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a b s t r a c t

The effective management of call centers is a challenging task, mainly because managers
consistently face considerable uncertainty. One important source of this uncertainty is the
call arrival rate, which is typically time-varying, stochastic, dependent across time periods
and call types, and often affected by external events. The accuratemodeling and forecasting
of future call arrival volumes is a complicated issue which is critical for making important
operational decisions, such as staffing and scheduling, in the call center. In this paper, we
review the existing literature onmodeling and forecasting call arrivals. We also discuss the
key issues for the building of good statistical arrival models. In addition, we evaluate the
forecasting accuracy of selectedmodels in an empirical studywith real-life call center data.
We concludewith a summary of possible future research directions in this important field.
© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

The call center services industry is large and important,
with more than 2.7 million agents working in the United
States and 2.1 million agents working in Europe, the Mid-
dle East, and Africa (Akşin, Armony, & Mehrotra, 2007).
Managing a call center efficiently is a challenging task,
because managers have to make staffing and scheduling
decisions in order to balance staffing costs and service
quality, which always conflict, in the presence of uncer-
tainty as to arriving demand. Most staffing or scheduling
plans start with the forecasting of customer call arrivals,
which are highly stochastic. Accurate forecasts of call ar-
rivals are key for the achievement of optimal operational
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efficiency, since under-forecasting leads to under-staffing
and therefore long customer waits, while over-forecasting
results in money being wasted on over-staffing.

The customer arrivals process is nontrivial. This pro-
cess can be modeled as a Poisson arrival process, and has
been shown to possess several features (Akşin et al., 2007;
Cez̧ik & L’Ecuyer, 2008; Gans, Koole, &Mandelbaum, 2003;
Garnett, Mandelbaum, & Reiman, 2002; Wallace & Whitt,
2005). One of the most important of these features is the
fact that the arrival rate is time-varying, which adds to
the complexity of the forecasting process. Call arrival rates
may exhibit intraday, weekly, monthly, and yearly season-
alities. While a time-inhomogeneous Poisson arrival pro-
cess can easily capture time dependence in call arrival data,
it often fails to capture other characteristics. For one thing,
call center arrivals typically exhibit a significant dispersion
relative to the Poisson distribution. Thus, a doubly stochas-
tic Poisson arrival process may be more appropriate,
e.g., see Aldor-Noiman, Feigin, and Mandelbaum (2009);

http://dx.doi.org/10.1016/j.ijforecast.2015.11.012
0169-2070/© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ijforecast.2015.11.012
http://www.elsevier.com/locate/ijforecast
http://www.elsevier.com/locate/ijforecast
mailto:rouba.ibrahim@ucl.ac.uk
mailto:hanye@illinois.edu
mailto:lecuyer@iro.umontreal.ca
mailto:haipeng@email.unc.edu
http://dx.doi.org/10.1016/j.ijforecast.2015.11.012


2 R. Ibrahim et al. / International Journal of Forecasting ( ) –

Avramidis, Deslauriers, and L’Ecuyer (2004); Ding and
Koole (2015) and Ibrahim and L’Ecuyer (2013). For an-
other, call center arrivals also exhibit different types of
dependencies, including intraday (within-day), interday,
and inter-type dependence, e.g., see Aldor-Noiman et al.
(2009); Avramidis et al. (2004); Channouf and L’Ecuyer
(2012); Shen and Huang (2008b); Tanir and Booth (1999)
and Whitt (1999b). A reasonable forecasting model needs
to account appropriately for some or all of the types of de-
pendencies that exist in real data.

In the presence of intraday and interday dependence
in call arrival rates, standard time series models may be
applied for forecasting call arrivals, for example autore-
gressive integrated moving average (ARIMA) models and
exponential smoothing (Hyndman, Koehler, Ord, & Sny-
der, 2008). In addition, some recent papers have proposed
fixed-effects models (Ibrahim & L’Ecuyer, 2013; Shen &
Huang, 2008b; Taylor, 2008; Weinberg, Brown, & Stroud,
2007) andmixed-effectsmodels (Aldor-Noiman et al., 2009;
Ibrahim & L’Ecuyer, 2013) to account for the within-day
dependence, interday dependence, and inter-type depen-
dence of call arrivals. Dimension reduction (Shen & Huang,
2005, 2008a,b) and Bayesian techniques (Aktekin & Soyer,
2011; Soyer&Tarimcilar, 2008;Weinberg et al., 2007) have
also been adopted in the literature.

The remainder of the paper is organized as follows. The
key features of call center arrival processes are discussed
in Section 2, and various forecasting methods that have
been proposed in the literature are examined in Section 3.
A case study in which several methods from the recent
literature are compared is reported in Section 4, using a
Canadian call center data set, which reveals the practical
features of those methods. Discussions of future research
directions are provided in Section 5 to conclude the paper.
The conference paper by Ibrahim, L’Ecuyer, Régnard, and
Shen (2012) served as a starting point for this survey.

2. Key properties of call center arrival processes

A natural model to use for call arrivals is the Poisson
arrival process (Akşin et al., 2007; Cez̧ik & L’Ecuyer, 2008;
Gans et al., 2003; Garnett et al., 2002; Wallace & Whitt,
2005). This model is justified theoretically by assuming a
large population of potential customers where each cus-
tomer makes calls independently with a very small prob-
ability; the total number of calls made in a given time
interval is then approximately Poisson. As was mentioned
by Kim and Whitt (2014a), the so-called Poisson superpo-
sition theorem is a supporting limit theorem, e.g., see Bar-
bour, Holst, and Janson (1992).

Recent empirical studies have shown multiple impor-
tant properties of the call arrival process, many of which
are not consistent with the Poisson modeling assumption.
This section describes these properties in detail; for amore
abridged description, see Section 2 of Ibrahim et al. (2012).

2.1. Time dependence of call arrival rates

One of the most important properties of call arrival
rates is that they vary with time. In particular, call ar-
rival rates typically exhibit intraday (within-day), daily,

Fig. 1. Daily call arrival counts over successive months in a Canadian call
center.

Fig. 2. Half-hourly call arrival counts over two consecutive weeks.

weekly, monthly, and yearly seasonalities. We illustrate
this time-dependence property in Figs. 1, 2, and 3 (taken
from Ibrahim & L’Ecuyer, 2013), which show arrival pat-
terns that are observed commonly in call centers.

In Fig. 1, we plot the numbers of calls per day arriving at
the call center of a Canadian company betweenOctober 19,
2009, and September 30, 2010. Fig. 1 shows that there are
monthly fluctuations in the data. For example, the moving
average line in the plot, which is computed for each day as
the average of the past 10 days, suggests that there is an
increase in call volume during the months of January and
February, i.e., days 54–93 in the plot.

In Fig. 2, we illustrate weekly seasonality by plotting
daily arrival counts, of the same call type as in Fig. 1, over
two consecutive weeks in the call center. The call center is
closed on weekends, so we have a total of 10 workdays in
the plot. Fig. 2 clearly shows that there is a strong weekly
seasonality in the data. Such weekly patterns are observed
very commonly in practice, e.g., see Figure 1 of Taylor
(2008) and Figure 2 of Taylor (2012).

For a more microscopic view of arrivals, we plot half-
hourly average arrival counts per weekday, in Fig. 3. These
intraday averages constitute the daily profile of call arrivals.
Fig. 3 shows that call volumes are higher, on average,
on Mondays than on the remaining weekdays. Fig. 3 also
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Fig. 3. Intraday profiles of call arrival counts by weekday in a Canadian
call center.

shows that all weekdays have similar daily profiles, with
two major daily peaks for call arrivals. The first peak
occurs in the morning, shortly before 11:00 AM, and the
second peak occurs in the early afternoon, around 1:30 PM.
(There is also a third, smaller ‘‘peak’’ that occurs shortly
before 4:00 PM on Mondays, Tuesdays, and Wednesdays.)
Such intraday arrival patterns are also characteristic of
call center arrivals; e.g., see Aldor-Noiman et al. (2009);
Avramidis et al. (2004); Channouf, L’Ecuyer, Ingolfsson, and
Avramidis (2007); Gans et al. (2003) and Tanir and Booth
(1999).

Given that arrival rates are time-varying, a feature
which is not accounted for in a Poisson arrival process, a
natural extension is to consider a nonhomogeneous Pois-
son process with a deterministic and time-varying arrival-
rate function. For simplicity, it is commonly assumed that
call arrival rates are constant in consecutive 15 or 30 min
intervals during a given day; e.g., see Brown et al. (2005);
Green, Kolesar, and Whitt (2007), and Liao, Delft, Koole,
and Jouini (2012).

Nevertheless, it is important to perform statistical tests
to confirm that it is appropriate to model call center
data as a nonhomogeneous Poisson process. Brown et al.
(2005) proposed a specific test procedure based on a Kol-
mogorov–Smirnov test and did not reject the null hy-
pothesis that arrivals of calls are from a nonhomogeneous
Poisson process with piecewise constant rates. Kim and
Whitt (2014b) examined several alternative test proce-
dures which have greater power than that suggested by
Brown et al. (2005). Kim and Whitt (2014a) applied Kol-
mogorov–Smirnov tests to banking call center and hospital
emergency department arrival data and showed that they
are consistent with the nonhomogeneous Poisson prop-
erty, but only if certain common features of the data have
been accounted for, including data rounding, interval par-
tition, and overdispersion caused by combining data.

2.2. Overdispersion of arrival counts

One consequence of the Poisson modeling assumption
is that the variance of the arrival count in each time period

is equal to its expectation during that period. However,
there is empirical evidence that invalidates this assump-
tion. Indeed, it has been observed that the variance of an
arrival count per time period is usuallymuch larger than its
expected value; see Aldor-Noiman et al. (2009); Avramidis
et al. (2004); Jongbloed and Koole (2001), and Steckley,
Henderson, and Mehrotra (2005). One way of dealing with
this overdispersion of count data is to assume that the Pois-
son arrival process is doubly stochastic, i.e., that the arrival
rate itself is a stochastic process; e.g., see Aldor-Noiman
et al. (2009); Avramidis et al. (2004); Ibrahim and L’Ecuyer
(2013); Jongbloed and Koole (2001); Shen (2010b); Soyer
and Tarimcilar (2008); Steckley, Henderson, and Mehrotra
(submitted for publication), and Weinberg et al. (2007).

A doubly stochastic Poisson process can be viewed as
a two-step randomization: a stochastic process (for the
arrival rate) is used to generate another stochastic process
(for the call arrival process) by representing its intensity.
We now illustrate why a doubly stochastic Poisson process
is a way to deal with a higher variance in the arrival count
data. Denote the number of arrivals in a given period j
by Xj, and let Λj denote the cumulative arrival rate (its
integral) over period j. Then, assume that, conditional on
Λj, Xj has a Poisson distribution with mean Λj. To simplify
the notation, this paper assumes that all periods have the
same length and that the time unit is equal to one period.
Then, when the arrival rate is constant over each period,
this rate is the same as the cumulative rate Λj, and we
denote both by Λj. By conditioning on Λj, the variance of
Xj is given by:

Var[Xj] = E[Var[Xj|Λj]] + Var[E[Xj|Λj]]

= E[Λj] + Var[Λj]. (1)

With a random arrival rate function, we have that
Var[Λj] > 0 on the right-hand side of Eq. (1), which ac-
counts for the additional variance in Var[Xj].

Maman, Mandelbaum, Whitt, and Zeltyn (2015) study
the implications for operational decisionmaking in the sys-
tem of assuming a doubly stochastic Poisson process. In
particular, they proposed a Poisson mixture model with
a parametric form of the random Poisson arrival rate for
modeling the doubly stochastic Poisson process. They then
incorporated the Poisson mixture model into a queuing
model and derived asymptotic optimal staffing levels.

Via a statistical analysis, Zhang, Hong, and Zhang (2014)
show that the level of stochastic variation of the arrival
process is neither as low as in a standard Poisson process,
nor as high as in a doubly stochastic process. They therefore
propose a model to control for this level of overdispersion.
Glynn, Hong, and Zhang (in preparation) show that the
timescale is the key to the different conclusions in the
literature regarding the Poissonness of the arrivals. In
particular, they show that the arrival process is Poisson-
like at short timescales (minutes), but not at longer
timescales (hours, days, etc.). The effect of the timescale
is also examined extensively by Oreshkin, Regnard, and
L’Ecuyer (2016).
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Table 1
Correlations between arrival counts on successive weekdays in a
Canadian call center.

Weekday Mon. Tues. Wed. Thurs. Fri.

Mon. 1.0 0.48 0.35 0.35 0.34
Tues. 1.0 0.68 0.62 0.62
Wed. 1.0 0.72 0.67
Thurs. 1.0 0.80
Fri. 1.0

2.3. Interday and intraday dependencies

In real-life call centers, there is typically evidence of de-
pendencies between the arrival counts, or arrival rates, in
different time periods within a single day, or across several
days; e.g., see Aldor-Noiman et al. (2009); Avramidis et al.
(2004); Channouf and L’Ecuyer (2012); Shen and Huang
(2008b); Tanir and Booth (1999), andWhitt (1999b). These
interday (day-to-day) and intraday dependencies typically
remain strong even after correcting for detectable season-
alities. Indeed, such corrections are important in order to
avoid erroneous overestimates of the dependencies in the
data.

In Tables 1 and 2,we illustrate the interday and intraday
correlations in the same call center as in Figs. 1–3. Tables 1
and 2 illustrate several properties which are observed very
commonly in practice: (i) the correlations between succes-
sive weekdays are strong and positive; (ii) interday corre-
lations are slightly smaller, with longer lags; (iii) Mondays
are less correlated with the remaining weekdays; (iv) cor-
relations between successive half-hourly periods within a
day are strong and positive; and (v) intraday correlations
are slightly smaller, with longer lags.

There are various different measures that could be
used to capture interday and intraday dependencies in call
arrival data. Themost commonly usedmeasure is Pearson’s
correlation coefficient, which captures linear dependence
in the data; e.g., see Aldor-Noiman et al. (2009); Avramidis
et al. (2004); Ibrahim and L’Ecuyer (2013), and Shen and
Huang (2008b). However, since dependencies may not be
linear, it is also useful to consider alternative measures
such as rank correlation coefficients; see Channouf and
L’Ecuyer (2012) and references therein. For example,
Spearman’s rank correlation coefficient measures how
well the relationship between two variables can be
described using a monotonic, but not necessarily linear,
function.

Mixed-effects models (Aldor-Noiman et al., 2009;
Ibrahim & L’Ecuyer, 2013), and copulas (Channouf &
L’Ecuyer, 2012; Jaoua, L’Ecuyer, & Delorme, 2013) more
generally, are ideally suited to the easy capture of inter-
day and intraday dependencies in call center arrival data.
Models that fail to account for positive interday and intra-
day dependencies in call arrivals may provide an overop-
timistic view of call center performance measures, and
the resulting errors can be very significant; see Avramidis
et al. (2004); Avramidis and L’Ecuyer (2005); Steckley et al.
(2005), and Steckley, Henderson, and Mehrotra (2009).

2.4. Inter-type dependencies

In multi-skill call centers, there may be positive depen-
dencies between the arrival counts, or arrival rates, cor-
responding to different call types. As one example, this
could occur in multilingual call centers where the same
service request is handled in two or more languages. As
another example, this may be due to promotions or adver-
tisementswhich affect several services offered by the same
call center. Neglecting the dependencies between different
call types can lead to overloads, particularly when a single
agent handles several correlated call types.

In Table 3 (taken from Ibrahim & L’Ecuyer, 2013), we
present estimates of the correlations between half-hourly
arrival counts for two different call types, Type A and
Type B. In Table 3, we focus on the same consecutive half-
hour periods as in Table 2. Table 3 shows that inter-type
correlations can be strong and positive. Here, call arrivals
to the Type A queue originate in the province of Ontario,
and are handled mainly in English, whereas arrivals to
the Type B queue originate in the province of Quebec,
and are handled mainly in French. Otherwise, arrivals to
the two queues have similar service requests. Thus, it
is reasonable to expect there to be correlations between
their respective arrival processes. There have been various
attempts recently to model inter-type dependencies in the
data; see Ibrahim and L’Ecuyer (2013) and Jaoua et al.
(2013).

2.5. Using auxiliary information

Auxiliary information is often available in call centers,
and can improve point or distributional forecasts consid-
erably. For example, when a company sends notification
letters to customers, or runs advertisements, this may trig-
ger a large volume of calls; see Landon, Ruggeri, Soyer, and
Tarimcilar (2010). Also, large sporting events or festivals
can result in a significant increase in calls to emergency
systems; see Channouf et al. (2007).

Past service levels in the call center may also be
a valuable source of information for predicting future
arrivals. For example, long previous delays may lead to
high call abandonment rates, which in turn may lead to
more redials in the future. Moreover, when the quality
of service is poor, callers may not have their problems
resolved during their first call, and may need to reconnect
later. Ignoring such redials and reconnects may lead to
a considerable underestimation of call arrival counts; see
Ding, Koole, and Mei (2015).

Finally, in certain types of call centers, for example ones
where people may call to report power outages or those
designated for emergency services, bursts of high arrival
rates over short periods of time do occur. In this context,
an important accident may trigger several dozen different
calls within a few minutes, all related to the same event,
resulting in a much larger than expected number of calls
during that time frame; e.g., see Kim, Kenkel, and Brorsen
(2012) for the modeling of peak periods in a rural electric
cooperative call center.

In recent years, there have been a few studies on
forecasting call arrivals, and we review the relevant
literature in the next section.
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Table 2
Correlations between arrivals in consecutive half-hour periods on Wednesday mornings in a
Canadian call center.

Half-hour periods (10, 10:30) (10:30, 11) (11, 11:30) (11:30, 12) (12, 12:30)

(10, 10:30) 1.0 0.87 0.80 0.73 0.66
(10:30, 11) 1.0 0.82 0.74 0.71
(11, 11:30) 1.0 0.83 0.80
(11:30, 12) 1.0 0.81
(12, 12:30) 1.0

Table 3
Correlations between Type A and Type B arrivals in consecutive half-hour periods on
Wednesdays in a Canadian call center.

Type B Type A
(10, 10:30) (10:30, 11) (11, 11:30) (11:30, 12) (12, 12:30)

(10, 10:30) 0.75 0.72 0.67 0.60 0.59
(10:30, 11) 0.76 0.73 0.72 0.64 0.62
(11, 11:30) 0.66 0.65 0.67 0.67 0.63
(11:30, 12) 0.60 0.56 0.63 0.63 0.63
(12, 12:30) 0.58 0.54 0.58 0.65 0.62

3. Call forecasting approaches

In practice, arrival forecasts are needed for a range of
purposes, such as long-term capacity planning and short-
term scheduling. Therefore, the specifics of the forecasting
procedure need to be determined carefully, including the
forecasting horizon (for time intervals, for a day, or for
multiple days), and whether to combine arrivals from
separate queues. Typically, models that incorporate time
dependencies are useful for short-term decision making,
since such dependencies tend to vanish over longer time
scales. Over longer time horizons, simple smoothing or
moving average models seem to be sufficient to capture
the general trends in the data. Indeed, in practice, arrivals
to different call types are often combined when there is
not sufficient data for the individual call types. However,
typically, this is not done systematically, and is based solely
on the experience of the call center managers.

Ideally, we want arrival models that seek to reconcile
several objectives. In order for an arrival model to be re-
alistic, it needs to reproduce the properties that we de-
scribed in Section 2. Simultaneously, in order for an arrival
model to be of practical use, it needs to be computation-
ally tractable; that is, it needs to rely on a relatively small
number of parameters so as to avoid overfitting. More-
over, these parameters need to be easy to estimate from
historical data. Finally, parameter estimates should not be
hard to update (e.g., via Bayesianmethods) based on newly
available information, e.g., throughout the course of a day.
These updated estimateswould then be used to update op-
erational decisions in the call center.

In this section, we review alternative models that have
been proposed in the literature with the aim of reconciling
these objectives. We begin by reviewing early papers,
which relied mostly on standard forecasting methods
(Section 3.1). Next, we focus on more recent models
for arrivals over several days or months (Section 3.2).
Finally, we move to models for arrivals over a single day
(Section 3.3).

3.1. Standard forecasting techniques

The early work on the forecasting of call arrivals usually
focused on modeling daily or even monthly total call
volumes, due partly to the lack of relevant data. In addition,
only point forecasts of future arrival rates or counts were
produced.

One of the earliest papers on the forecasting of call
arrivals was that by Thompson and Tiao (1971), who
modeled monthly call arrivals for two different call
types. Interestingly, they noted that there may be an
interdependence between the arrival streams of these two
call types, but they did not explore this issue further. They
used seasonal autoregressive integrated moving average
(ARIMA) models to forecast future call volumes, and relied
solely on the past history of call arrivals in their models.

Mabert (1985) relied on multiplicative and additive
regression models, including covariates for special events
and different seasonalities, for forecasting daily call
arrivals to an emergency call center. He also considered
model adjustments which exploit previous forecasting
errors in order to yield more accurate forecasts. He found
that such models yielded the most accurate forecasts, and
were superior to ARIMA models.

Other early papers also relied on standard time series
models. For example, Andrews and Cunningham (1995)
modeled daily call arrivals to the call center of a retailer.
The authors considered ARIMA models with transfer
functions and incorporated covariates for advertising
and special-day effects. They showed that using such
information improved the accuracy of their forecasts
dramatically, and could have a significant impact on
operational decision-making in the call center. Similarly,
Bianchi, Jarrett, and Hanumara (1998) used ARIMAmodels
with intervention analysis to forecast telemarketing call
arrivals, and found that such models are superior to
additive and multiplicative Holt–Winters’ exponentially
weighted moving average models.

More recently, Antipov and Maede (2002) modeled the
daily numbers of applications for loans at a financial ser-
vices telephone call center. The authors also went beyond
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standard ARIMA models by including advertising re-
sponses and special calender effects, through the addition
of exogenous variables to a multiplicative model. Chan-
nouf et al. (2007) developed simple additive models for
the (small) number of ambulance calls each hour in the
city of Calgary. Their models capture daily, weekly, and
yearly seasonalities, selected second-order interaction ef-
fects (e.g., between the time-of-day and day-of-the-week),
special-day effects (such as the Calgary Stampede, lead-
ing to increased call volumes), and autocorrelation of the
residuals between successive hours. Their best model out-
performed a doubly-seasonal ARIMAmodel for the residu-
als of a model which captures only special-day effects.

The existing literature has used several different
measures of forecasting errors to evaluate the accuracy
of forecasting models, including the root mean squared
error (RMSE), mean squared error (MSE), mean absolute
percentage error (MAPE),weighted absolute percentage error
(WAPE), etc. The answer to the question of which error
measure is appropriate depends on the objective of the
call center management. For example, Ding and Koole
(2015) studied a call center staffing problem where the
costs are the initial staffing costs plus the intraday traffic
management costs, and concluded that optimal forecast
methods should be those that minimize the WAPE.

3.2. Models over several days

To describe more recent arrival modelling approaches,
we need some additional notation. Let Xi,j denote the
number of call arrivals during period j, 1 ≤ j ≤ P , of day
i, 1 ≤ i ≤ D. The standard assumption is that call arrivals
follow a Poisson process with a (potentially) random
arrival rate Λi,j, which is taken to be constant over each
period j. The cumulative arrival rate over period j is also
Λi,j if a unit time period is assumed. Thus, conditional on
the eventΛi,j = λi,j,Xi,j is Poisson distributedwith rateλi,j.

Several papers (e.g., those of Aldor-Noiman et al., 2009;
Brown et al., 2005; Ibrahim & L’Ecuyer, 2013; Weinberg
et al., 2007) exploit the following ‘‘root-unroot’’ variance-
stabilizing data transformation:

Yi,j ≡ (Xi,j + 1/4)1/2. (2)

Conditional on the event Λi,j = λi,j, and for large values
of λi,j, Yi,j is distributed approximately normally, with
mean


λi,j and variance 1/4; see Brown, Cai, Zhang, Zhao,

and Zhou (2010). The unconditional distribution, with
randomΛi,j, is then amixture of such normal distributions,
and therefore has a larger variance. Nevertheless, it
can be assumed (as an approximation) that the square-
root transformed counts Yi,j are distributed normally,
particularly if Var[Λi,j] is not too large. The resulting
normality is very useful because it allows linear Gaussian
fixed-effects and mixed-effects models to be fitted to the
square-root transformed data.

A better alternative than modelling the arrival counts
Xi,j would be to model the rates Λi,j directly, because
it is considerably easier to simulate the system with a
distributional forecast for the rates than one for the counts.
Indeed, to simulate arrivals based on a distributional
forecast for counts, one has to generate the number of

arrivals in each period, and then generate the arrival times
by splitting the counts uniformly and independently over
the given time period. (This is consistent with the Poisson
assumption.) In contrast, given a distributional forecast
for the rates, one can generate the arrival times directly.
Nevertheless, most arrival models in the literature are
for the counts Xi,j, rather than the rates Λi,j, because, in
practice, we observe, not the arrival rates themselves, but
only the counts, which give only partial information as to
the rates. This makes the estimation of arrival rates a more
complicated task.

Multiple papers, such as those of Ibrahim and L’Ecuyer
(2013); Shen andHuang (2008b); Taylor (2008), andWein-
berg et al. (2007), consider a linear fixed-effects (FE) model
as a benchmark for comparison. To illustrate, let di be the
day-of-the-week of day i, where i = 1, 2, . . . ,D. That is,
di ∈ {1, 2, 3, 4, 5}, where di = 1 denotes aMonday, di = 2
denotes a Tuesday,. . . , and di = 5 denotes a Friday. Ibrahim
and L’Ecuyer (2013) considered the following fixed-effects
model for the square-root transformed arrival counts:

yi,j = αdi + βj + θdi,j + µi,j, (3)

where the coefficients αdi , βj, and θdi,j are real-valued con-
stants that need to be estimated from the data, and µi,j are
independent and identically distributed (i.i.d.) normal ran-
dom variables with a mean of zero. Ibrahim and L’Ecuyer
(2013) and Taylor (2008) have shown that it is difficult to
beat fixed-effect models in terms of the accuracy of long-
termpoint forecasting (e.g., twoweeks ormore). Neverthe-
less, for short-term forecasting, one can exploit interday
and intraday dependencies in the data in order to obtain
more accurate forecasts.

As an improvement, and based on an analysis of real
call center data, Aldor-Noiman et al. (2009) proposed the
following linear mixed-effects (ME) model:

Yi,j = αdi + βj + θdi,j + γi + ϵi,j,

where γi denotes the daily volume deviation from the fixed
weekday effect on day i. Then, γi is the random effect
on day i. Let G denote the D × D covariance matrix for
the sequence of random effects. The random effects γi
are identically normally distributed, with expected value
E[γ ] = 0 and variance Var[γ ] = σ 2

G . The authors
assume that these random effects follow an AR(1) process.
Considering an AR(1) covariance structure for G is both
useful and computationally effective, because it requires
the estimation of only two parameters, σG and ρG. The
residuals ϵi,j are also assumed to have an AR(1) structure
within each day. As such, thismodel captures both interday
and intraday dependencies in the data. An earlier version
of this model, also based on call-center data, but without
intraday correlations and without special-day effects, was
proposed by Brown et al. (2005).

Ibrahim and L’Ecuyer (2013) extended this ME model
to two bivariate ME models for the joint distribution of
the arrival counts to two separate queues, which exploit
correlations between different call types. These models
account for the dependence between the two call types
by assuming that either the vectors of random effects or
the vectors of residuals across call types are correlated
multinormal. This corresponds to using a normal copula;
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see Kim et al. (2012). The choice of copula can have
a significant impact on performance measures in call
centers, because of the strong effect of tail dependence on
the quality of service (Jaoua et al., 2013). For example, a
strong upper tail dependence for certain call types means
that very large call volumes tend to arrive together for
these call types. When this happens, this produces very
large overloads.

To reduce the dimensionality of the vectors (Yi,1, . . . ,

Yi,P), Shen and Huang (2005) proposed the use of
singular-value decomposition to define a small number of
vectors whose linear transformations capture most of the
information that is of relevance for prediction. Based on
this, Shen and Huang (2008b) then developed a dynamic
updating method for the distributional forecasts of arrival
rates. Shen and Huang (2008a) proposed a method for
forecasting the latent rate profiles of a time series of
inhomogeneous Poisson processes, to enable future arrival
rates to be forecast based on a series of observed arrival
counts.

Aktekin and Soyer (2011) recently proposed a model
based on a Poisson-Gamma process, where Λi,j = Wi,jλi,j
for fixed values of λi,j, and where the multiplicative
factors Wi,j have a gamma distribution and obey a gamma
process. Soyer and Tarimcilar (2008) analyzed the effects of
advertisement campaigns on call arrivals, using a Bayesian
analysis where the Poisson rate function is modeled using
a mixed model approach. This mixed model is shown to
be superior to using a fixed-effects model. Weinberg et al.
(2007) propose an adaptation of the model of Brown et al.
(2005) to enable it to update the forecasts of a day, as
defined from the previous days, using observations made
available during this day.

Weinberg et al. (2007) also used Bayesian techniques
in their forecasts. They exploited the (normal) square-root
transformed counts to include conjugate multivariate nor-
mal priors, with specific covariance structures. They used
Gibbs sampling and the Metropolis–Hastings algorithm
to sample from the forecast distributions, which unfortu-
nately involves long computation times.Moreover, it is un-
clear how exogenous covariates should be incorporated in
such a model.

The empirical analysis of Taylor (2008) compared sev-
eral time series models, including autoregressive moving
average (ARMA) models and Holt–Winters’ exponential
smoothing models with multiple seasonal patterns. The
latter method was adapted by Taylor (2003) for modeling
both the intraday and intraweek cycles in intraday data.
Taylor (2012) extended thismodel and considered the den-
sity forecasting of call arrival rates.With this aim, he devel-
oped a new Holt–Winters’ Poisson count data model with
a gamma-distributed stochastic arrival rate, and showed
that this newmodel outperformed the basic Holt–Winters’
smoothing model. Shen (2010a) commented on Taylor’s
work, highlighting the difference between modeling ar-
rivals as a single time series and as a vector time series
where each day is modeled as a component of that vector.

3.3. Models over a single day

In this section, we focus on modeling arrivals over a
single day. The day is divided into p time periods. We
denote the vector of arrival counts in those periods by
X = (X1, . . . , Xp).

It is commonly assumed that intraday arrivals follow a
Poisson process with a random arrival rate. Whitt (1999a)
proposed that this be done by starting with a deterministic
arrival rate function {λ(t), t0 ≤ t ≤ te}, where t0 and te
are the opening and closing times of the call center for the
considered day, andmultiplying this function by a random
variableW withmeanE[W ] = 1, called the busyness factor
for that day. The (random) arrival rate process for that day
is then Λ = {Λ(t) = Wλ(t), t0 ≤ t ≤ te}.

Under this model, the arrival rates at any two given
times are perfectly correlated, and Corr[Λj, Λk] = 1 for
all j, k. We also expect the Xjs to be correlated strongly.
More specifically, let Ij denote the time interval of period
j, let λ̄j =


Ij
λ(t)dt , and let Xj be the number of arrivals

in Ij. Using the variance and expectation decompositions,
one can find that Var[Xj] = λ̄j(1+ (1+ λ̄j)Var[W ]), i.e. Eq.
(3.12) of Whitt (1999a), and for j ≠ k:

Corr[Xj, Xk]

= Var[W ]

(Var[W ] + 1/λ̄j)(Var[W ] + 1/λ̄k)

−1/2
.

This correlation is zero when Var[W ] = 0 (a
deterministic rate), and approaches one when Var[W ] →

∞. Avramidis et al. (2004) studied thismodel in the special
situationwhereW has a gammadistribution,withE[W ] =

1 and Var[W ] = 1/γ . Then, each Λj has a gamma
distribution, and the Xjs have a negative multinomial
distribution, with parameters that are easy to estimate.
Furthermore, the variance of the arrival counts can be
made arbitrarily large by decreasing γ toward zero. The
model’s flexibility is rather limited, because, given the λ̄js,
Var[Xj] and Corr[Xj, Xk] for j ≠ k are all determined by
a single parameter value, namely Var[W ]. In an attempt
to increase the flexibility of the covariance matrix Cov[X],
and in particular to enable a reduction of the correlations,
Avramidis et al. (2004) introduced two differentmodels for
X, based on the multivariate Dirichlet distribution.

Jongbloed and Koole (2001) examined a similar model,
but with independent busyness factors, one for each pe-
riod of the day. Under their model, the Λjs are indepen-
dent, as are the Xjs, which is inconsistent with an intraday
dependence of call center arrivals. Channouf (2008) con-
sidered a variant of the model where λ(t) is defined by a
cubic spline over the day, with a fixed set of knots, and
also shows how the model parameters can be estimated.
This can provide a smoother (and perhaps more realistic)
model of the arrival rate. Channouf (2008) and Channouf
and L’Ecuyer (2012) proposedmodels that account for time
dependence, overdispersion, and intraday dependencies
with much more flexibility, in order to match the correla-
tions between the Xjs, by using a normal copula to specify
the dependence structure between these counts. In princi-
ple, similar copula models could be developed for the vec-
tor of arrival rates, (Λ1, . . . , Λp), instead of for the vector
of counts. Oreshkin et al. (2016) examined the relationship
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Table 4
Forecasting comparison among the five methods for call type A.

Type A

MU ME BME1 BME2

One-day-ahead forecast RMSE 23.51 21.76 22.59 22.69
Cover 0.89 0.91 0.93 0.93

One-week-ahead forecast RMSE 30.63 29.59 31.37 31.10
Cover 0.88 0.88 0.88 0.86

Two-week-ahead forecast RMSE 37.64 37.51 38.04 37.07
Cover 0.84 0.82 0.80 0.79

Table 5
Forecasting comparison among the five methods for call type B.

Type B

MU ME BME1 BME2

One-day-ahead forecast RMSE 16.80 16.31 16.46 16.49
Cover 0.93 0.92 0.95 0.95

One-week-ahead forecast RMSE 18.55 17.95 17.99 18.12
Cover 0.95 0.91 0.94 0.94

Two-week-ahead forecast RMSE 21.05 20.55 20.81 20.75
Cover 0.93 0.86 0.90 0.90

between modeling for the vector of counts and the vector
of rates. In particular, they gave explicit formulas for the re-
lationship between the correlations between the rates and
the counts in two given periods, which implied that, for a
given correlation between rates, the correlation between
counts is much smaller in low traffic than in high traffic.

4. Case studies

In this section, we present empirical results from a case
study using real data collected at a Canadian call center, as
described in Section 2.We use data based on two call types
and 200 consecutive workdays (excluding weekends). For
each call type, the study implements four methods (those
of Aldor-Noiman et al., 2009; Gans et al., 2015; Ibrahim &
L’Ecuyer, 2013) for forecasting arrival counts based on six
weeks of historical data:

• MU: the multiplicative univariate forecasting model of
Gans et al. (2015);

• ME: the univariate mixed-effects model of Aldor-
Noiman et al. (2009);

• BME1: the bivariate mixed-effects model of Ibrahim
and L’Ecuyer (2013); and

• BME2: the bivariate mixed-effects model of Ibrahim
and L’Ecuyer (2013).

Each method is applied to the data in turn, and we
assess the out-of-sample forecasting accuracy of each. We
compare the different models by using the root mean
squared error (RMSE) to assess the point forecast accuracy,
as defined below:

RMSE =


1
K


i,j

(Xi,j − X̂i,j)2,

where X̂i,j is the value of Xi,j predicted by the model, and
K is the total number of predictions. We also evaluate

the forecasting distribution by reporting the coverage
probability for the 95% prediction interval, defined as:

Cover =
1
K


i,j

I(Xi,j ∈ (L̂i,j, Ûi,j)),

where (L̂i,j, Ûi,j) is the 95% prediction interval for Xi,j given
by the model.

Tables 4 and 5 summarize the comparisons among the
four methods. For both call types, ME produces the most
accurate point forecasts inmost scenarios. BME1 andBME2
have better coverage probabilitieswhen the leading period
is one day or one week, and MU has a better coverage
probability when the leading period is two weeks.

Our numerical results serve to illustrate the complexity
of the forecasting problem. Indeed, different models may
bemost appropriate depending on the lead-timeof interest
and on the specific criterion being considered, as is shown
here.

Ultimately, selecting the ‘‘best’’ forecasting method
depends on the specifics of the problem at hand, and an
adequatemeasurement error. Proposing alternative arrival
models that capture different features of the data is key to
gaining a deeper understanding of the complexities of the
call-arrival process.

5. Conclusions and discussion

The forecasting of call center arrivals plays a crucial role
in call centermanagement, for example in determining ap-
propriate staffing levels, scheduling plans and routing poli-
cies. The call center arrival process is complex and requires
appropriatemodeling in order to achieve better forecasting
accuracies, leading to more efficient operational decisions.

In this survey paper, we have reviewed the existing
literature on the modeling and forecasting of call center
arrivals. We have also conducted a case study to evaluate
several recently proposed forecasting methods using real-
life call center data.
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An interesting future research direction would be
to extend the existing forecasting models or develop
new models so as to forecast more than two call types
simultaneously. As some stochastic optimization models
for staffing and scheduling rely on the joint forecasting
distribution of multiple types of arrivals, such multi-type
forecasting models with full distributional forecasts have
the potential to meet the quality of service levels better,
and improve the operational efficiency.

Another research issue that would be worth pursuing
is an examination of the operational impact of improved
forecasts, since most of the existing studies of call cen-
ter forecasting evaluate forecasting approaches based only
on traditional statistical measures, such as the RMSE and
the coverage probability, without looking at how those
improved forecasting models affect call center operations.
By looking at the operational effect of forecasting models,
managers can obtain additional insights regarding fore-
casting model selection and system performance evalua-
tion. Gans et al. (2015) have tried to tackle this problem
for one call type, but further research in this direction is
needed.

In addition, different objectives of call center man-
agement may require the minimization of different mea-
sures of forecasting errors. The question of which is the
most appropriate forecasting errormeasurement to choose
and how it relates to call center decision making has not
been investigated extensively. Ding and Koole (2015) show
the optimal error measurement for minimizing the initial
staffing costs plus the traffic management costs. However,
the issue of optimal error measurement for other manage-
rial objectives remains unclear and requires study.

Although there has been a lot of progress made in the
developmnt of sophisticated forecasting methods, there
remains a large gap between academic research and cur-
rent industry practice, as was discussed by Koole (2013).
For example, in practice, most call center forecasting is
done using Excel, by implementing simple decomposition-
based approaches; most workforce management (WFM)
tools focus on scheduling, with a limited forecasting func-
tionality. The incorporation of advanced forecasting meth-
ods in such WFM tools remains critical for call center
practice.

We also want to point out that, besides call arrivals,
there are various other factors that require forecasting
for efficient call center management, such as the average
handling time (AHT), workload, and even absenteeism.
The relevant literature on this point is rather sparse.
For example, Aldor-Noiman et al. (2009) used mixed
effects models to forecast workloads, while Gans, Liu,
Mandelbaum, Shen, and Ye (2010) and Ibrahim, L’Ecuyer,
Shen, and Thiongane (in press) provided initial attempts
to identify factors that affect agent productivity, which can
help with predicting the AHT.
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