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The Netherlands of young adults, differences in survival rates of men and women, etc. When forecasting

Age profiles household positions to 2040, we want to preserve the characteristics of the age profiles.
We test the Lee-Carter model and the Brass relational method using household data for
the Netherlands for the period 1996-2010. Annual shares of the population by household
position, age, and sex are modeled as random walks with adrift (RWD). While the Brass
model has its limitations, it performs better than the Lee-Carter model in our application.
The predicted age patterns based on the Brass model look more reasonable, because the
Brass model is a two-parameter model, while the Lee-Carter model contains only one
parameter. Also, the model parameters and standard errors of the Brass model are easier
to estimate than those of the Lee-Carter model.
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1. Motivation i

Fig. 1 shows, for the case of The Netherlands in 2011, 081 B E lone mother | || || |
the proportions of women who live with parents, alone, with spouse
in a consensual union, or with a marital spouse, broken 06 " m cohabiting —
down by five-year age groups. Most adolescents live with = alone
their parents. Those who have left home most often live 04+ with parents | -
alone or in a consensual union, up to ages around 30. After

that, living with a spouse becomes the dominant position, 024
until ages around 70. Some women become lone mothers,
due to separation or divorce. Next, increasing numbers lose

their husbands becau;e the husbapd is a few years older O D Q%u%,,’o, Q%@ SO E O DD qu")qq §
(aggravated by the higher mortality of men), and many A b LI O S
elderly women live alone, or together with one or more aee
Fhllfjre?- Of women OYer 95, more than half live in an Fig. 1. Proportions of women living in various private household
institution (not shown in the graph). positions, by age; The Netherlands, 2011.
Age profiles of the type shown in Fig. 1, and their Source: Census data from Eurostat.
development over time, help us to understand household
dynamics. This in turn, when combined with forecasts of future age structures, facilitates demographers in project-

ing the number of households of various types into the fu-
ture. Combining population forecasts with future values of
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established method of computing household forecasts; see
the extensive review by Holmans (2012). In many coun-
tries, the life expectancy of men is increasing faster than
that of women. What does that imply for the numbers of el-
derly men and women who live alone? Business cycles and
youth unemployment have effects on the home-leaving
behaviour of young adults. Formal marriages have become
less important in many Western countries since the 1970s,
but did consensual unions fill the gap fully or only par-
tially? These and related issues show that it is important to
describe and understand the age profiles of various house-
hold parameters, when computing household forecasts to
be used by policy makers in such diverse fields as housing,
social security, consumption, and energy consumption, to
name only a few.

Ideally, household forecasts should be based on well-
established theories of the household behaviours of in-
dividuals. Many scholars have tried to develop social,
economic and cultural theories to explain why households
change over time. The reasons for such changes include a
reduced adherence to strict norms; less religiosity and an
increase in individual freedom on ethical issues; female ed-
ucation, which has led to women having greater economic
independence, and also facilitates divorce; more assertive-
ness in favour of symmetrical gender roles; the contribu-
tion of women to the labour market; increased economic
aspirations; and residential autonomy (Lesthaeghe, 1995;
Van de Kaa, 1987; Verdon, 1998). In addition, there are also
demographic factors, such as falling levels of fertility, and
differences in longevity between men and women. How-
ever, none of these theories have resulted in formalized
models of household behaviour that are general enough
and have sufficient explanatory power to be used for fore-
casting. Two decades ago, Burch (1995) noted that meth-
ods for modelling family and household dynamics had
made considerable progress, but that theory had lagged be-
hind considerably. The situation is not much better today,
which may reflect the complexity of the subject matter.
Thus, as a second best to predicting households based on
general behavioural theories, we look for regularities in the
observed data, try to understand the trends, and extrapo-
late them into the future by means of formal time series
models. Sometimes the forecaster has very little data, per-
haps only one year’s worth, upon which the forecast can be
based. In that case, a commonly-used approach is simply to
keep the parameters of interest constant over the forecast
period. One example is the multi-state approach to mod-
elling household dynamics (Van Imhoff & Keilman, 1991),
in which the transition probabilities that describe changes
among household positions for individuals are kept con-
stant. In the current paper, however, we are able to use
time series data over a longer period. This allows us to take
possible time trends in the parameters into account explic-
itly. In addition (though we do not use this here), a time
series approach also allows one to make stochastic predic-
tions, and hence to take the prediction uncertainty into ac-
count.

The aim of this paper is to show how time series data for
the age profiles of men and women in various household
positions can be modelled. Using data from The Nether-
lands for the period 1996-2010, we model the vector of

age-specific shares for a certain household position as a
random walk with drift (RWD). In other words, we assume
that the year-on-year step for the shares consists of a cer-
tain fixed term (the drift) plus a normally distributed error
term which has a zero expectation. The result is a share
with an increasing variance around a linear trend. A ran-
dom walk with drift model is one type of time series model
that has been applied to demography (e.g., Alho & Spencer,
2005). The book by Box and Jenkins (1976) is a standard
reference for this and other types of time series models. If
one were to model the share of, say, women who live alone
as a RWD for each age separately, one would run the risk
that the drift terms may be very different for different ages;
see Christiansen and Keilman (2013). This would distort
the age pattern for these women. In order to retain the age
patterns for the household shares, we have selected two
methods that were developed originally for mortality anal-
ysis, namely the Lee-Carter model (henceforth abbreviated
as LC) and the Brass relational method (Brass). We then use
the estimated RWD models to extrapolate the shares thirty
years ahead.

The contribution this paper makes is to show how data
reduction techniques, stemming from mortality analysis,
can be used to describe and project household dynamics.
More specifically, we show that the Brass method has
considerable advantages over LC for this particular data
set: the resulting age patterns for men and women in
various household positions look more realistic, and the
model parameters are easier to estimate.

The remainder of the paper proceeds as follows. In Sec-
tion 2 we begin by describing the household data, which
stem from the population registers of the Netherlands,
then outline the LC-model and the Brass approach. Sec-
tion 3 presents the estimation results, while Section 4 dis-
cusses the extrapolated age profiles for future years. We
finish the paper in Section 5 with a discussion and conclu-
sions.

2. Data and methods

We are interested in modelling household shares. Write
V(, x, s, t) for the number of people in household position
j=1,2,...whoareofagex = 0,1,...and sexs = 1or
2,attimet = 0, 1,2, .... Aggregating over position, we
obtain the population who are of age x and sex s at time
tas W(x,s, t) = XV(j,x,s, t). The share of household
position j is a(j,x,s,t) = V(,x,s,t)/W(x,s,t) =
aj(x, s, t).

2.1. Data

Coen van Duin of Statistics Netherlands kindly supplied
us with data from the population registers on the
household positions of men (s = 1) and women (s = 2)
in the Netherlands, broken down by age group (x = 1 for
ages 0-4, x = 2 for ages 5-9, ..., x = 20 for age 95+),
as of 1 January of the years 1996 (t = 1), 1997 (t = 2),
..., 2010 (t = 15). Following earlier work (Christiansen &
Keilman, 2013), we distinguish seven mutually exclusive
household positions that an individual can occupy at
any given point in time. These household positions are
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particularly relevant for household analyses in the context
of demographic behaviour, as well as in studies of social
security and consumption. In other applications, such as
studies of housing needs, one may prefer to distinguish
individuals according to household sizes. The household
positions that we use in the current analysis are (with
household position codes in parentheses):

j = 1. Child living with parent(s) (CHLD).

j = 2. Living in one-person household (SINO).

Jj = 3.Living in unmarried cohabitation, with or without
children (COH).

j = 4. Living with marital spouse, with or without
children (MAR).

Jj = 5. Living as lone parent (SINp).

j = 6. Other position in private household, for instance
a member of a multiple-family household, living with
non-family-related individuals, or homeless (OTHR).

j = 7.Living in an institution (INST).

These categories refer to living arrangements, not mari-
tal status. For example, the category MAR does not include
all of those who are married, but only those who are cur-
rently living with their spouse. One example of a person
who would belong to the group OTHR is someone living in
a multiple-family household. Persons who live in house-
holds with no parent-child relationship, and who are not
married or cohabiting with any of the other members of the
household, also belong to this category. No age restrictions
have been imposed on persons in a certain household posi-
tion. In particular, children (CHLD) and lone parents (SINp)
canbe of any age. In practice, persons aged 85, say, with po-
sitions CHLD or SINp, will not be interpreted as such, but
should be assigned to a different position, for instance to
the group OTHR. Moreover, we have ignored the few per-
sons who are aged younger than 15 in the following house-
hold positions: SINO, COH, MAR, and SINp.

2.2. Method—generalities

Before modelling the random evolution of the shares,
a logit transformation was applied. We have opted for
a hierarchy of household positions using a variant of
continuing fractions. This led to there being six types of
fraction requiring modelling (all specific to age, sex and
time), starting from the shares «;(x, s, t) defined in the
first paragraph of Section 2. The following fractions were
defined, given age, sex, and time (with household position
codes in parentheses):

1. The share of CHLD (CHLD);

2. Therelative share of COH and MAR out of the total share
of one minus the share of CHLD (COHMAR);

3. The relative share of MAR out of the share of COH and
MAR (MAR);

4. The relative share of SINO and INST out of the total share
of SINO, SINp, OTHR, and INST (SINOINST);

5. The relative share of SINO out of the share of SINO and
INST (SINO);

6. The relative share of SINp out of the total share of SINp
and OTHR (SINp).

Because of the hierarchy, the predicted shares in the
logit scale at a higher level are independent of those at a
lower level. The particular sequence 1-6 above is based
upon the idea that important shares (numerically, be-
haviourally) have to be modelled first, and those that are
less important can come last. Hence, persons who live to-
gether with a partner (points 2 and 3 above), or alone
(points 4 and 5) are given priority. For elderly persons, the
position INST is often difficult to separate from positions
in non-institutional households, due to unclear registra-
tion rules for persons who de facto live in an institution
(Christiansen & Keilman, 2013). Thus, they are dealt with
initially as one group (point 4), taking into account the fact
that positions COH and MAR have been covered already.
Children are singled out from the beginning, because their
shares are kept constant over time. The age pattern for this
household position shows very little variation: for ages un-
der 15, the shares are almost 100% (some children live in
multi-family households and hence have household posi-
tion OTHR, a few live in an institution). The shares then fall
rapidly for ages 15-19 and 20-24, and are close to zero
for ages beyond 25. Hence, systematic changes over time
in the age patterns are difficult to identify. Finally, note
that we have selected the household position OTHR as a
remainder, which is in agreement with the nature of this
position as we have defined it.

Temporarily suppressing the indices for age, sex, and
time, the logit transforms of the fractions 2-6 above are

& = logit((as + ag) /(1 — 1))

& = logit(as/ (a3 + ay))

&4 = logit((ox + a7) /(02 + a5 + g + 7))
& = logit((a2)/ (a2 + 7))

&6 = logit(as/(as + o)),

where shares «; are as defined at the beginning of Section 2.
Thus, five series (given age and sex) were constructed.

There are many equivalent expressions for the back-
transformation, i.e., for the ¢ written as functions of the
&m. One of these is the following set:

ay = (1 —aj)-exp(&y) - exp(§s)/
{(1 + exp(£2)) (1 + exp(4)) (1 + exp(&s))}

a3 = (1 —ay) - exp(§2)/{(1 + exp(&2)) (1 + exp(§3))}
= a3 - exp(&3)

ag = (1 —a; — a3z —as)/{(1+ exp(§4)) (1 + exp(&6))}
as = ag - exp(&s)

a7 = ag - exp(§4) (1 + exp(§p)) /(1 + exp(§s)).

By assumption, the share of children (o) is indepen-
dentof&, (m=2,3,...,6).

There are many possible modelling strategies for the
age patterns of these household shares. One is to assume
that each share in either the original scale (;(x, s, t); j =
2,3,...,7)orthelogit-scale (§,,(x,s,t); m=2,3,4,5,6)
can be written as a mathematical function of age, with a
functional form that may depend on m and s, and with pa-
rameters that may be time-dependent. Functions that have
been used in demography include the Gompertz, Make-
ham, and Helligman-Pollard functions for mortality, the

o
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Beta, Gamma and Hadwiger functions for fertility, Coale
and McNeil's double-exponential function for nuptiality,
and many others. Booth (2006) provides an extensive re-
view of the most important functions for modelling the age
patterns of vital events. She also reviews a more flexible
approach, namely the so-called relational method. Here,
one chooses a smooth age pattern as a standard, and then
specifies a simple model that describes how the current
age pattern differs from the standard. The first such model
was developed by Brass (1971) in the context of mortality.
Booth (1984) and Zeng et al. (2000) also used this approach
to model the age pattern of fertility. Other applications of
the relational approach include the Coale-Trussell model
for fertility (Coale & Trussell, 1974) and De Beer’s TOPALS
approach, which has been applied to age patterns of both
fertility and mortality (De Beer, 2011, 2012). The relational
method is more flexible than the approach based on math-
ematical functions, because it requires fewer parameters
(unless one views the standard age pattern as a series of
parameters as well).

Of the many methods that have been developed, we
selected the Lee-Carter model and the Brass relational
method. To the best of our knowledge, neither of these
has been applied to the modelling of household dynamics
(however, see Zeng et al., 2000, for an application to marital
status and home-leaving). Both belong to the tradition of
relational approaches. The Lee—Carter model was selected
because it has become very popular in recent years, and
has been applied to a wide variety of situations and data
sets, but not to household dynamics. The Brass method was
selected because of its simplicity.

2.3. The Lee-Carter model

Lee and Carter (1992) originally developed their model
for describing and predicting age-specific mortality. The
LC model assumes that the logarithm of the mortality rate
m(x, t) for age x during year t(x = 1,2,...,X; t =
1,2, ...,T) can be written as

In(m(x, t)) = a(x) + b(x) - k(t) + e(x, t). (1)

Eq. (1) tells us that the rate m(x, t) in logarithmic form
is a function of a general age profile a(x) and a time trend
k(t). The time trend is not the same for all ages, but is
modified with an age profile b(x). This indicates how the
different age groups react to mortality change. The error
term e(x, t), with expectations equal to zero and a variance
that is independent of both x and t, captures factors that are
not included in the model.

Without further constraints, the parameters b(x) and
k(t) are not unique. For instance, when b(x) and k(t) sat-
isfy Eq. (1), then c - b(x) and k(t)/c also satisfy Eq. (1) for
any non-zero constant c. In order to obtain unique param-
eter estimates, one usually adds identifying constraints to
Eq. (1). Many authors follow Lee and Carter and assume
>yb(x) = 1and X:k(t) = 0. The restriction on k(t) im-
plies that a(x) can be estimated as the average log-rate
X In(m(x, t))/T, where the average is taken over time.
This shows that one can interpret a(x) as a standard age
schedule in the sense of relational methods. Since there
are no regressors in the right hand side term of Eq. (1),

ordinary regression cannot be used for estimating the pa-
rameters b(x) and k(t). Instead, Lee and Carter, and many
authors since, estimated the parameters by singular value
decomposition (SVD) of the matrix formed by subtracting
a(x)-estimates from In(m(x, t)). Briefly, the singular value
decomposition of an m x n matrix M is a factorization

M=U.-x VT, (2)

where U is an m x m orthogonal matrix, X' is an m x n rect-
angular diagonal matrix (only the entries 011, 023, . . ., Oss
of X' are non-zero (s = min(m, n)) which contains the sin-
gular values of M, and V7 is the transpose of an n x n or-
thogonal matrix V. The first column of U times o, times
the first row of VT has the best rank-1 approximation to
the input matrix M.

The LC-model has turned out to be particularly attrac-
tive for many mortality applications because the estimated
time trend is roughly linear. Lee and Carter modelled the
estimated time series k(t) as a RWD, and used the extrap-
olated k(t) values to predict age-specific mortality rates for
future years.

Following these ideas, we assumed that the logit-
transformed fractions & (x, t) for each case m as defined in
Section 2.2 (m = 2, 3, 4, 5, 6) and for men and women can
be written as

E(x, t) = ax) + b(x) - k(t) +e(x, t). (3)

Here, we have suppressed the indices for m and sex. The
model was estimated by SVD, with identifying constraints
for b(x) and k(t) and assumptions for e(x, t), as stated
above. Instead of the usual RWD model, we initially
assumed a slightly more general model for the time index
k(t). The assumption was that the time index would follow
an autoregressive model of order 1 (AR1), including a
constant term. In other words,

k(t+1) =D+ p-k(t) +d(t), (4)

where p is the autoregressive parameter, and d(t) is an
error term with zero expectation, zero autocorrelation, and
constant variance. In many cases, the estimate of p turned
out to be very close to one. If one assumes that p equals
one, Eq. (4) reduces to a RWD-process, i.e, k(t + 1) =
D + k(t) + d(t), where D is the drift. Under such a model,
the time-increment A& (x,t) = E(x,t + 1) — &(x, t) for a
given age x can be written as

A§(x,t) =b(x) - {D+d(D)} + Ae(x, t). (5)

Eq. (5) can be interpreted as a random walk with drift
(Girosi & King, 2008). The drift equals b(x) - D, while the
random part consists of innovations b(x) - d(t) + Ae(x, t).

Starting from a known value & (x, T) in year T, a future
value£(x, T + h) hyearsahead (h=1,2,3,...)is

ExX,T+h) =ax) +bx)-k(T+h)+ex, T+h). (6)

The RWD-assumption for the time index implies that
k(T+h) =k(T)4+h-D+d(T)+---d(T +h—1).Inserting
this into Eq. (6) gives
EX,T+h) =ax)+bX) - {kK(T)+h-D+d(T)+---

d(T+h—1)}+ex T+h). (7)
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A forecast for h years ahead can be computed as

E[E(x, T + h)] = a(x) + b(x) - {k(T) + h - D}, (8)

where E[.] denotes expectations and a(x), b(x), k(T), and
D have been replaced with their estimated values.

2.4. The Brass relational method

We have used a Brass type of relational model for
the transformed shares. The Brass relational model was
originally intended for modelling age-specific survival
from birth to age x, and can be written as

YX)=a+b-Y(x) +e®),

where Y (x) is the logit-transformed probability of survival
from birth to age x, while Y° (x) is some standard age pat-
tern of survival, also in logit form. a and b are coefficients to
be estimated from the data, and e(x) is an error term. The
model is linear in its parameters, and hence, one can es-
timate them using an ordinary least squares (OLS) regres-
sion. Changing the parameter a shifts the age pattern up or
down, while b changes its slope. See e.g. Preston, Heuve-
line, and Guillot (2001) for a thorough discussion.

In a first stage, we used an OLS regression to estimate
the Brass relational model applied to the age pattern of
logit-transformed fractions & (x, s, t) (m = 2,3,4,5,6)
as defined above, for each year, and for men and women
separately. For each m, the standard age pattern £° (x) was
defined as the average value of £(x, t), where the aver-
age was taken over all years t, for a given combination of
age and sex. Hence, for each m, we obtained estimates of
the parameters a and b that varied over time and between
sexes. However, in most cases we noticed a gradual in-
crease or decrease in the estimates of a and b over time.
This suggested that a and b could be written as linear func-
tions of time, i.e.

Ex,t)=@A+a-t)+B+b-t) X +e,t),

dropping the distinction by sex. In order to avoid spurious
correlations, we detrended this model by taking first dif-
ferences, and found

AE(x,t) =a+b-E(x) +dx, t), 9)

where A§(x,t) = &E(x,t) — E(x,t — 1), and d(x,t) =
Ae(x, t) is an error term.

Eq. (9) defines &£(x,t) as a random walk with drift
(RWD). The drift a + b - £%(x) consists of two parts: one
part (a) is common for all ages, whereas the other (b-£5(x))
is an age-specific part. The term £°(x) preserves the age
pattern in the random walk increments for each type of
fraction m. The innovation variance is 2 = Var[d(x, t)].In
a second stage, the results of which are reported below, we
estimated the parameters a and b by OLS regression (across
X), assuming an innovation variance that is independent of
age and time.

Starting from a known value & (x, T), a future value h
years ahead (h =1, 2,...)is

EX,TH+h =X T)+h-(a+b-£5(x))

Hence, a forecast h years ahead can be computed as

EEX, T+ ] =ExT)+h-(@+b-£x), (10)

where a and b have been replaced with their estimated
values.

Note the difference between Eq. (5), based on the
Lee-Carter approach, and Eq. (9), with the Brass relational
method as a starting point. Both can be interpreted as
RWD-models. However, as was noted above, the drift of the
Brass-RWD in Eq. (9) consists of one part that is common
for all ages x, and another part that is age-specific. On the
other hand, the drift of the LC-RWD in Eq. (5) is age-specific
only.

3. Estimations
3.1. Lee-Carter

We fitted Eq. (3) to the logit-fractions &, to & by means
of SVD, by age group (15-19, 20-24, ..., 90-94, 95+) and
sex, for the years 1996-2010. Fig. 2 plots the fit for the first
and last years in the period. The fits are excellent, without
exception. This is not surprising, because in each case (for
instance men, m = 2) there are 17 age groups and 15
years of observations, making a total of 255 observations.
These are modelled by 17 (for a(x)) + 17 (for b(x)) +
15 (for k(t)) = 49 parameters, which makes an extremely
high parameters-to-observations ratio of 0.19. For later
reference, note that the age profiles for m = 2 (COHMAR),
m = 3 (MAR), and m = 4 (SINOINST) cross between 1996
and 2010. The trend was downwards at some ages, but
upwards at others.

Fig. 3 plots annual estimates of the time index k(t) as
dots, with an assumed RWD-process for k(t) as a straight
line. The first row of the panel shows that living as a couple
has become less frequent over the period, both for the
combined household position of cohabiting and married
(COHMAR; m = 2), and for the position married given that
one lives with a partner (MAR; m = 3). Living alone or
in an institution (SINOINST; m = 4) has clearly become
more frequent, particularly for men, which is driven by the
increasing importance of living alone (SINO; m = 5); cf. the
second row of plots. There is no clear time pattern for lone
fathers (SINp; third row), but lone mothers became more
frequent from the beginning of the 21st century.

The random walk with drift process was fitted as a
straight line between the first and last estimates. One
important assumption for such a RWD process is that the
innovations d(t) are uncorrelated. However, there are a
number of cases in which this assumption is not realistic.
Strong autocorrelation is visible in the plots for m = 2
(COHMAR) for women, m = 5 (SINO), and m = 6 (SINp)
for women. In such cases, an autoregressive model seems
to be more appropriate than a RWD model. In addition,
the plot for the case of m = 6 (SINp) for men shows no
systematic drift, meaning that it is unrealistic to assume a
random walk process with a non-zero drift.

Table 1 reports parameter estimates for an autoregres-
sive model of order 1 (AR1), and a random walk with drift.
It turns out that the constant term of the AR1 model is
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Fig. 2. Fit of logit of fractions to a Lee-Carter model for m = 2 (COHMAR) to m = 6 (SINp), men and women, 1996 (red line, blue dots) and 2010 (yellow
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Table 1

Parameter estimates for two time series models for the time index k(t) of the LC model: a first-order autoregressive model (AR1) with constant term D and
autoregressive parameter p, and a random walk with drift model (RWD) with drift D. Student-t values are given in parentheses.

m Men Women
AR1 RWD AR1 RWD
D P D D P D
2 0.0919 0.9876 —0.1354 0.0028 0.9873 —0.0755
(0.1) (14.1) (—11.3) (0.0) (11.3) (—10.2)
3 0.2807 0.9877 —0.4671 0.1748 0.9863 —0.2547
(0.1) (13.5) (—12.4) (0.1) (12.1) (—6.4)
4 —0.1118 0.9859 0.2596 —0.0054 0.9882 0.0468
(—0.1) (12.9) (6.8) (—0.0) (13.4) (15.6)
5 —0.5283 0.9873 0.4831 —0.8042 0.9870 0.5880
(—0.2) (12.4) (10.9) (—0.2) (11.3) (9.7)
6 —0.0795 0.0745 0.0735 0.0429 0.9765 0.0367
(—0.7) (0.2) (0.5) (0.2) (9.4) (3.6)

never significantly different from zero, while the autore-
gressive parameter o has an estimate that is almost equal
to one in all but one case (men, m = 6). This suggests
that a RWD is a good choice for the time index, provided
that one accepts that error terms of this RWD may be cor-
related. Estimation using OLS would lead to overly small
standard errors, meaning that standard t-tests would not
apply. Therefore, the results in Table 1 were estimated by
maximum likelihood. For all nine cases, we note that the

drift estimates have the signs that we would expect, based
on Fig. 3. For the case of men, m = 6, a simple random walk
is an appropriate choice.

3.2. Brass

We fitted the Brass-RWD model in Eq. (9) by means of
OLS to empirical values of the logit-fractions &, to &g, by age
group (15-19, 20-24,...,90-94, 95+ ) and seX, for the years
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Fig. 3. Fit of the time index k(t) estimates (dots) to a random walk with drift process (solid line) for m = 2 (COHMAR) to m = 6 (SINp), men and women.

Table 2
Parameter estimates and coefficients of determination for the Brass
model in Eq. (9).

m  am bm R?
Estimate t-value Estimate t-value (%)
2 —0.0060828 —2.8 —0.0049615 -23 3.0
3 —0.034871 —4.1 0.0091232 2.7 2.4
4 —0.0045308 —14 0.0097361 42 2.1
5 0.0483856 14.0 —0.0097381 -7.3 8.1
6 0.014209 3.6 0.0089384 1.0 1.6

1996-2010. As the parameter estimates for each type of
fraction &, (x) differed little between men and women, and
differences were not significant in most cases, we fitted
the model for the two sexes combined. Table 2 gives the
results. The estimate of bg is not significantly different from
zero (at the 5% significance level). Thus, in this case the
RWD contains a drift that is independent of age; cf. Eq.
(9) above. Very little of the variation in A& is explained
by this model; note the R?>-values of 2%-8%. Note however
that this concerns first differences in &, which are quite
small compared with the actual &-values. Indeed, one-
year-ahead in-sample predictions of & (x, t) - for instance
E[£(x, 1997)] given the value of & (x, 1996) - agree with
the data much better (not shown here). Out-of-sample
predictions until 2020, 2030, and 2040 are presented in the
next section.

4. Predictions

In Fig. 4, we show shares «; for women in selected
household positions, namely COH (j = 3), MAR (j = 4),
SINO (j = 2), and COH + MAR combined (a3 + «4) for
the years 1996, 2010, 2020, 2030, and 2040, based on
in-sample and out-of-sample predictions of the LC-RWD
model. While the age profile for cohabiting women seems
reasonable for future years, that for women who live with
a marriage partner becomes increasingly skewed by 2040.
By then, women younger than age 40 are very unlikely to
be married, while the opposite seems to be the case for
those around age 70. In order to check for a possible sub-
stitution between household positions COH and MAR, one
can also inspect the combined plot for these two positions
(COH + MAR). This shows an unrealistic distortion in the
age profile occurring at age 60, due to the estimates B(x)
(not shown here) for this combined household position
(m = 2; see Section 2.2), which fall from positive values
for ages up to 55, to negative values for ages 60-90. This is
a consequence of the cross-over in the age profile between
1996 and 2010 that was noted in connection with Fig. 2.
The time index k(t) starts with a negative value in 2010,
and falls further for future years because its drift is negative
(—0.0755; see women, m = 2 in Table 1). As a result, the
product b(x) - k(t) pushes the age profile for these women
down for ages up to 55, but pushes it up for ages 60-90 (the
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Fig.4. Shares of women in selected household positions; observed values in 1996 and 2010, Lee-Carter random walk with drift predictions in 2020, 2030,

and 2040.

estimate for b(x) at age x = 95 is slightly positive again).
A similar distortion can be seen in the age profile for mar-
ried women. Again, the b(x)-estimates (not shown here)
change sign: they are positive for ages 15-55, and negative
for ages 60 and over. Because of the hierarchy, these distor-
tions propagate to cases m = 4, 5, and 6. Indeed, in spite
of the strictly positive b(x)-estimates (not shown here) for
women who live alone (SINO), some odd twists in the age
profile are visible for the years 2030 and 2040. We do not
show any results for men here, but their age patterns dis-
play distortions similar to those for women.

More generally, the LC-RWD model may lead to
distorted age patterns when the estimates of b(x) change
signs. In that case, twists in the age patterns may occur:
for positive values of k(t), b(x)-estimates that are positive
at some ages and negative at others indicate that the
dependent variable tends to rise at some ages while
falling at others. For negative k(t)-values, the situation is
reversed. Lee and Miller (2001) argue that, for the case of
mortality, b(x) does not change sign in practice, as long as
the model is fitted over a fairly long period. This is because,
in most countries of the world, mortality has declined at
all ages in the long run; however, this is not the casein
our household application. Would other identification
constraints for b(x) help? One possibility could be to
require X,b*(x) = 1(Girosi & King, 2008; Wilmoth, 1993),
or to estimate the model using the restriction that all b(x)
must be non-negative. This is not pursued here, because
the true underlying cause is not the choice of restrictions,
but the particular form of the LC-model. A singular value
decomposition of the matrix M (x, t) = {In(m(x, t)—a(x))}
results in three unique matrices, U, ¥ and V. Thus, if one
requires b(x) > O for all x, this will alter the estimates of
k(t), because the product of these two still has to be equal
to the rank-1 approximation of M (x, t). As aresult, the k(t)
estimates will probably no longer resemble a straight line,
which will make it more difficult to extrapolate them to
future years.

We now turn to shares computed by means of the Brass-
RWD model; see Fig. 5. Unlike the LC-RWD extrapolations
in Fig. 4, the age profile of women who live with a mar-
ital spouse (MAR; j = 4) does not show any unrealis-
tic twists. Except for the distortions in the age profile, the
Brass extrapolations show roughly the same patterns as
the Lee-Carter extrapolations in the previous figure.

Note that the Brass method predicts a continuous fall
in the shares of MAR at ages 20 to 60, in line with his-
torical observations. For ages 65 onwards, the shares for
MAR increase between 1996 and 2010, due to falling mor-
tality rates, and hence, the postponement of widowhood.
However, unlike the LC-RWD model, the Brass-RWD model
does not pick up this time trend in the shares for MAR, cf.
Fig. 4. Extending the Brass model with a third parameter
to represent the shape better at some ages (cf. Ewbank,
Gomez de Leon, & Stoto, 1983, for the case of mortality)
might solve the issue, but we have not done that here, be-
cause, with only 16 years of data, we wanted to keep the
number of parameters to a minimum.

Fig. 5 reveals another issue. The per annum change in
age-specific shares for positions COH and MAR appears to
be stronger in the observation period 1996-2010 than over
the period 2010-2040. The reason for this is that the shares
of MAR for women younger than 40 years of age fell more
steeply over the first few years of the observation period,
roughly the period 1996-2000, than during the remaining
years, roughly 2001-2010. The same can be said of the
corresponding fractions for m = 3 in the logit scale. Thus,
there are a few years with relatively large values of &5 (x, t),
and many years with smaller values. For the Brass-RWD
model, the standard profile 535 (x) for the fractions &3(x, t)
is taken as the average value of &3(x, t) over the years
1996-2010. Therefore, this average is smaller than one
would expect from a simple comparison of the profiles for
the two years 1996 and 2010. These relatively small values
of the standard, together with the estimates for model
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Fig. 5. Shares of women in selected household positions; observed values in 1996 and 2010, Brass random walk with drift predictions in 2020, 2030, and

2040.

parameters a and b, define the annual increments in the
predictions of &3(x, t); see Eq. (10). Note that this feature
of tempo changes in the development of age profiles is
not observed in the corresponding predictions from the
LC-RWD model; cf. Fig. 4. This is because the annual
increments in LC-RWD predictions are determined by the
product D - b(x) (see Eq. (8)), not by the standard profile in
the LC-RWD model, namely a(x).

5. Conclusions and discussion

We have formulated two different time series models
for changes over time in the age profiles of six household
positions that men and women can occupy at any point in
time. These household positions are living alone, cohabit-
ing, living with spouse, lone parent, living in some other
private household position, and living in an institution.
Preserving the characteristic features of such age profiles
while accounting for their changes over time is an impor-
tant task when predicting the household positions of indi-
viduals into the future. Both models are random walk with
drift (RWD) models, in which the year-on-year step for the
household parameter consists of a certain fixed term (the
drift) plus a normally distributed error term with zero ex-
pectation. We tested two different versions of the RWD
model, namely one based on the Lee-Carter model (LC-
RWD model), which was originally developed for age pat-
terns of mortality, and the other starting from the Brass
relational model, which also stemmed from mortality anal-
yses (Brass-RWD model). When the models are applied to
data from the Netherlands for the period 1996-2010, we
find that the Brass-RWD model predicts more realistic age
profiles of household parameters than the LC-RWD model.
This is because of the particular form of the LC-RWD model.

When empirical age profiles show a cross-over (a down-
ward trend for some ages, and an upward trend for oth-
ers), the LC-RWD model is not appropriate, as one of its
parameters, namely the b(x)-vector, may have both posi-
tive and negative values. This may lead to extrapolated age
patterns for future years that are distorted strongly. This
distortion becomes more severe for more distant years,
because the b(x) values are multiplied by falling or in-
creasing values of a second vector, namely the time index
k(t) of the model. Extrapolations obtained using the Brass-
RWD model did not show these kinds of distortions in our
application.

The Brass-RWD model may be viewed as a two-
parameter model (parameters a and b, see Eq. (9)), which
makes it more flexible than the one-parameter LC-RWD
model (parameter D in Eq. (5)). Thus, the fact that
the Brass method works better should not come as a
surprise. Unless the time series data being modeled and
projected are predominantly linear, the two- parameter
RWD will almost certainly outperform the one-parameter
RWD.

A second, more general reason to prefer the Brass-RWD
model to the LC-RWD model is the fact that the parameters
of the former can be estimated very simply by ordinary
least squares regressions. Closed form expressions for
standard errors of the estimates, and standard deviations
of the forecast errors, can be obtained using many
statistical packages. On the other hand, the LC-RWD model
is estimated by a singular value decomposition. While this
decomposition has been included in statistical packages
as well, it is not straightforward to obtain standard errors
of the parameter estimates. Lee and Carter (1992), and
many others since, used bootstrapping to simulate these
errors. They also simulated prediction intervals, but they
had to base their simulations on a number of assumptions.
Hence, as they admit, the intervals that they obtained
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may have been too narrow. An alternative in the context
of mortality, which was suggested originally by Wilmoth
(1993), is to assume that deaths counts follow a Poisson
distribution, with the Poisson parameter modelled by
means of the LC-model. Next, one can use the maximum
likelihood method to estimate the LC parameters and the
corresponding standard errors; see Chapter 5 of Alho and
Spencer (2005) for a general treatment. One issue here is
that, under this model, the exposure time E(x, t) for the
population at risk of dying in the age-time interval depends
on the LC parameters, which leads to a complicated
likelihood function. However, in one application, Alho and
Nyblom (1997) found assuming an exposure time that is
independent of the model parameters to have very little
effect.

Clearly, in certain specific cases, the effect that we
call “distortion” could be the result of cohort effects. For
instance, the age profile of women who live with their
spouses could display a maximum at a certain age in a
given year because these women have a more positive
view on marriage than women from other birth cohorts.
If this cohort effect lasts, the top in the profile will move
to higher ages for later years. While cohort effects of this
type cannot be excluded in general, we do not believe that
they cause the distorted age patterns for shares MAR and
SINO in Fig. 4. If this were the cause, the top of the curve
would shift to the right by ten years of age for every ten-
year period. Implementing any explicit cohort effect in the
models would require a standard profile for birth cohorts,
in addition to one for periods. We have not done this here,
because we wanted to keep the number of parameters to a
minimum due to our relatively short time series.

As Section 4 showed, the Brass model has its limitations.
In our application, it was not able to model the postpone-
ment of widowhood among married women. This problem
could be solved by adding one or more parameters to the
model, thus making it more flexible.

Another issue is that of coherence between men and
women. In the observed data, there is a close correspon-
dence between the numbers of men and women in house-
hold types COH and MAR. The numbers are not exactly
equal, due to partnership formation and marriage across
international borders, same-sex couples, and errors in the
registration, but they are close. However, this coherence
is lost when we predict shares for cohabiting and married
men and women separately. When the predicted shares
are combined with the results of a forecast of the popu-
lation broken down by age and sex, this may lead to very
different predictions for the numbers of men and women
in household positions COH and MAR.

To sum up, this paper shows how data reduction tech-
niques stemming from mortality analysis can be used to
describe and project household dynamics. More specifi-
cally, we show that the Brass method has considerable ad-
vantages over LC for this particular data set: the resulting
age patterns for men and women in various household po-
sitions look more realistic, and the model parameters are
easier to estimate. At the same time, we have to acknowl-
edge its limitations: some time trends are not captured, the
model does not include cohort effects, and the coherence
between men and women who live in a partnership is not
taken into account.
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