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ARTICLE INFO ABSTRACT
feyWOdef This paper proposes a sparse cointegration method. Cointegration analysis is used to
ASsSo

estimate the long-run equilibrium relationships between several time series, with the
coefficients of these long-run equilibrium relationships being the cointegrating vectors. We
provide a sparse estimator of the cointegrating vectors, where sparse estimation means
that some elements of the cointegrating vectors are estimated to be exactly zero. The
sparse estimator is applicable in high-dimensional settings, where the time series is short
compared to the number of time series. Our method achieves better estimation and forecast
accuracy than the traditional Johansen method in sparse and/or high-dimensional settings.
We use the sparse method for interest rate growth forecasting and consumption growth
forecasting. The sparse cointegration method leads to important forecast accuracy gains
relative to the Johansen method.
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1. Introduction

High-dimensional data sets containing thousands of
time series are commonly available and can be accessed
at a reasonable cost (Fan, Lv, & Qi, 2011; Stock & Wat-
son, 2002). Recently, there has been a considerable amount
of work on exploiting the large amount of information
contained in these data sets for forecasting purposes. To
handle the dimensionality, various large time series mod-
els, containing large numbers of time series relative to
the time series length, have been considered. Common
approaches include factor models (e.g., Stock & Watson,
2002), Bayesian vector autoregressive (VAR) models (e.g.,
Banbura, Giannone, & Reichlin, 2010), and reduced-rank
VAR models (e.g., Carriero, Kapetanios, & Marcellino, 2011
and Bernardini & Cubadda, 2015), among others. Typi-
cally, though, these authors have not accounted for coin-
tegration. Instead, either the time series are transformed
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in order to achieve stationarity (Bernardini & Cubadda,
2015), or the (non-)stationarity is accounted for in the
prior distribution of the autoregressive parameters (Ban-
bura et al., 2010). In cointegration analysis, we estimate
long-run equilibrium relationships between several time
series, often as implied by economic theory.

This paper develops a cointegration method for high-
dimensional time series. The vector error correction model
(VECM; e.g., Liitkepohl, 2007) is used to estimate and test
for the cointegration relationships. Various cointegration
tests exist (e.g., Engle & Granger, 1987 and Phillips &
Ouliaris, 1990), with the cointegration test of Johansen
(1988) being the most popular. However, Johansen’s
maximum likelihood approach has various limitations. In a
high-dimensional setting, where the number of time series
is large compared to the length of the time series, the
estimation imprecision will be large. Johansen’s approach
is based on the estimation of a VAR model and a canonical
correlation analysis. One drawback of the VAR is that the
number of parameters that it uses increases quadratically
with the number of time series included. As a consequence,
the regression parameters will be estimated inaccurately
if only limited numbers of time points are available. When
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the number of time series exceeds the time series length,
Johansen'’s approach cannot even be applied.

We introduce a penalized maximum likelihood (PML)
approach that is designed for estimating the cointegrat-
ing vectors in a sparse way, i.e., with some of its compo-
nents estimated as exactly zero. Sparse estimators have
been shown to perform well in various fields, such as eco-
nomics (e.g., Fan et al., 2011), macroeconomics (e.g., Ko-
robilis, 2013; Liao & Phillips, 2015), finance (e.g., Zhou,
Nakajima, & West, 2014), and biostatistics (e.g., Fried-
man, 2012). Sparse cointegration methods are useful for
several reasons. First, sparsity facilitates model interpre-
tation, since only limited numbers of time series, those
corresponding to the non-zero coefficients, enter the esti-
mated long-run equilibrium relationships. Second, sparsity
improves the forecast performance through a variance re-
duction. Third, unlike Johansen’s maximum likelihood ap-
proach, the sparse approach can still be applied when the
number of time series exceeds the time series length.

We show in a simulation study that the sparse
cointegration method outperforms Johansen’s method
significantly when the cointegrating vectors are sparse or
when the number of time series is large compared to the
time series length. Furthermore, we evaluate the forecast
performance of the proposed sparse cointegration method
on two data sets. We show that important gains in forecast
accuracy can be obtained by accounting for cointegration
and by estimating the cointegrating vectors sparsely.

The remainder of this article is structured as follows.
We describe the sparse cointegration method in Section 2.
Section 3 provides more details on the algorithm. Sec-
tion 4 discusses the rank selection criterion (Bunea, She, &
Wegkamp, 2011) for determining the cointegration rank.
Section 5 presents the results of a simulation study. Sec-
tion 6 discusses two forecasting examples: first we fore-
cast interest rate growth, then we forecast consumption
growth. Finally, Section 7 concludes.

2. Penalized maximum likelihood

Let y; be a g-dimensional multivariate time series. We
assume that the vector process y; is integrated of order
one I(1), meaning that its first difference is stationary.
Note that y; can be I(1) even if some of its components
are stationary (Johansen, 1991, Ch. 5). Furthermore, we
assume that y, follows a vector autoregressive model of
order p, denoted VAR(p). Any pth order VAR can be re-
written in a vector error correction (VECM) representation
(Hamilton, 1991) as follows:

p—1
Aye=) Tidyi+My_1+e, t=p+1,....T,
i=1

(1)

where I'y, ..., I',_q are g x g matrices containing short-
run effects, I isa q x g matrix of rankr, 0 < r < g, and
& is assumed to follow a Ng(0, X).

If we can express I = af’, with  and B being g x r
matrices of full column rank r, with 0 < r < g, then
the linear combinations given by By, are stationary and
¥: is said to be cointegrated with cointegration rank r.

The cointegrating vectors are the columns of 8, and the
adjustment coefficients the elements of c.

We estimate the model parameters by penalized
maximum likelihood (PML). It is convenient to rewrite
Eq. (1) in matrix notation:

AY = AY,T +YII' +E, (2)

where AY = (Aypi1, ..., Ayr)s AY, = (AXpya, .-,

AXr) with AX; = (Ay,_4, ..., Ay{_p_H)’; Y=...,

yT—l),; r= (r], ey rp_1)/; and E = (€p+1v ey €T)/.
Consider the penalized negative log-likelihood

1
LT, 11, Q) = ftr((Ay — AY,T — YIT))
x Q(AY — AY,T — yn/)/) ~log|@|

+A1P1(B) 4 APy (T) + A3P3(R2), (3)

with tr(-) denoting the trace, @ = X', and P;, P, and
P3 being three penalty functions. We use L; penalization
(see Tibshirani, 1996, in reference to the lasso) on the
cointegrating vectors S:

q r
PiB) =D IBil. (4)

i=1 j=1

By adding the L; penalty to the objective function in
Eq. (3), we obtain a sparse solution: some elements of 8
are estimated to be exactly zero. We use L; penalization on
the short-run effects I and the off-diagonal elements of the
inverse error covariance matrix € similarly.

The aim is to select T', IT and £ so as to minimize Eq. (3)
subject to the constraint

n=af,

where « and f are g x r matrices of full column rank
r. The matrices & and B are not defined uniquely. For
identifiability purposes, we impose the normalization
conditions o’Qa = I,. For the unpenalized case (A, =
0, A, = 0 and A3 = 0), the objective function in
Eq. (3) boils down to that introduced by Johansen (1988).
The unpenalized case can be solved using either the
closed-form expressions of Johansen (1988) or the iterative
algorithm described below.

3. Algorithm

To find the minimum of the penalized negative log-
likelihood in Eq. (3), we solve iteratively for IT conditional
on I' and ; for T conditional on IT and 2; and for
conditional on T and II.

3.0.1. Solving for I conditional on T and R

When I and R are fixed, the minimization problem in
Eq. (3) with IT = B’ is equivalent to

A 1
(&, B)|T R = argmin ¥tr((AY — AY,T — YBa)
op

x (AY — AYT — Yﬂo/)’) + MP1(B),
(5)
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which boils down to a penalized reduced rank regression
(Chen & Huang, 2012). We begin by estimating o
conditional on g, then estimate f conditional on a.

For a fixed @, the minimization problem in Eq. (5)
reduces to

1
a|T @, B = argmin ftr((AY — AY,T — YBa)
o

x Q(AY — AY,T — Yﬂa/)/),

subject to o’ Q& = I, which is a weighted Procrustes prob-
lem (Lissitz, Schonemann, & Lingoes, 1976). This weighted
Procrustes problem for « can be seen as an unweighted
Procrustes problem for o* = 2'/?a. The solution is

a=e "W,

where U and V are obtained from the singular value de-
composition of

BY (AY — AY,I)QY? = UDV'.

Chen and Huang (2012) only consider the case where =
I, and use a Procrustes problem to solve for «. A weighted
Procrustes problem takes the covariance structure into ac-
count.

For a fixed «, the minimization problem in Eq. (5)
reduces to

A 1
BIT , & = argmin ?tr((AY — AY,T — YBa)
B

x Q(AY — AY,T — Yﬂtx’)/) + AP1(B). (6)

Since o’a* = I, there exists a matrix e** with orthonor-
mal columns such that (a*, &**) is an orthogonal matrix.
Then, withY = AY — AY,T,

tr((f/ — YBa)QUY — Yﬁa’)/)
= (Y — YBa)@'/?|?
= (YR'? - YBa)|
= [(YQ* — YBa) (e, ™) |?
= (Y@ — YB)|I” + [[(YR?a* D)%,

where || - || denotes the Frobenius norm for a matrix. Since
the second term on the left-hand-side does not involve S,
the minimization problem reduces to

~ 1 ~
BIT R, « = argmin ¥tr((Yﬂl/2a* -Yp
B

x (¥R — YB)') + 14P1(B). @)

which is a penalized multivariate least squares regression
of YR'2a* on Y.

3.0.2. Solving for T conditional on IT and R
When IT and @ are fixed, the minimization problem

in Eq. (3) is a penalized multivariate regression of
(AY — Yl'[’) on AY; (Rothman, Levina, & Zhu, 2010).

3.0.3. Solving for & conditional on T and IT

When T and II are fixed, the minimization problem
in Eq. (3) corresponds to penalized covariance estimation
(Friedman, Hastie, & Tibshirani, 2008).

3.1. Convergence criterion

We iterate our solving of the minimization problems
described above until the relative change in the value of
the objective function, i.e., the penalized log-likelihood in
Eq. (3), in two successive iterations'is smaller than a pre-
specified tolerance level ¢, chosen to be ¢ = 1072, Al-
though there is no proof of convergence of the algorithm,
we have observed it empirically in all real data examples
and all simulation runs. For a data set (generated as in the
simulation study in Section 5) consisting of ¢ = 4 time
series, each of length T = 500, an average of three iter-
ations were needed for convergence, while four iterations
were needed for convergence on average with ¢ = 11 and
T =50.

3.2. Selection of tuning parameters

Tuning parameters are selected at each step of the iter-
ative algorithm. We select the tuning parameters A, con-
trolling the penalization on the cointegrating vectors, and
A, controlling the penalization of the short-run effects,
based on a time series cross-validation approach (Hynd-
man, 2014), see Appendix A. The tuning parameter X3, con-
trolling the penalization on the off-diagonal elements of €,
is selected according to the Bayesian information criterion
(Friedman et al., 2008). As a default, we use a grid of one
hundred X, values, five A, values and five A3 values.

3.3. Starting values

Starting values for €, T and g are required. We take the
identity matrices for  and I'y, k = 1,...,p — 1. For B,
we take the first r eigenvectors of the matrix EY_Y] Yyay

A

550y Zayy, where we take Zyy and Xy ay to be diagonal
and EYAY = E,AYY to be the sample covariance matrix
between Y and AY.

We performed several numerical experiments to inves-
tigate the robustness of the outcome of the algorithm to
the choice of starting values. The choice of starting values
is unimportant in low-dimensional settings, but more im-
portant in high-dimensional settings. Note that the starting
values should exist and be easy to compute in all settings,
which holds for our proposal.

3.4. Computation time

All computations are carried out in R version 3.2.1, and
the code of the algorithm is available on the homepage
of the first author (http://feb.kuleuven.be/public/n12066/
SparseCointegration). The PML estimator is quite quick to

1 One iteration includes one cycle of estimating IT|T, @; T'|II, 2; and
QIT, .
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compute: on an Intel Core i7-3720QM @ 2.60 GHz machine,
the computation takes eight seconds on average for a data
set consisting of ¢ = 4 time series, each of length T = 500,
and four seconds on average for a data set with ¢ = 11
and T = 50. This computation time includes the cross-
validation for the selection of tuning parameters.

4. Determination of cointegration rank

In small, finite samples, the asymptotic distribution
of Johansen’s trace statistic, used to determine the
cointegration rank, might be a poor approximation of the
true distribution, resulting in substantial size and power
distortions (e.g., Johansen, 2002 and Nielsen, 2004). We
determine the cointegration rank r using an iterative
procedure based on the rank selection criterion (RSC) of
Bunea et al. (2011). We start with an initial value of the
cointegration rank of ry. = q.

For this initial value, we obtain T using the algorithm
in Section 3. Next, we update our estimate of the
cointegration rank. Following Bunea et al. (201 1) ris glven

by the number of eigenvalues of the matrix AY'PAY that
exceed the threshold :

? = max{r : A (AY'PAY) > pu},

with AY = AY — AY,T,and P = Y(Y'Y)"Y’ being
the projection matrix onto the column space of Y. Note
that (Y'Y)™ denotes the Moore-Penrose inverse of the
matrix (Y'Y). Following the recommendation of Bunea
et al. (2011), the threshold is set equal to ;. = 252(q + 1),
under the assumption that [ < T, with [ = rank(Y) and

o IAY — PAY|?
- Tq-lg

We repeat the above procedure using the new value of 7
until the estimated cointegration rank does not change in
two successive iterations.

The rank selection criterion consistently estimates
the effective rank of the coefficient matrix IT in the
penalized reduced rank regression (Bunea et al., 2011).
The consistency results are valid when either the length
of the time series or the number of time series grows to
infinity. This procedure to determine the rank has almost
no computational cost.

5. Simulation study

We conduct a simulation study to evaluate the perfor-
mance of the PML estimator. The data generating process
(revised from Cavaliere, Rahbek, & Taylor, 2012) is the fol-
lowing VECM:

Ay =afyi_1+T1Ayi—1+e, (t=p+1,....T),

where the error terms e; follow a Ng(0, X) distribution.
We setyg = Ay, = 0. All simulated models satisfy the
assumptions of the VECM described in Section 2.

We compare the out-of-sample forecast accuracies of
the PML estimator and the ML estimator of Johansen
(1988), and find that the former performs significantly
better than the latter in sparse and/or high-dimensional

settings. In addition, we also compare their estimation
accuracies and investigate the performance of the rank
selection criterion in selecting the true cointegration rank
correctly.

5.1. Simulation designs

Two different simulation designs are considered:
(i) low-dimensional (T = 500,q = 4), and (ii) high-
dimensional with moderate time series length (T = 50,
q = 11).> We consider both sparse and non-sparse set-
tings, and report on selected representative cases below.
Full details of each selected setting are given in Table 1.

5.1.1. Low-dimensional designs

The true cointegrating vectors and the short-run effects
are sparse in the first two simulation settings, and non-
sparse in the third. The cointegration ranks are equal to
r = 1,r = 2and r = 1, respectively. While & and
belong to different spaces in the first and third settings,
they belong to the same space in setting two. Furthermore,
the error terms of the VECM are uncorrelated in settings
one and three, but correlated in setting two.

5.1.2. High-dimensional designs

The true cointegrating vectors and the short-run effects
are sparse in the first two simulation settings and non-
sparse in the third. The cointegration ranks are equal to
r = 1, r = 4and r = 1, respectively. The choices for
the relationship between « and $ and the error terms are
similar to those of the low-dimensional designs.

5.2. Estimation accuracy

We evaluate the estimation accuracy by computing the

angle 9™ (ﬁ(m), B) between the estimated cointegration
space and the true cointegration space for each simulation
runm, withm = 1,..., M = 500. The average angle is
then given by

~ 1 M A (m
0B.8) = 0" BE".B. (8)

m=1
The value of the angle varies from zero (for identical
subspaces) to 7 /2 (for orthogonal subspaces).

5.2.1. Results

Simulation results on the accuracy of the estimated
cointegration space are given in Table 2, which reports the
average angle (averaged across simulation runs) between

2 The largest number for which the critical values of Johansen’s trace
statlstlc are tabulated by Johansen (1996, Ch. 15) is ¢ = 11 time series.
3 The angle O(m)(ﬂ ﬂ) is computed as follows (see e.g. Anderson,
1958). First, compute the QR-decompositions ,B QEmRAm and 8 =
QgRg. Next, compute the singular value decomposition of ngQﬂ =

UCV'. The matrix C is diagonal, with elements ¢; > ---
minimum angle is given by B(m)(ﬂ(m) B) = cos~1(cy).

> ¢, and the
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Table 1
Low-dimensional (T = 500, ¢ = 4) and high-dimensional (T = 50, ¢ = 11) simulation designs.
Low-dimensional designs B o ) X
Sparser = 1 031><1:| a- ;iiﬂ vl I,
[ 1 0 N
Sparse r = 2 0 1 ap vl ¥y = 0.2/
_02><1 02><1
_ [ 1 [ 125 oy ifj=i
Non-sparser = 1 _0'13“] a _0‘12><1i| Tyj= {y . 10-4 if] o i vy
witha = —-0.2,-04,...,—-0.8,and y = 0.1
High-dimensional designs B o ) )
Sparser =1 (I)Zi::l a- ;2:} vl I
[M3x1 O3x1 031 03
_ 0351 131 0351 03g li=il
Sparser = 4 0ni Osei 1o Oy ap 20 Xj=0.2
L02x1 02x1 O2x1 T2y
_ [ 1354 T6x1 I 4 ifj=1i
Non-sparser = 1 _0'18><l a- 01, Tyj= v 104 if o i vl

witha =—-0.2,-04,...,—0.8andy = 0.4
Table 2
Average angle between the estimated and true cointegration spaces.
Method a
—0.2 —0.4 —0.6 —-0.8 —-0.2 —0.4 —0.6 —0.8
Low-dimensional High-dimensional
Sparseq =4,T =500,r =1 Sparseq = 11,T =50,r =1
ML 0.032 0.016 0.011 0.008 1.044 0.796 0.559 0.409
PML 0.020 0.010 0.007 0.005 0.588 0.226 0.160 0.138
Sparseq =4,T =500,r =2 Sparseq=11,T =50,r =4
ML 0.007 0.004 0.003 0.002 0.167 0.088 0.058 0.043
PML 0.006 0.003 0.002 0.001 0.138 0.065 0.041 0.029
Non-sparseq =4, T = 500,r = 1 Non-sparseq = 11,T =50,r = 1
ML 0.032 0.016 0.011 0.008 1.045 0.775 0.542 0.384
PML 0.037 0.019 0.013 0.009 0.646 0.289 0.220 0.248

Notes: The results are reported for different values of the adjustment coefficient a and dimension q of the VECM. Differences between the PML and ML

estimators that are significant at the 5% level are shown in bold.

the estimated and true cointegration spaces for different
values of the adjustment coefficients a. We use a two-sided
paired t-test to test equality of the average angle of the PML
and ML estimators.

In the sparse low-dimensional settings, the sparse es-
timator performs the best, providing estimates that are
significantly more precise than those of Johansen’s estima-
tor for almost all values of the adjustment coefficients. In
the non-sparse low-dimensional setting, Johansen’s ML es-
timator performs best, as expected. Using the PML proce-
dure does not lead to a lower estimation precision here.

The advantage of the PML estimator becomes much
greater in the high-dimensional designs. The length of
the time series is short compared to the number of time
series, such that the estimation imprecision of Johansen’s
ML estimator becomes large. Indeed, the PML estimator
outperforms Johansen’s ML estimator significantly in all
settings, including the non-sparse setting. The differences
are large. Since the PML estimator performs regularization,
its good performance is retained in the non-sparse high-
dimensional setting.

5.3. Forecast accuracy

We evaluate the out-of-sample forecast accuracy using
arolling window of size S. Let h be the forecast horizon. At
each time pointt = S, ..., T — h, we use either the PML
or Johansen’s ML estimator to estimate the VECM

p—1
AYiip = Z TiAy: - + Iy,
i=1
for different forecast horizons h € {1, 3, 6, 12}, obtaining
h-step-ahead multivariate forecast errors €n =AY —
Ay, p. In each simulation run, the overall multivariate
forecast performance is then measured using the multi-
variate mean absolute forecast error (e.g., Carriero et al.,
2011):

(9)

(i) @) |

1 A A
MMAFE — Z Z | 1BYein = BYeqnl
— h S+1 o= q O'(l)

(10)

where 6; is the standard deviation of the ith time series in
differences. The MMAFE depends on the forecast horizon h.
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Table 3
Multivariate mean absolute forecast errors using the PML and ML estimators: low-dimensional designs.
Setting h=1 h=3 h=6 h=12
Window size S PML ML PML ML PML ML PML ML
Sparseq =4,T =500,r =1
§=48 0.85 0.88 0.84 0.88 0.84 0.89 0.84 0.89
S=96 0.84 0.85 0.83 0.84 0.83 0.85 0.83 0.85
S=144 083 0.84 0.82 0.83 0.82 0.84 0.82 0.84
Sparseq =4, T =500,r =2
S =48 0.88 0.97 0.88 0.95 0.88 0.96 0.88 0.96
S =96 0.87 0.93 0.87 0.91 0.87 0.92 0.87 0.92
S =144 0.87 0.91 0.87 0.90 0.87 0.90 0.87 0.91
Non-sparseq =4,T =500,r =1
S=48 0.86 0.89 0.85 0.88 0.85 0.90 0.85 0.89
S =96 0.85 0.86 0.84 0.85 0.83 0.85 0.84 0.86
S=144 0.84 0.85 0.83 0.84 0.83 0.84 0.83 0.84
Note: the lowest values for each window size S (rows) and forecast horizon h (columns) combination are indicated in bold.
Table 4
Multivariate mean absolute forecast errors using the PML and ML estimators: high-dimensional designs.
Setting h=1 h=3 h=6 h=12
PML ML PML ML PML ML PML ML
Sparseq = 11,T =50,r =1 0.87 0.91 0.88 1.08 0.87 1.07 0.87 1.06
Sparseq = 11,T =50,r =4 098 1.16 0.99 1.28 0.98 1.26 097 1.27
Non-sparseq = 11, T =50,r = 1 0.92 0.93 0.93 1.09 0.92 1.08 0.90 1.06

Note: the lowest values for each forecast horizon h are indicated in bold.

For the low-dimensional designs, we consider various
different window sizes S € {48, 96, 144}. The window
size S is the number of time points that are available for
estimation. We expect the gain in forecast performance of
the PML estimator relative to the ML estimator to be larger
for small values of S. For the high-dimensional designs, we
only consider a window size of S = 36 to have sufficient
time points available for the estimation of the models.

5.3.1. Results

Simulation results for out-of-sample forecast accura-
cies in the low-dimensional designs are given in Table 3.
For the sake of brevity, we only report the results for a =
—0.4. The MMAFE is computed for four different forecast
horizons (columns) and three rolling window sizes (rows).
The PML estimator always obtains lower MMAFE values
than the ML estimator. A two-sided paired t-test confirms
that these improvements in forecast performance are sig-
nificant (all p-values <0.01). The forecast accuracy of the
PML estimator is also better than that of the ML estimator
in the non-sparse low-dimensional setting, though the dif-
ferences between the two are small, especially for S = 144.
Regardless of the degree of sparsity of the cointegrating
vector (i.e., the number of zero components in the coin-
tegrating vector), the largest gain in forecast accuracy of
the PML relative to the ML estimator is obtained when
the rolling window size is the lowest (S 48), and this
is true for all forecast horizons. Furthermore, the forecast
performance of the PML estimator is stable for the different
rolling window sizes, while that of the ML estimator varies
considerably with the rolling window size.

The simulation results for the forecast accuracy in the
high-dimensional designs (for a = —0.4) are given in Ta-
ble 4. The forecast accuracy of the PML estimator is signif-
icantly better than that of the ML estimator for all forecast

horizons (all p-values <0.01). Overall, the improvements
in forecast accuracy are larger for these high-dimensional
designs than for the low-dimensional designs in Table 3.
The largest forecast accuracy gains of the PML estimator
relative to the ML estimator are obtained for the longer
forecast horizons.

5.4. Rank determination

We now evaluate the performance of the rank selection
criterion (RSC) in selecting the true cointegration rank,
and compare it with the trace statistic of Johansen (1988),
the Bartlett-corrected trace statistic of Johansen (2002)
and the bootstrap procedure of Cavaliere et al. (2012),
where the latter two were proposed with the aim of
improving on the small-sample performance of Johansen’s
trace statistic.* For each method, we record the relative
frequencies of the selected cointegration ranks over all
simulation runs.

5.4.1. Results

Table 5 reports the results of the cointegration rank
estimation for the low-dimensional designs (for a
—0.4). In the first sparse setting, the rank selection
criterion performs competitively, with a rank recovery
percentage of around 89%. Johansen’s method aims
to control the size, which results in a rank recovery
percentage of around 95% when working with a 5%
significance level. Similar results are obtained for the non-
sparse low-dimensional setting, and are therefore omitted.
In the second sparse setting, RSC selects the cointegration
rank correctly in almost all simulation runs.

Table 6 reports the results on the cointegration rank
estimation for the high-dimensional designs. RSC performs

4 All tests are conducted at the 5% significance level.
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Table 5
Frequency of the estimated cointegration rank 7 = 0, . .., q using Johansen’s trace statistic, the Bartlett-corrected trace statistic, the bootstrap of Cavaliere
et al. (2012) and the rank selection criterion (RSC): low-dimensional designs.
Method T
0 1 2 3 4 0 1 2 3 4
Sparseq =4,T =500,r =1 Sparseq =4,T =500,r =2
Johansen 0.0 95.4 4.2 0.4 0.0 0.0 0.0 96.2 3.8 0.0
Bartlett 0.0 96.0 3.6 0.4 0.0 0.0 0.0 95.4 44 0.2
Bootstrap 0.0 96.8 2.8 0.4 0.0 0.0 0.0 97.2 2.8 0.0
RSC 0.0 89.4 10.6 0.0 0.0 0.0 0.0 98.8 12 0.0
Table 6
Frequency of the estimated cointegration rank 7 = 0, . .., q: high-dimensional designs.
Method 7
0 1 2 3 4 5 6 7 8 9 10 11
Sparseq=11,T =50,r =1
Johansen 0.0 0.0 0.0 1.0 9.0 15.2 52.0 14.0 7.0 1.6 0.2 0.0
Bartlett 0.0 11.2 318 20.2 14.0 6.6 6.2 4.4 3.8 1.6 0.2 0.0
Bootstrap 98.8 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RSC 0.0 57.4 40.4 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sparseq =11,T =50,r =4
Johansen 0.0 0.0 0.0 3.2 24.6 234 414 6.4 0.8 0.2 0.0 0.0
Bartlett 0.0 7.6 18.4 23.6 19.0 11.8 10.0 5.4 3.2 0.8 0.2 0.0
Bootstrap 99.0 0.8 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RSC 0.0 0.0 9.0 60.6 28.8 1.6 0.0 0.0 0.0 0.0 0.0 0.0

much better than its alternatives in all settings. In the first
setting, RSC estimates the cointegration rank correctly in
57.4% of the simulation runs, the Bartlett-corrected trace
statistic in 11.2%, the bootstrap in 1.2% and Johansen’s
trace statistic in 0%. Due to the severe size distortions in
this small sample size design, the rank recovery percentage
of Johansen’s trace statistic does not improve when
working with a significance level of 1%, for instance. Similar
results are obtained for the non-sparse setting.

When the true cointegration rank increases (r =
4 in the second setting), the performance of the rank
selection criterion becomes sensitive to the strength of
the cointegration signal: its rank recovery percentage
increases from 28.8% fora = —0.4 to 73.8% fora = —0.8
(unreported). However, RSC still performs the best.

In contrast to Johansen’s trace statistic, the RSC is not
meant to control the size. One must take into account
the difficulty of comparing size-targeting methods, such
as Johansen’s trace statistic, with consistency-targeting
methods, such as the RSC, when assessing the results on
cointegration rank determination. The RSC also has the
tendency to overestimate the cointegration rank rather
than underestimating it. Overestimation is less severe,
since the PML estimator allows some of the cointegrating
vectors, i.e., columns of §, to be estimated as zero. Then,

the actual rank of ,@ will be lower than that estimated by
the RSC.

6. Forecasting

We evaluate the forecast performance of the sparse
cointegration method on two data sets. In the first
data set, we have interest rates of different maturities.
Financial theory implies that these interest rates of
different maturities will be cointegrated. We consider
a VECM and compare the forecast performances of the

sparse cointegration method and the traditional method.
For the second data set, we forecast a large number of
industry-specific consumption time series. We investigate
the question of whether the forecast accuracy can be
improved by using the sparse cointegration method rather
than alternative methods.

We evaluate the forecast accuracy by performing rolling
window forecasting, as described in Section 5.3. We use
the rank selection criterion from Section 4 to estimate the
cointegration rank, and the BIC to select the order p of
the VECM. In addition to the multivariate mean absolute
forecast error, we also provide results for predicting the
individual time series Ayg'), i =1,...,q, by computing
the mean absolute forecast error

- @)

1 T—h A (i) — A
MAFE — Z | yt+hA yt+h|. (11)
T_h_s+1t:5 o)

We compare the forecast performances of the different
methods using the Diebold-Mariano test (DM-test, see
Diebold & Mariano, 1995).

6.1. Interest rate growth forecasting

In finance, the expectations hypothesis of interest rates
(e.g., Engsted & Tanggaard, 1994; Giese, 2008) implies
that the interest rates of different maturities will be
cointegrated. We collect monthly data on ¢ = 5 US
treasury bills with different times to maturity, ranging
from July 1969 to June 2015, giving T = 552 (source:
Datastream, Federal Reserve, US). A time plot of the
interest rates is provided in Fig. 1. All of the interest rates
move very closely together, meaning that we would expect
them to be cointegrated. A stationarity test of all individual
interest rates using the Augmented Dickey-Fuller test
confirms that the time series are integrated of order 1. We
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Table 7
Multivariate mean absolute forecast error using the PML and ML estimators.
Window size h=1 h=3 h=6 h=12
PML ML PML ML PML ML PML ML
§$=48 0.70 1137 0.70 0.86 0.74 0.98" 0.70 0.86
S=96 0.68 084 0.68 074" 0.69 077 0.70 0.75
S=144 0.63 071" 0.61 0.66 0.59 0.65" 0.58 0.65"

Note: the lowest values for each window size S (rows) and forecast horizon h (columns) combination are indicated in bold. For the DM-test of equal MMAFEs

of the two methods:
* Indicate significance at the 10% level.
" Indicate significance at the 5% level.
™ Indicate significance at the 1% level.

Interest Rates for different maturities

20
|

— IR1Y =-- IR3Y ---- IR5Y IR7Y IR10Y

15

T
1990

Time

T T T T
1970 1980 2000 2010

Fig. 1. Time plot (July 1969-June 2015) of the interest rates for the
different maturities: one year (black solid line), three years (blue short-
dashed line), five years (red dotted line), seven years (gray dot-dashed
line), ten years (orange long-dashed line). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

take the cointegration relationships implied by financial
theory into account by estimating a VECM with g interest
rates.

We investigate the behavior of the penalized maximum
likelihood estimator compared to that of the Johansen
maximum likelihood estimator when the length of the
time series varies relative to the fixed dimension g = 5.
For this purpose, we consider three different window sizes:
S € {48, 96, 144}.

The multivariate mean absolute forecast error is
computed for four different forecast horizons (columns)
and three different rolling window sizes (rows), see
Table 7. The PML estimator beats Johansen’s estimator in
all settings, and a DM-test confirms that this improvement
in forecast performance is significant overall. The MMAFE
of the PML estimator remains relatively stable as the
window size varies, whereas that of the ML estimator
becomes much worse as the window size shrinks. For a
window size of S = 48, the MMAFE of the PML estimator
is 25% lower than that of Johansen’s estimator, on average.
As the window size increases, the PML estimator still
performs the best, but the difference between the two
becomes somewhat smaller.

The mean absolute forecast errors for the five individual
interest rate time series are reported in Table 8. The

PML estimator delivers the most accurate forecasts for
all interest rates, forecast horizons and window sizes
considered. The largest forecast accuracy gains occur for
the smallest window size S.

In summary, when the time series length is short
compared to the number of time series to be predicted,
important forecast accuracy gains can be obtained by using
the sparse estimator instead of the Johansen’s estimator.
However, sparsity leads to improvements in forecast
accuracy for real data even for long time series, since the
sparse estimator delivers a more parsimonious model.

6.2. Consumption growth forecasting

Our objective is to predict a large number of industry-
specific consumption time series. We collect monthly
data on ¢ 31 US consumption time series, between
January 1999 and April 2015, thus giving T = 196 (see
Table 11, Appendix B for a data description). Personal
consumption accounts for around 70% of GDP in the
US, and is monitored closely by public policy makers
and marketing managers (Fornell, Rust, & Dekimpe,
2010). In contrast to total consumption, industry-specific
consumption time series have often been discarded
previously in the forecasting literature, as they are
typically highly collinear, which might create estimation
problems (Carriero et al, 2011). We exploit the co-
movement among these time series by forecasting the
total and industry-specific consumption growth in a
cointegration framework using the PML estimator from
Section 3. Time plots of all log-transformed consumption
time series are provided in Fig. 2 of Appendix B. A
stationarity test of all individual log-transformed time
series using the Augmented Dickey-Fuller test confirms
that they are integrated of order one, and we forecast
consumption growth using a VECM.

We conduct a rolling window forecast exercise using a
window of 12 years of data (S = 144), and compare the
performances of eight estimators. The first three estima-
tors are estimators for the (log-transformed) consumption
time series that account for cointegration, while the re-
mainder are estimators for the consumption growth time
series that do not account for cointegration. The estimators
are (1) PML estimation of the VECM (see Section 3), (2) ML
estimation of the VECM, (3) the factor model of Barigozzi,
Lippi, and Luciani (2016) for non-stationary time series,
(4) PML estimation of the VAR, (5) ML estimation of the
VAR, (6) the factor model of Stock and Watson (2002) for
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Table 8
Mean absolute forecast errors for the ¢ = 5 individual interest rate time series using the PML and ML estimators.
Window size Interest rate h=1 h=3 h=6 h=12
PML ML PML ML PML ML PML ML
1Y 0.60 0.73 0.61 074" 0.62 076" 0.60 0.66
3y 0.66 099" 0.67 0.86"" 0.68 092" 0.67 087"
S =48 5Y 0.70 125" 0.73 092" 0.77 1.01" 0.73 0.88""
7Y 0.73 146" 0.72 0.89 0.75 1.04 0.74 092"
10Y 0.81 1.19" 0.79 0.89 0.88 1.15 0.78 097"
1Y 0.54 0.57 0.55 059" 0.56 0.59 0.55 0.57
3y 0.66 0.80" 0.66 072" 0.66 072" 0.68 0.73"
$=96 5Y 0.70 0.92" 0.70 0.78’ 0.72 0.83 0.70 079"
7Y 0.73 1.01" 0.73 0.78’ 0.74 0.84 0.74 079"
10Y 0.78 091 0.75 0.84" 0.78 0.88" 0.80 0.88
1Y 0.44 048" 043 0.45 0.41 045" 0.40 043"
3y 0.59 0.68"" 0.59 0.65" 0.57 0.62 0.56 0.60"
S =144 5Y 0.64 0.79 0.64 0.71 0.63 0.69 0.60 0.66"
7Y 0.69 0.82 0.68 0.73 0.66 073" 0.64 0.76"
10Y 0.78 0.78 0.72 0.74 0.69 077" 0.69 0.80

Note: the lowest values for each interest rate and window size-forecast horizon combination are indicated in bold. For the DM-test of equal MAFEs of the

two methods:.
" Indicate significance at the 10% level.
“ Indicate significance at the 5% level.
™ Indicate significance at the 1% level.

Table 9

Multivariate mean absolute forecast errors (MMAFE) for the different methods (columns) and forecast horizons h (rows).

Forecast horizon Cointegration

No cointegration

PML ML Factor model PML ML Factor model Bayesian Bayesian reduced rank
h=1 0.79 0.74 0.66 0.94 540" 0.72 0.69 0.69
h=3 0.62 078" 0.66" 067" 481" 075" 071" 0717
h=6 0.63 082" 067" 067" 484" 077" 074" 074"
h=12 0.61 072" 0.65 0.66 " 522" 072" 072" 0.72

For the DM-test of equal MMAFEs of a given method and the PML method for cointegration:

* Indicate significance at the 10% level.
* Indicate significance at the 5% level.
™ Indicate significance at the 1% level.

stationary time series, (7) Bayesian estimation of the VAR
with the Normal-Inverse Wishart prior introduced by Ban-
buraetal.(2010),and (8) Bayesian reduced rank regression
(Carriero et al., 2011), which combines the benefits of rank
reduction and Bayesian shrinkage.” Note that the forecast
performances being always evaluated in terms of MMAFEs
or MAFEs are for the time series in differences. As a result,
the forecast errors of the different estimators are compa-
rable. We have also included an intercept in the VECM of
Eq. (1), since some of the consumption time series exhibit
drifts.

The multivariate mean forecast errors are reported in
Table 9. The PML estimator of the VECM obtains the lowest
value for all forecast horizons except for h = 1.° A DM-test
confirms that the differences in forecast performance are

5 For estimators (3), (7) and (8), the rank and the number of factors k
are determined by calculating the maximum eigenvalue ratio criterion
Ich = Xj/ij+1, forj = 1,...,q — 1, from the eigenvalues i-, o, iq and
selecting k = argmale?j.

6 Although the factor model for cointegration obtains the best MMAFE
for h = 1, its forecast performance is not significantly different from that
of the PML method for cointegration.

significant. Taking the long-run cointegration relationships
into account pays off, especially for the longer forecast
horizons. Taking cointegration into account (PML, ML,
factor model) yields significantly better forecasts than not
accounting for cointegration in almost all cases. Of the
methods that account for cointegration, the PML estimator
performs best, thus confirming that sparse estimation
improves the forecast performance. The PML estimator
of the VECM also performs significantly better than the
Bayesian estimators.

Individual mean absolute forecast errors for the sepa-
rate time series are also computed. For the sake of brevity,
Table 10 only reports them for the total consumption time
series. The results for the MAFE are similar to those of the
MMAFE. The PML and ML estimators and the factor model
that account for cointegration attain (significantly) better
MAFEs than the corresponding methods that do not ac-
count for it. The proposed PML estimator of the VECM ob-
tains the best value of the MAFE for all forecast horizons
except forh = 1.

In summary, the sparse cointegration method is a
valuable addition to the forecaster’s toolbox for high-
dimensional time series. It exploits the co-movements
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Fig. 2. Time plot (January 1999-April 2015) of the total consumption time series, the 18 durable consumption time series, and the 12 nondurable

consumption time series, all in logs.

Table 10

Mean absolute forecast errors (MAFE) for the total consumption time series, for different methods (columns) and forecast horizons h (rows).

Forecast horizon Cointegration No cointegration
PML ML Factor model PML ML Factor model Bayesian Bayesian reduced rank
h=1 3.82 0.61 0.59 6.14 47.28*** 0.59 0.65 0.66
h=3 0.46 0.66™** 0.59*** 0.59%** 44,44 0.58* 0.57** 0.57**
h=6 048 0.81%** 0.60™* 0.60** 43.96*** 0.76™** 0.7 1% 0.7 1%
h=12 046 0.62%** 0.61*** 0.61%* 57.61%* 0.64** 0.80*** 0.79**

See the notes to Table 9.

among large numbers of time series by estimating the
cointegration relationships sparsely.

7. Conclusion

This paper has discussed a sparse cointegration method.
Our simulation study shows that the sparse method

outperforms Johansen’s ML method significantly if the true
cointegrating vectors are sparse or if the time series length
is short compared to the number of time series. The degree
of sparsity that is needed in order for the sparse estimator
to outperform the ML estimator depends on the time series
length relative to the number of time series. The higher the
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degree of sparsity, the more quickly the sparse estimator
will outperform the ML estimator.

Sparse cointegration methods are useful for several rea-
sons. In high-dimensional settings with cointegrated time
series, estimating the cointegrating vectors sparsely might
improve the estimation accuracy and/or forecast perfor-
mance. We show that the sparse cointegration method
achieves important gains in forecast accuracy compared to
the traditional maximum likelihood estimator if the time
series length is short compared to the number of time se-
ries (cfr. interest rate forecasting). When forecasting highly
collinear time series (cfr. consumption forecasting), impor-
tant gains can be obtained by accounting for cointegration
and by estimating the cointegration relations sparsely.

The sparse cointegration method might suffer from
the following points. First, we impose the normalization
condition on « rather than on B. As such, the weighted
Procrustes problem might be affected by multicollinearity
issues. In addition, we also impose sparsity on 8, which is
not defined uniquely. This might pose difficulties for model
interpretation. However, the consequences of these issues
for the forecast performance of the proposed method are
less severe.

We use the rank selection criterion of Bunea et al.
(2011) to determine the cointegration rank. In high-
dimensional simulation settings, the rank selection cri-
terion outperforms Johansen’s trace statistic, the
Bartlett-corrected trace statistic and the bootstrap pro-
cedure of Cavaliere et al. (2012). While Johansen’s trace
statistic cannot be computed once the total number of
lagged time series (p — 1) - q exceeds the time series length
T, the rank selection criterion, as presented in Section 4,
requires the number of time series q to be smaller than
the time series length T. Further research is needed to
determine how to improve its implementation for truly
high-dimensional settings where q > T. The eigenvalue-
ratio-based rank estimator of Lam and Yao (2012) might
be an alternative to the RSC for such settings.

There are several questions that we have not addressed
but have left for future research. For instance, the mod-
els analyzed in this paper generally exclude determin-
istic terms (Nielsen & Rahbek, 2000). We also excluded
structural breaks, although allowing for structural breaks
can be useful when analyzing economic data (Johansen,
Mosconi, & Nielsen, 2000). A natural extension of this
study would be to implement structural analysis; for in-
stance, impulse-response functions can be estimated us-
ing the PML estimator. Confidence bounds around the
impulse-response functions can then be obtained using a
bootstrap procedure.
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Appendix A. Time series cross-validation

We select the tuning parameters following a time series
cross-validation approach (Hyndman, 2014). Denote the
response by z;. When solving for T, zz = Ay, — y;_1.
When solving for I, z; = Ay, — Zf: TiAy;_i.

1. Fort =S,...,T — 1(withS = |0.8T]), repeat:
(a) For a grid of tuning parameters, fit the model to the

dataz,...,z.
(b) Compute the one-step-ahead forecast error €,,; =
Zt41 — 2t+1-

2. Select the value of the tuning parameter that minimizes
the mean squared forecast error

ho\ 2
1 I-1q4 o®
MSFE= ——» -y (=),
T-SiZa= \%
where éfi) is the ith component of the multivariate time

series at time ¢ and & is the standard deviation of the
time series z.”.

Appendix B. Consumption time series

See Table 11.

Table 11
Consumption expenditures.
Source: Datastream, Bureau of Economic Analysis.

Total consumption

Durable consumption: Motor vehicles and parts

Durable consumption: Furnishings and durable household
equipment

Durable consumption: Household appliances

Durable consumption: Recreational goods and vehicles
Durable consumption: Video and audio equipment

Durable consumption: Photographic equipment

Durable consumption: Information processing equipment
Durable consumption: Sporting equipment, supplies, guns and
ammunition

Durable consumption: Sports and recreational vehicles
Durable consumption: Recreational books

Durable consumption: Musical instruments

Durable consumption: Jewelry

Durable consumption: Watches

Durable consumption: Therapeutic medical equipment
Durable consumption: Corrective eyeglasses and contact lenses
Durable consumption: Educational books

Durable consumption: Luggage

Durable consumption: Telephone equipment

Nondurable consumption: Food and beverages

Nondurable consumption: Food produced and consumed on farms
Nondurable consumption: Clothing and footwear

Nondurable consumption: Gasoline and other energy goods
Nondurable consumption: Pharmaceutical and other medical
products

Nondurable consumption: Recreational items

Nondurable consumption: Games, toys and hobbies
Nondurable consumption: Flowers, seeds and potted plants
Nondurable consumption: Film and photographic supplies
Nondurable consumption: Personal care products

Nondurable consumption: Magazines and newspapers
Nondurable consumption: Net expenditure abroad by US residents
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Appendix C. Supplementary data

Supplementary material related to this article can be
found online at http://dx.doi.org/10.1016/].ijforecast.2016.
04.005.
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