
respect to σ 2

t . If the observations yt are conditionally fat-
tailed, using squared observations in Eq. (2) may not be
optimal, as large realizations of yt may occur regularly
even if the variance has not changed substantially. If not
properly accounted for, such large realizations may bias
the estimates of the true underlying volatility. Due to the
longmemory of the integrated GARCHmodel in Eq. (2), the
bias may persist for a long time and affect a large number
of the subsequent volatility estimates.

2.2. Score-driven EWMA

To account for the shape of the conditional forecasting
distribution in our construction of an EWMA scheme, we
use the generalized autoregressive score (GAS) framework
of Creal et al. (2011, 2013); see also Harvey (2013).
Blasques et al. (2015) show that updating the time-
varying parameters based on the score of the forecasting
distribution always improves the local Kullback–Leibler
divergence between themodel and the true, unknowndata
generating process. The GAS(1,1) dynamics for the time-
varying parameter ft are given by

ft+1 = ω + Ast + Bft , st = St · ∂ℓt/∂ ft ,

ℓt = ln p(yt |Ft−1; ft , θ),
(3)

where St = S(ft , Ft−1; θ) is an Ft−1-measurable scaling
function. Note that the scaled score st is a function of
yt , ft , and Ft−1. Thus, the time-varying parameter ft , as



A. Lucas, X. Zhang / International Journal of Forecasting 32 (2016) 293–302 295
specified in Eq. (3), is observation-driven, according to the
classification of Cox (1981). Dynamics more complicated
than those specified in Eq. (3) can also be added to the
specification; see for example Janus, Koopman, and Lucas
(2014) for fractionally integrated dynamics, Creal et al.
(2013) for higher-order dynamics, and Harvey and Luati
(2014) for both higher-order dynamics and structural time
series dynamics. For our current purposes, however, the
GAS(1,1) dynamics suffice. For the scaling matrix St , we
propose the inverse diagonal of the Fisher conditional
information matrix,

St = diag(It|t−1)
−1

= diag

Et−1


(ℓt/∂ ft) (ℓt/∂ ft)′

−1
.

This form of scaling accounts for the local curvature of
each of the score elements and embeds the standard
GARCH dynamics as a special case; see Creal et al. (2013)
for more details. In contrast to Creal et al. (2013), we
use only the diagonal (rather than the full) information
matrix for scaling. The advantage of this is that each
parameter feeds directly only on its own score, rather than
on a mix of scores for different parameters. This may be
an advantage in the current EWMA setting, where the
parameter dynamics are typically considered parameter by
parameter. We also found that a diagonal scaling matrix
increases the stability of the EWMAprocedure, particularly
if we consider the time-varying volatility, skewness, and
degrees of freedom parameters jointly, for instance in the
case of our skewed Student’s t distribution.

Scaling by the inverse (diagonal) information matrix
enables us to construct a score-driven EWMA (SD-EWMA)
scheme by building on the analogy of the EWMA scheme in
Eq. (1) and the IGARCH specification in Eq. (2). In particular,
similarly to Eq. (2), our SD-EWMA uses the integrated GAS
dynamics
ft+1 = Ast + ft , (4)
also labeled a Newton score step by Blasques et al. (2015).
This corresponds to an integrated GAS specification if
we set ω = 0 and B = 1 in Eq. (3). For example,
if p(yt |Ft−1; ft , θ) is the Gaussian distribution with zero
mean and variance ft = σ 2

t , Creal et al. (2013) show that
Eq. (4) reduces precisely to the standard EWMA scheme in
Eq. (1) if we set A = 1 − λ.

However, there is no particular need to restrict oneself
to the normal distribution. As it is well established that
financial returns are typically fat-tailed, it makes much
more sense to use an SD-EWMA scheme that is based upon
a fat-tailed distribution. In this paper we follow Creal et al.
(2011, 2013) and Harvey (2013) and use the Student’s t
(and later also the skewed Student’s t) distribution with
ν degrees of freedom,
p(yt |Ft−1; ft , θ)

=
Γ


ν+1
2


Γ


ν
2

 
(ν − 2)πσ 2

t


1 +

y2t
(ν − 2)σ 2

t

−
ν+1
2

, (5)

with ft = σ 2
t and θ = ν > 2. The corresponding SD-EWMA

scheme is given by

σ 2
t+1 = σ 2

t + A · (1+3ν−1) ·


ν + 1

ν − 2 + y2t /σ 2
t

· y2t −σ 2
t


= (1 − λ)σ 2

t + λ ·
ν + 1

ν − 2 + y2t /σ 2
t

· y2t , (6)
with λ = A · (1 + 3ν−1). One can either fix ν at a
predetermined value such as 5, for robustness purposes, or
estimate it using an initial estimation sample.

As was discussed by Creal et al. (2013) and Harvey
(2013), the weight factor in front of y2t in Eq. (6) has a
robustifying effect on the volatility dynamics. If yt lies
in the tails of the conditional distribution at time t , the
volatility is increased, but not by the full y2t . Part of the
effect is attributed to the fat-tailedness of the Student’s t
distribution, as can be seen from the division by (ν − 2 +

y2t /σ
2
t ). As the SD-EWMA scheme has the same integrated

dynamics as the original EWMA scheme, a more robust
estimate of the volatility at time t has a persistent effect
on the subsequent volatility estimates as well.

Though the SD-EWMA approach can adapt itself to any
parametric distribution, there is a trade-off to be consid-
ered. If the conditional distribution depends on more pa-
rameters rather than only the time-varying parameter ft ,
e.g., the degrees of freedom parameter ν, these parame-
ters need to be estimated before the SD-EWMA scheme
can be operationalized. An attractive feature of the EWMA
approach for volatility filtering and forecasting is precisely
the fact that no off-line estimation is needed. One way to
achieve this is to estimate the auxiliary parameters on an
estimation sample and to update them only infrequently.
This approach works well for the Student’s t SD-EWMA
scheme and performs better than a number of competing
schemes for a range of foreign exchange rates and stock
returns; see the application in Section 4. For other distri-
butions, however, more care may be needed.

2.3. The Skewed Student’s t distribution with time varying
higher-order moments

We note the flexibility of the SD-EWMA approach
for accounting for other dynamic parameters beyond
the volatility context. For example, the model can be
extended easily to handle both volatilities and covariances,
or volatilities and correlations, using the recursions of Creal
et al. (2011) and the integrated GAS(1,1) specification in
Eq. (4). In addition, the approach can also be generalized
further to handle the time variation in higher-order
moments, such as skewness and kurtosis, by putting the
appropriate parameters into ft rather than θ . An example
that we use in our subsequent empirical analysis is a new
SD-EWMA model with a time-varying degrees of freedom
parameter. For this, consider the likelihood in Eq. (5) and
set f ′

t = (f1,t , f2,t) with σ 2
t = f1,t and νt = 2 + exp(f2,t).

Using inverse Fisher information scaling, we obtain the
following recursion for νt :

f2,t+1 = f2,t − Aν

2
νt − 2


γ ′′


νt + 1

2


− γ ′′

νt

2


+

2(νt + 4)(νt − 3)
(νt + 1)(νt + 3)(νt − 2)2

−1

×


γ ′


νt + 1

2


− γ ′

νt

2


−

1
νt − 2

− ln

1 +

y2t
(νt − 2) σ 2

t


+

νt + 1
νt − 2

·
y2t

(νt − 2)σ 2
t + y2t


, (7)
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Fig. 1. News impact curves for the time-varying degrees of freedom
recursion in Eq. (7). Scaled and re-centered news impact curves (Eq. (7))
as a function of zt = y2t /((νt − 2)σ 2

t ) for different values of νt . The (re-
scaled and re-centered) curve of fourth order powers −z4t is also shown
as a benchmark.

where Aν > 0 is a scalar tuning parameter that is similar
to the parameter A used for the volatility dynamics in Eq.
(6), and γ ′(·) and γ ′′(·) are the first and second order
derivatives of γ (·) = lnΓ (·). The derivation of this
result follows by using the results of Gómez, Torres, and
Bolfarine (2007), for example, accounting for the fact that
we model the variance of the Student’s t distribution,
rather than the scale parameter; see the online appendix
(Appendix A) for further details. The reparameterization
νt = 2 + exp(f2,t) automatically ensures that the
degrees of freedom parameter νt is always larger than
2, such that the variance of the Student’s t distribution
always exists. The score-based recursions account for this
reparameterization automatically via the chain rule used
in the score calculations.

Though the shape of the recursion for νt in (7) may look
complicated at first sight, it is actually easy to implement.
Interestingly, it does not use fourth order moments di-
rectly, as onemight expect for the dynamics of a tail-shape
parameter. Instead, it uses only a logarithmic moment,
combined with the explicit information embedded in the
tail shape of the Student’s t distribution. One advantage of
using the recursion in Eq. (7) is that it typically results in
a much more stable path for the degrees of freedom pa-
rameter. In contrast, the fourth order moments of the data
are notoriously unstable. Eq. (7) circumvents this insta-
bility problem by including squared data and the gamma
functions and their derivatives. We provide some typical
shapes for the news impact curves related to Eq. (7) for sev-
eral values of νt in Fig. 1. The curves are re-centered and
re-scaled so as to be comparable within a single figure. We
also plot a fourth order polynomial −z4t as a benchmark.

Fig. 1 shows that large values of |zt | result in a
downward adjustment of νt+1 for all curves considered.
This is intuitive, as large values of |zt | can be associated
with tails being fat. The decline in Eq. (7) for large values of
zt is comparable for different values of νt . Interestingly, the
sensitivity of the GAS-based news impact curves for νt+1
is much lower than that of the fourth order polynomial
curve −z4t . This provides the SD-EWMA recursion for νt
with its robustness feature. Also note that for fatter tailed
distributions such as νt = 3, values of zt near zero also
result in smaller values of νt+1. This is a consequence of the
fact that, for the Student’s t distribution, fat tails go hand
in hand with leptokurtosis, i.e., ‘peaked-ness’ at the center
of the distribution. The less leptokurtic the distribution,
the smaller the downward effect of observations near zero
compared to near, say, −1 or −2. The informativeness of
observations in the center compared to tail observations
only really becomes clear if the distribution is already fat-
tailed, i.e., if νt is low. For higher values of νt , downward
signals for νt+1 must come predominantly from tail
observations.

We note that the smoothing parameter Aν for the νt
recursion is typically smaller than that of the volatility
recursion. Starting values for the estimation of Aν for
empirical data in the range of 0.001 work quite well. The
low values of Aν underline the stable path dynamics for νt
described by Eq. (7). We show in Section 4 that allowing
for a time-varying degrees of freedom parameter helps to
improve the accuracy of tail probability estimates further
for fat-tailed data.

Finally, the SD-EWMA also allows us to combine
time-varying skewness and kurtosis, if so desired. One
possible way forward is to use the skewed Student’s t
distribution with the associated score and information
matrix expressions as derived by Gómez et al. (2007), for
example, and discussed in a score-driven setting byHarvey
(2013). The density of the skewed Student’s t distribution
is given by

p(yt |Ft−1; ft , θ) =
Γ


νt+1
2


Γ


νt
2

 
(νt − 2)πσ̄ 2

t

×


1 +

y2t
(1 − ϵ · sign(yt − µ̄t))(νt − 2)σ̄ 2

t

−
νt+1
2

, (8)

where −1 < ϵt < 1 is the skewness parameter, and µ̄t
and σ̄t are the location and scale parameters, respectively.
We can use the expressions for the mean µt and variance
σ 2
t of yt as given by Gómez et al. (2007) to model the

mean and time-varying variance rather than the location
m̄t and time-varying scale σ̄t . The precise equations are
presented in the online appendix (see Appendix A) to
this paper. The skewed Student’s t model also allows us
to illustrate the flexibility of the SD-EWMA approach to
parameterize the model in such a way as to ensure proper
parameter values for all values of ft . For example, to ensure
positive σ 2

t , −1 < ϵt < 1, and 2 < νt < 100, we
could choose σ 2

t = exp(f1,t), ϵt = tanh(f2,t), and νt =

51 + 49 tanh(f3,t). This reparameterization requires only
slightlymore involved expressions for the score, but leaves
the rest of the SD-EWMAprocedure untouched. For further
details, see the online appendix (Appendix A).

2.4. Extensions: other forecasting distributions

Interestingly, the SD-EWMA approach also encom-
passes previous adaptations of the EWMA scheme pro-
posed in the literature. For example, Guermat and Harris
(2002) introduce a robust-EWMA scheme

σt+1 = λσt + (1 − λ)
√
2|yt |, (9)
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which is driven by absolute rather than squared observa-
tions. The authors relate their model to the GARCH-type
models of Schwert (1990) and Taylor (1986), but Eq. (9) can
also be seen as a special case of the SD-EWMA scheme in
Eq. (4). To see this, consider the Laplace density

p(yt |Ft−1; ft , θ) =
1

√
2σt

exp

−

√
2 |yt |/σt


. (10)

As for the standard EWMA, we set ft = σ 2
t . The IGAS(1,1)

for the Laplace distribution is

ft+1 = ω + 2A ·
√
2|yt |σt + (B − 2A)ft

⇔ σ 2
t+1 = λσ 2

t + σt · (1 − λ)
√
2|yt |, (11)

if we set ω = 0, A = (1 − λ)/2, and B = 1. Except for the
multiplication by σt , which is due to the parameterization
ft = σ 2

t rather than ft = σt , Eq. (11) is the same as Eq. (9).
The robust-EWMA or Laplace based SD-EWMAmodel pro-
duces a modest increase in volatility for large values of |yt |
compared to the standard EWMA (Eq. (1)). The derivation
above reveals that the scheme canbe considered as a score-
driven approach based on the heavy-tailed Laplace distri-
bution rather than the fat-tailed Student’s t distribution in
Eq. (6).

The SD-EWMA scheme introduced in Section 2.2 is very
flexible. We can use it to accommodate the forecaster’s
favorite conditional distribution p(yt |Ft−1; ft , θ). As long
as the conditional density has a parametric1 form, we can
compute the score and construct the SD-EWMA scheme.
For example, Gerlach et al. (2013) introduces an EWMA
scheme based on the asymmetric Laplace distribution

p(yt |Ft−1; ft , θ) =
kt
σt

exp


−


1

1 − pt
1[yt > 0]

+
1
pt

1[yt < 0]


kt |yt |
σt


, (12)

with ft = (σt , pt), and kt = (p2t + (1 − pt)2)1/2. Gerlach
et al. (2013) introduce EWMA-type time variation in both
σt and pt , specified by the recursions

σt+1 = λσt + (1 − λ)

×


kt

1 − pt
1[yt > 0] +

kt
pt

1[yt < 0]


|yt |, (13)

ut+1 = βuut + (1 − βu)|yt |1[yt > 0],
vt+1 = βvvt + (1 − βv)|yt |1[yt < 0],

pt+1 =


1 +


ut+1/vt+1

−1
. (14)

We can also derive the IGAS(1,1) dynamics for σ 2
t using

ft = σ 2
t from Eq. (12) directly and obtain

σ 2
t+1 = λσ 2

t + σt · (1 − λ)

×


kt

1 − pt
1[yt > 0] +

kt
pt

1[yt < 0]


|yt |, (15)

with λ = 1 − 2 A. Again, we notice from Eq. (15) that the
original robust and asymmetric EWMA scheme of Gerlach
et al. (2013) can be interpreted as an SD-EWMA update if
we set ft = σt rather than ft = σ 2

t as in the original EWMA.

1 See Blasques, Ji, and Lucas (forthcoming) for an extension to a non-
parametric density setting.
3. Value-at-Risk and backtesting

We now evaluate the performance of the SD-EWMA
scheme for forecasting Value-at-Risk (VaR). We define the
VaR = −Yα at confidence level (1 − α) as

Yα = sup

Y ∗

 P[Y < Y ∗
] ≤ α


.

The value of Yα is highly dependent on the distributional
assumptions for Y ; see Chen and Lu (2010) for a recent
survey. There is a trade-off between the fat-tailedness
of the distribution of Y and the transition dynamics
of the volatility updating mechanism. In the Student’s
t based SD-EWMA framework, the volatility updates
are less responsive to extreme realized returns than in
the standard Gaussian EWMA scheme. This makes the
computed VaR less responsive to abrupt volatility changes.
In contrast, if there are incidental tail observations, the
Student’s t based SD-EWMA scheme provides a much
better and more robust estimate of the volatility at time
t . Moreover, the fat-tailedness of the conditional Student’s
t distribution pushes the VaR levels farther out into
the tails than for the Gaussian distribution with a fixed
confidence level (1 − α). The trade-off between all of
these forces results in the relative performances of the
different forecasting methods, which can be investigated
only empirically across different confidence levels (1 − α)
and different datasets.

To assess the performances of alternative (SD)-EWMA
methods, we consider a number of standard tests for
the quality of tail probability forecasts: the unconditional
coverage test, the independence test, the conditional
coverage test, and the tail shape test of Berkowitz (2001).
All of these tests are likelihood ratio (LR) based tests. A
good VaR model should be consistent, in that the fraction
of VaR violations, i.e., events {yt < −VaRt}, should equal α
in large samples. Define the violation indicator

It = 1{yt < −VaRt},

and the number of violations N =
T

t=1 It in T time
periods. Following Christoffersen (1998), good VaRmodels
produce serially independent Its. Our backtestingmethods
are all related to good coverage, serial independence, or
both.

Kupiec (1995) tests the unconditional coverage (UC) of
the VaR model using

LRu = 2(ln LN − ln Lα) ∼ χ2(1), T → ∞; (16)

where LN = (1−N/T )T−N(N/T )N and Lα = (1−α)T−NαN .
Christoffersen (1998) proposes the independence (IN) test
for the VaR violation indicator It . The transition matrix of
the corresponding first-order Markov Chain is

Π =


π00 π01
π10 π11


,

πij = P(It = j|It−1 = i) = Tij/(Ti0 + Ti1),

with Tij recording the times of transition from states i to j,
where i, j ∈ {0, 1}. The LR test for independence is

LRin = 2(ln Lπ − ln Lα) ∼ χ2(1), T → ∞, (17)
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where Lπ = π
T00
00 π

T01
01 π

T10
10 π

T11
11 and Lα = (1 − α)T01+T11

αT00+T10 . The simultaneous test for unconditional coverage
and independence, namely the correct conditional cover-
age (CC) test, is

LRc = LRu + LRin ∼ χ2(2), T → ∞. (18)

In practice, risk managers are concerned not only with
the number of VaR failures, but also with the accuracy
of the model for the tail shape beyond the VaR. This is
relevant for assessing the potential magnitude of losses
in the tail, and relates to the general shift in the industry
and in regulation fromVaR to expected loss (or conditional
VaR) computations. To test for the general tail shape, we
adopt the test proposed by Berkowitz (2001). The test
operates on an inverse standard normal transformation of
the probability integral transforms of the data, i.e.,

zt = Φ−1F̂t(yt), (19)

where F̂t(·) denotes the estimated cumulative distribution
function that is applicable at time t using the postulated
VaR model, such as the Laplace, asymmetric Laplace, or
(skewed) Student’s t distribution, and Φ−1(·) denotes the
inverse standardnormal distribution function. The variable
of interest is constructed by truncating the variable zt at the
threshold Φ−1(α) = −VaR, such that zt = −VaR if zt ≥

−VaR. Estimating the mean and variance for a censored
normal random variable can be achieved by maximizing
the likelihood function

L(µ, σ 2) =


zt<−VaR


−

1
2
ln(2πσ 2) −

1
2σ 2

(zt − µ)2


+


zt≥−VaR

ln

1 − Φ


−VaR − µ

σ


. (20)

The Berkowitz (2001) test uses the maximum likelihood
estimates to compute a likelihood ratio (LR) test for the null
hypothesis µ = 0 and σ 2

= 1. The corresponding LR test
is

LR = −2(L(0, 1) − L(µ̂, σ̂ 2)),

which is asymptotically χ2(2) distributed.

4. Empirical results

4.1. Data and descriptive statistics

In this section, we compare the performances of
different SD-EWMA schemes. Note that, for the normal
distribution, the SD-EWMA scheme coincides with the
standard EWMA for volatility modeling. As was explained
in Section 2, the SD-EWMA updating schemes in Eqs. (11)
and (15), based on the Laplace and asymmetric Laplace
distributions, respectively, are very close to the robust
EWMA scheme (Eq. (9)) of Guermat and Harris (2002),
and the skewed EWMA scheme (Eq. (13)) of Gerlach et al.
(2013), respectively. For the dynamic asymmetric Laplace,
we use the same dynamics for pt in Eq. (14) as were
used by Gerlach et al. (2013). As Gerlach et al. (2013)
show that the GARCH and GJR-GARCH based on normal
or Student’s t distributions do not outperform the skewed
EWMA models, we do not include them in our current
study. We also benchmark our results against a standard
EWMA scheme for the variance, while using a Student’s t
distribution to compute the relevant VaR and associated
statistics.

We use 12 daily financial time series over the period
January 5, 1999, to February 6, 2015. The dataset contains
six exchange rate log returns and six equity log returns,
with slightly over 4,000 observations per series. The
exchange rates are always vis-à-vis the US Dollar and
are taken from the database of the Federal Reserve Bank
of St. Louis (FRED). We consider the Australian Dollar,
Canadian Dollar, Euro, British Pound, Japanese Yen, and
Swedish Kroner, denoted as AUD, CAD, EUR, GBP, JPY,
and SEK, respectively. The stocks considered represent
different industries and are all listed on the New York
Stock Exchange: Alcoa Inc., Boeing Co., General Electric,
IBM, Coca-Cola and AT&T, denoted as AA, BA, GE, IBM, KO,
and T. Stock data are taken from Datastream.

From the descriptive statistics in Table 1, it is obvious
that all series exhibit non-normal features such as non-
zero skewness and excess kurtosis, particularly over the
more recent sample period. Thus, we expect the Laplace-
based SD-EWMA and Student’s t SD-EWMA schemes to
provide particular advantages relative to the standard
EWMA scheme. We use the same distributional assump-
tions to set up the SD-EWMA recursions and to compute
the VaR.

We split the sample into two subsamples. We use the
sample from January 5, 1999, to December 29, 2006 (in-
sample), to start off the estimation of the static parameters.
In particular, for all models we use the estimation sample
to estimate the optimal smoothing parameter A. We also
estimate any remaining static parameters that may be
needed, such as the degrees of freedom parameter ν for
the Student’s t distribution, or the skewness parameters
p and ϵ for the asymmetric Laplace and skewed Student’s
t distributions, respectively. For the asymmetric Laplace
or skewed Student’s t with time-varying skewness, we
estimate additional separate smoothing parameters for
pt , ϵt , and/or νt . In all cases, the estimated parameters
are kept fixed over the entire forecasting period. This
results in a computationally fast procedure. As parameters
are unlikely to be kept fixed for the entire out-of-sample
period of more than eight years in practice, we also carry
out an analysis where all tuning parameters are updated
recursively on a daily basis over the entire forecasting
sample; see the discussion by Ardia and Hoogerheide
(2014) for the potential benefits of such an approach.

4.2. Full results for the Euro–Dollar rate

For the Euro–Dollar exchange rate, we report the full
results for all tests in Table 2. As usual, the normal-
based standard EWMA scheme performs badly as we get
deeper into the tails (α = 1%, 0.5%). If we consider the
hit rates (HR), we see that the normal and Student’s t
based approaches typically result in more VaR violations
than the nominal level, whereas the Laplace-based models
have fewer VaR violations. Considering the conditional
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Table 1
Summary statistics.

Data In-sample: 1999–2006 Out-of-sample: 2007–2015
Mean SD SK EKS Mean SD SK EKS

Exchange rate returns
GBP 0.008 0.51 −0.02 0.57 −0.012 0.64 −0.40 6.94
AUD 0.012 0.68 −0.50 1.98 0.000 0.97 −0.71 12.83
JPY 0.003 0.63 −0.23 2.04 0.000 0.69 −0.26 5.07
CAD −0.013 0.45 0.00 0.66 0.004 0.67 −0.08 5.98
SEK −0.008 0.65 0.08 0.65 0.010 0.88 −0.20 4.14
EUR 0.006 0.61 0.02 0.73 −0.008 0.65 0.19 3.41

Equity returns
AA 0.032 2.34 0.22 2.63 −0.023 3.03 −0.34 6.95
BA 0.056 2.07 −0.38 5.76 0.035 1.90 −0.02 4.21
GE 0.014 1.86 0.05 4.12 −0.006 2.14 −0.06 9.87
IBM 0.006 2.08 −0.09 8.08 0.031 1.46 −0.07 5.49
KO −0.009 1.61 −0.06 4.92 0.038 1.21 0.08 6.87
T −0.004 2.04 −0.09 3.19 0.020 1.49 0.80 14.99

The descriptive statistics present the centered moments of the financial time series considered. The sample period is from January 5, 1999, to February 6,
2015. We split the sample into an in-sample estimation period and an out-of-sample forecasting period. The sample mean is multiplied by 100. A standard
deviation (SD) of 1.28 denotes 1.28% per day. SK and EKS denote the skewness and excess kurtosis, respectively.
Table 2
Full SD-EWMA results for the Euro–Dollar exchange rate.

No parameter updating With parameter updating
CC UC IN HR BE CC UC IN HR BE

α = 0.5%
N 18.0 17.3 0.7 1.28 29.9 19.9 19.2 0.7 1.33 29.8
T(ν) 3.1 2.9 0.3 0.79 0.1 2.2 2.0 0.2 0.74 0.2
T(νt ) 0.5 0.3 0.1 0.59 2.7 0.9 0.7 0.2 0.64 0.5
ST(ε, νt ) 4.1 3.8 0.3 0.84 0.2 0.9 0.7 0.2 0.64 1.4
ST(εt , ν) 0.9 0.7 0.2 0.64 0.0 0.1 0.0 0.1 0.49 0.9
ST(εt , νt ) 0.9 0.7 0.2 0.64 0.0 0.5 0.3 0.1 0.59 0.8
T(ν)-RM 3.1 2.9 0.3 0.79 0.4 3.1 2.9 0.3 0.79 0.2
L(0.5) 7.0 7.0 0.0 0.15 19.8 7.0 7.0 0.0 0.15 20.0
L(p) 7.0 7.0 0.0 0.15 16.7 9.9 9.9 0.0 0.10 24.2
L(pt ) 7.0 7.0 0.0 0.15 19.6 4.9 4.9 0.0 0.20 16.6

α = 1%
N 12.5 11.1 1.4 1.82 29.4 12.5 11.1 1.4 1.82 29.3
T(ν) 5.0 4.1 0.9 1.48 1.0 5.0 4.1 0.9 1.48 1.0
T(νt ) 2.7 2.0 0.7 1.33 3.4 2.7 2.0 0.7 1.33 0.6
ST(ε, νt ) 5.0 4.1 0.9 1.48 1.3 4.1 3.3 0.8 1.43 3.4
ST(εt , ν) 2.1 1.5 0.7 1.28 0.1 2.7 2.0 0.7 1.33 1.9
ST(εt , νt ) 2.1 1.5 0.7 1.28 0.1 2.7 2.0 0.7 1.33 1.9
T(ν)-RM 4.1 3.3 0.8 1.43 1.0 4.1 3.3 0.8 1.43 0.8
L(0.5) 6.6 6.5 0.1 0.49 24.2 5.3 5.2 0.1 0.54 22.3
L(p) 9.9 9.8 0.1 0.39 30.6 6.6 6.5 0.1 0.49 23.9
L(pt ) 3.2 3.1 0.2 0.64 19.3 5.3 5.2 0.1 0.54 19.5

α = 5%
N 5.0 4.0 1.0 6.00 29.0 6.1 4.4 1.7 6.05 28.9
T(ν) 13.8 9.3 4.5 6.54 5.8 9.0 7.2 1.8 6.35 4.6
T(νt ) 10.4 7.7 2.7 6.39 6.0 9.3 7.7 1.7 6.39 5.0
ST(ε, νt ) 13.5 8.8 4.7 6.49 5.5 6.4 4.8 1.6 6.10 5.6
ST(εt , ν) 11.8 5.3 6.5 6.15 2.8 5.0 4.0 1.0 6.00 3.9
ST(εt , νt ) 11.8 5.3 6.5 6.15 2.8 5.0 4.0 1.0 6.00 4.0
T(ν)-RM 14.4 7.7 6.7 6.39 4.6 10.0 7.2 2.8 6.35 4.3
L(0.5) 1.6 0.0 1.6 5.02 26.2 1.3 0.1 1.2 5.16 29.0
L(p) 1.3 0.1 1.2 5.16 31.9 2.2 0.7 1.5 5.41 29.6
L(pt ) 1.3 0.1 1.2 5.16 23.1 0.7 0.0 0.7 5.02 21.5
Critical values 9.2 6.6 6.6 – 9.2 9.2 6.6 6.6 – 9.2

The test statistics correspond to the unconditional coverage (UC) test of Kupiec (1995), the independence (IN) and conditional coverage (CC) tests
of Christoffersen (1998), and the Berkowitz (2001) test (BE). We use confidence levels for the VaR of (1 − α) = 0.995/0.99/0.95. Critical values (χ2

cv)

at a 1% significance level are also displayed, as are the hit rates (HR) N/T of N VaR violations out of T observations, multiplied by 100. Static parameters
are estimated over the period from Jan. 5, 1999, to Dec. 29, 2006, and held fixed over the forecast evaluation period from Jan. 3, 2007, to Feb. 6, 2015.
The SD-EWMA schemes use the normal distribution (N), Laplace distribution (L) with skewness parameter 0.5, p, or pt , the Student’s t (T) and skewed
Student’s t (ST) distributions with degrees of freedom parameter ν or νt , and skewness parameter ϵ or ϵt . We provide the results for models with and
without updated parameters in two different panels.
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and unconditional coverage tests (CC, UC), the under-
rejection for the Laplace is significant in several cases,
whereas the over-rejection for the Student’s t setting is
never significant.

If we proceed by considering the tail shape beyond
the VaR level using the Berkowitz test, we see that the
Student’s t based models perform better than both the
normal and Laplace based approaches. We also note that a
simple benchmark of standard Gaussian EWMA dynamics
with a Student’s t distribution for the VaR calculations
also performs quite well (T(ν)-RM). For the Euro–Dollar
rate, its behavior is quite close to that of the other models
at VaR confidence levels of 99% and 99.5%. Less far out
into the tails of the distribution, the performance of this
method drops somewhat relative to those of the other
Student’s t based methods. However, if we consider the
casewhere the tuning parameters are updated recursively,
we see that the performance of T(ν)-RM starts to lag
more substantially behind those of the skewed Student’s
t methods with time-varying parameters, particularly in
terms of conditional coverages (CC).

To obtain an impression of the shape of the time-
varying parameters, we plot σ 2

t , ϵt , and νt for the skewed
Student’s t model in Fig. 2. We can clearly see the
increased volatility around the time of the financial
crisis, as well as the higher volatility level during the
European sovereign debt crisis (2010–2013). The skewness
parameters indicate a positive skewness at the start of the
sample. During the remainder of the sample period, the
exchange rate returns are consistently negatively skewed,
and particularly so around the time of the financial and
European sovereign debt crises. The degrees of freedom
parameter ranges from low values of around three near
the end of the sample, to values of 15 in the periods of
the greatmoderation, the financial crisis, and the European
sovereign debt crisis.

We conclude that the skewed Student’s t models with
SD-EWMAdynamics for ϵt , νt , or both have the best overall
performances in terms of coverage (CC, UC, IN) and tail
shape beyond the VaR (BE), especially if we update the
tuning parameters regularly based on the available data,
as is commonly done in practice.

4.3. Full results: all series

To investigate the robustness of the results, we extend
our analysis to other exchange rates as well as to
individual stock returns. To save space, we present the
results graphically for all series, three different confidence
levels, and three tests: the conditional coverage test, the
Berkowitz test, and the hit rate (α̂/α − 1). As the setting
with updated tuning parameters is most relevant from a
practical point of view, we only present those results.

The results are shown in Fig. 3. Each column of three
panels presents the results for the three different tests for
a given VaR confidence level, 1 − α = 0.995, 0.99, or
0.95. The results for the exchange rate series are indicated
by circles, and those for the stock returns by inverted
triangles.

Looking at the top row of graphs, we confirm the results
from Table 2 concerning the hit rates of the different
methods. The normal and Student’s t based methods
typically result in somewhat more VaR violations than
the nominal level. The Laplace-based approaches, on the
other hand, result in substantially lower numbers of VaR
violations. The further we go out into the tails, the worse
the normal-based approach performs in terms of the
hit rate. We also see that, across all series, the overall
performance of the skewed Student’s t based approaches
in terms of hit rates is better than that of a standard
RiskMetrics plus Student’s t distribution approach (T(ν)-
RM). This is particularly true for VaR confidence levels of
95% and 99.5%.

The above results are confirmed when we look at the
second row of graphs, which indicate the significance
of deviations from the nominal coverage, combined
with possible violations of the independence assumption.
Graphically, it is clear that, across different time series,
the skewed Student’s t based approaches perform best.
The differences between using a skewed Student’s t
distribution with ϵt , νt , or both being time-varying appear
to be much smaller.

If we consider the behaviors of different approaches
for capturing the tail shape beyond the VaR, the bottom
row of graphs in Fig. 3 shows that the Laplace distribution
is clearly too thin-tailed to be able to describe the tail
behavior of exchange rates and stock returns adequately.
Note that the bottom row of graphs does not show
the results for the normal distribution, as the Berkowitz
test results for the normal are so high that they would
distort the picture completely for the other models. The
graphs also reveal that, for all VaR confidence levels,
the polynomial tail shape of the (skewed or symmetric)
Student’s t distribution typically captures the stochastic
behavior of extreme returns quite well. Note that, across
all series, the skewed Student’s t SD-EWMA results with
time-varying ϵt and/or νt appear to be less susceptible to
extreme outcomes for the tests than the other Student’s t
based approaches. Overall, the SD-EWMA approach with
the time-varying skewed Student’s t appears to have the
best and most robust performance in our current volatility
forecasting context.

5. Conclusion

We have developed a range of simple EWMA refine-
ments that build on the recent literature on score-driven
dynamics for time-varying parameters in non-normal
models. In this paper we have shown that the standard
EWMA and the robust Laplace based EWMA can be seen
as special cases of the new score-driven EWMA (SD-
EWMA) approach. In particular, as financial return series
may typically be fat-tailed rather than heavy-tailed (such
as Laplace), we developed a score-driven EWMA scheme
based on the symmetric and skewed Student’s t distribu-
tions. As the score-driven approach is not limited to time
variation in volatilities only, we also developed a new SD-
EWMA scheme for the simultaneous time series dynamics
of the volatility, the degrees of freedom, and possibly the
skewness parameter in a (skewed) Student’s t distribution.
The new schemes exhibit interesting robustness features
for the time-varying parameter dynamics that make them
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Fig. 2. Time-varying variance (σ 2
t ), skewness (ϵt ), and degrees of freedom (νt ) for the Skewed Student’s t model for the Euro–Dollar rate.
Fig. 3. VaR performance. Each panel contains the test results for 10 modeling methods using recursively estimated tuning parameters (see Table 2 for
descriptions of the methods). Circles and inverted triangles indicate the test results for the six exchange rates and six stock return rates, respectively. The
Berkowitz tests for the normal (N) are uniformly large, and are therefore left out.
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particularly suitable in a context with non-Gaussian dis-
tributed observations.

We applied the new methods to the forecasting of
Value-at-Risk (VaR) for exchange rate and stock return
data. We found that the skewed Student’s t based SD-
EWMA model with time-varying volatility, degrees of
freedom and/or skewness parameters had the best perfor-
mance overall for different series and different VaR confi-
dence levels. Thus, the new score-driven EWMA approach
provides a unified and flexible tool for risk forecasting.

The score-drivenEWMAapproach can easily be adapted
further to accommodate the researcher’s preferred choice
of forecasting distribution. For example, the ideas could be
generalized further to semi-parametric approaches, such
as the Gram-Charlier expansion of Gabrielsen, Zagaglia,
Kirchner, and Liu (2012). Also note that the SD-EWMA can
be adapted to handle multivariate observations; see for
example Creal et al. (2011) and Lucas et al. (2014). Both of
these possible extensions open up interesting avenues for
further research.
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