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a b s t r a c t

The popular volatility models focus on the conditional variance given past observations,
whereas the (arguably most important) information in the current observation is ignored.
This paper proposes a simple model for now-casting volatilities based on a specific ARMA
representation of the log-transformed squared returns that allows us to estimate the
current volatility as a function of current and past returns. The model can be viewed
as a stochastic volatility model with perfect correlation between the two error terms. It
is shown that the volatility nowcasts are invariant to this correlation, and therefore the
estimated volatilities coincide. We propose an extension of our nowcasting model that
takes into account the so-called leverage effect. The alternativemodels are used to estimate
daily return volatilities from the S&P 500 stock price index.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
ie
1. Introduction

The literature on volatility models continues to grow
steadily, driven mainly by the success of these models at
modelling financial time series, but also by the fact that
we do not yet understand some of their properties and
estimators fully. The main benchmark remains the classi-
cal GARCHmodel that was introduced by Bollerslev (1986)
and Engle (1982), due to its simplicity in estimation and
widespread availability in software packages. The GARCH
model is essentially a model for predicting the volatility for
today, given past observations. It does this quite well, as
was demonstrated by Andersen and Bollerslev (1998) us-
ing a realized volatility target instead of the commonly-
used daily squared returns. However, the GARCH model
does not offer the possibility of updating a prediction using
today’s observed data. In other words, nowcasting volatil-
ity in the GARCHmodel corresponds to using the predicted
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volatility, ignoring today’s observation. Following Ander-
sen and Bollerslev (1998), we consider a continuous time
process where the instantaneous returns are generated by
the martingale

dp(t) = σ(t) · dWp(t), (1)

where Wp(t) is a Wiener process with E[Wp(t) − Wp(t −

1)]2 = 1. In discrete time with t = 1, 2, . . . , T , the vari-
ance is

σ 2
t ≡ E[p(t)− p(t − 1)]2 =

 t

t−1
σ(s)2ds. (2)

For concreteness, let us consider the diffusion limit of the
GARCH(1,1) process given by

dσ(t) = a1[a2 − σ(t)2] · dt +


2a3a1 σ(t) · dWσ (t), (3)

where a1, a2, a3 are positive parameters and the standard
Wiener process Wσ (t) is independent of Wp(t) (see also
Andersen & Bollerslev, 1998).

Let yt = p(t)− p(t − 1)with E(yt |yt−1, yt−2, . . .) = 0,
and consider the GARCH(1,1) discrete time approximation
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of the variance process

yt =


σ 2

t|t−1 ξt

σ 2
t|t−1 = E(y2t |y

2
t−1, y

2
t−2, . . .)

= µ+ αy2t−1 + φσ 2
t−1|t−2,

where ξt is i.i.d. with E(ξt) = 0 and E(ξ 2t ) = 1. Letting
y2t = σ 2

t|t−1+vt , we can replaceσ 2
t|t−1 with y2t −vt , yielding

the ARMA representation of y2t :

y2t = µ+ (α + φ)y2t−1 + vt − φvt−1. (4)

Accordingly, the conditional variance is equivalent to the
linear forecast of y2t conditional on {y2t−1, y

2
t−2, . . .}, and the

conditional variance process results from a filtration of the
form

σ 2
t|t−1 =

µ

1 − φ
+ α

∞
i=1

φi−1y2t−i. (5)

According to the definition of the conditional variance, the
observation yt is not included in the information set; that
is, σ 2

t|t−1 is the forecast of σ 2
t based on the past observa-

tions {yt−1, yt−2, . . . , }. On the other hand, the observation
y2t is arguably the most important information about the
current volatility σ 2

t , as was noted by Politis (2007), among
others. Accordingly, the ‘‘nowcasting’’ of σ 2

t based on the
extended information set {yt , yt−1, yt−2, . . . , } may result
in more accurate estimates of the variance process.

To appreciate the importance of the current observation
for estimating (‘‘nowcasting’’) the volatility process, we
simulate the discrete analog to the continuous time
processes in Eqs. (1) and (3) for t = 1, . . . , 5000. For our
simulation experiment, we employ the same parameters
as for the DM-$process of Andersen and Bollerslev (1998).
Our parameter estimates α = 0.064 and φ = 0.91
correspond well to the estimates presented in Table 1 of
Andersen and Bollerslev (1998). To investigate how well
the estimated conditional variances predict the variance
process σ 2

t , we run a regression of σ 2
t on the estimated

GARCH(1,1) variancesσ 2
t|t−1, yielding

σ 2
t = 0.089 + 0.853σ 2

t|t−1 +ut ,

(0.038) (0.074)

where HAC standard errors are presented in parentheses.
The regression R2 is 0.467, which is slightly below the
value reported by Andersen and Bollerslev (1998). The
restrictions that the constant is zero and the slope is equal
to one cannot be rejected at the 5% significance level.

Next, we repeat the regression by including y2t as an
additional regressor, resulting in

σ 2
t = 0.088 + 0.790σ 2

t|t−1 + 0.065y2t + ut .

(0.036) (0.062) (0.005) .

According to these results, the square of the current
observation is highly significant, and increases the R2 to
0.508. This first experiment suggests that including the
contemporaneous observation in the information set may
provide more reliable estimates of the current volatility.
In this paper, we propose a simple variant of the
(exponential) GARCH model that exploits the information
in the current observation yt . Assuming the normality of
log ξ 2t , the model parameters can be estimated efficiently
by fitting an ARMA(1,1) model to the transformed series
xt = log y2t . In contrast to the GARCH(1,1), the log variance
process in our model results from the filtration

E(ht |xt , xt−1, . . .) = c +


1 −

θ

β

 ∞
i=0

θ ixt−i, (6)

where ht = log σ 2
t , θ and β are typically positive parame-

ters that are close to unity with θ < β , and c is a constant.
The plan of the remainder of the paper is as follows. We

introduce our forecasting model in Section 2, and the re-
duced form ARMA(1,1) representation is developed in Sec-
tion 3. The relationship to the stochastic volatility model is
studied in Section 4, and the small sample properties are
studied in Section 5. An asymmetric extension for accom-
modating the leverage effect is proposed in Section 6. Sec-
tion 7 presents an application to the S&P 500 stock price
index. Finally, Section 8 concludes.

2. The nowcasting model

We exploit the information in the current observation
yt by considering the following model for a series of
financial returns yt :

yt = exp(ht/2)ξt , ξt ∼ i.i.d.(0, 1) (7)
ht = α + βht−1 + κεt , (8)

where εt = log(ξ 2t )−C ∼ i.i.d.(0, σ 2
ε ) andC = E[log(ξ 2t )].

Stationarity of the variance process requires |β| < 1, and
we typically encounter values slightly less than unity in
empirical practice. Furthermore, we expect κ to be small
and positive, because a large absolute value of ξt tends to
increase volatility; however, in principle, this parameter
might also be negative. The invertibility of the reduced
form ARMA representation (see below) only requires 1 +

κ > β , which would also allow for small negative values
of κ .

The log volatility ht in Eq. (8) follows an AR(1) process,
but, unlike in stochastic volatility models where this
process is independent of ξt , the error term εt in Eq. (8) is an
explicit function of the innovation term ξt in Eq. (7). Some
further comparisons with the stochastic volatility model
will be presented in Section 4.

Let us begin by discussing some properties of themodel
in Eqs. (7)–(8). If the distribution of ξt is known, then
the parameter C is identified. For example, for a Gaussian
ξt , C ≈ −1.27. In what follows, we assume that C is
unknown. We discuss the estimation of this constant at
the end of Section 3. Note also that the mean and variance
of the log volatility are given by E[ht ] = α/(1 − β) and
Var(ht) = κ2σ 2

ε /(1−β2) respectively, and σ 2
ε depends on

the distribution of ξt . If ξt is Gaussian, then σ 2
ε = π2/2.

Under the assumption that ξt has a symmetric distribu-
tion, it follows that yt is a martingale difference series. To
see this, let It−1 := σ(yt−1, yt−2, . . .) be the information
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set generated by the observations, and note that ξt is inde-
pendent of It−1, while ht−1 is measurable with respect to
It−1. Then,

E[yt |It−1] = exp{(α + βht−1)/2}E[exp(κ/2 log ξ 2t )ξt ],

where the expectation on the right hand side is zero, since
it is the expectation of an odd function of ξt . Thus, as in
classical ARCH or stochastic volatility models, the return
series yt has a conditional mean of zero, and all temporal
dependence is captured via the log volatility process ht .

We now transform the model in Eqs. (7)–(8) to obtain a
linear process for the transformed variable. Defining xt =

log y2t , we have

xt = C + ht + εt (9)

and, replacing ht−1 in Eq. (8) with xt−1 − εt−1 − C ,

ht = α − βC + βxt−1 + κεt − βεt−1 (10)

xt = α∗
+ βxt−1 + (1 + κ)εt − βεt−1. (11)

whereα∗
:= α+(1−β)C . Indeed, the transformed returns

xt in Eq. (11) follow an ARMA(1,1) process.
It is interesting to compare this model specification

with two popular GARCH alternatives. First, the (symmet-
ric version of the) EGARCH model suggested by Nelson
(1991) replaces Eq. (8) with the equation

ht = α + βht−1 + ψ |ξt−1|. (12)

Here, the log-volatilities are driven by lagged values ξt−1
instead of the current values ξt . Moreover, by rewriting Eq.
(8) as ht = α+βht−1 + κ log(ξ 2t ), it becomes obvious that
large shocks ξt have a much stronger effect in the model in
Eq. (12). The proposed model in Eq. (8) is actually closer to
the so-called log-GARCHmodel, introduced independently
by Geweke (1986) and Pantula (1986), where xt is as in Eq.
(9), with ht given by

ht = α + βht−1 + ψ log y2t−1, (13)

which leads to the ARMA representation

xt = α + (ψ + β)xt−1 + εt − βεt−1. (14)

Note the difference relative to the ARMA representation
in Eq. (11), where the coefficient κ captures the impact
of the current observation on the volatility in the moving
average part, which is shifted to a lagged effect ψxt−1 in
the autoregressive part of Eq. (14).

3. The reduced form ARMA representation

An observationally equivalent ARMA(1,1) model for xt
is obtained as

xt = α∗
+ βxt−1 + (1 + κ)εt −

β

1 + κ
(1 + κ)εt−1

= α∗
+ βxt−1 + ut − θut−1, (15)

where ut = (1 + κ)εt is white noise with variance σ 2
u =

(1 + κ)2σ 2
ε and θ = β/(1 + κ). Note that the stationar-

ity and invertibility of the model requires κ > β − 1. The
relationship between the reduced form parameters θ ,
σ 2
u = E(u2

t ), and the structural parameters κ and σ 2
ε is

given by

κ = β/θ − 1 (16)

σ 2
ε =


θ

β

2

σ 2
u . (17)

Another possibility is to base our structuralmodel by a Bev-
eridge and Nelson (1981) type of decomposition.1 Decom-
posing the ARMA polynomial as

1 − θL
1 − βL

=
a + b(1 − βL)

1 − βL
(18)

such that

xt = C +
α

1 − β
+

a
1 − βL

ut  
ht

+ but
εt

,

yields the structural form in Eq. (9). Accordingly, our struc-
tural model corresponds to a simple decomposition of an
ARMA(1,1) series into an AR(1) and a white noise compo-
nent. Comparing the coefficients of the polynomial in Eq.
(18) yields b = θ/β and a = 1 − θ/β , and thus,

ht = α + βht−1 + (1 − θ/β)ut (19)

εt =


θ

β


ut .

The usual Beveridge–Nelson decomposition is obtained by
letting β = 1.

Since εt = ut/(1 + κ) = (θ/β)ut , the variance
component ht is obtained from the reduced form as

ht = xt −
θ

β
ut − C . (20)

Note that Eq. (20) is measurable with respect to present
andpast values of xt , because the reduced form is invertible
and ut = −α∗/(1−θ)+φ(L)xt withφ(L) = (1−θL)−1(1−

βL). By comparing the coefficients of the lag polynomials,
one obtains φ(L) = 1+ (1−β/θ)


∞

j=1 θ
jLj. Inserting this

result into Eq. (20), we obtain

ht =
θα∗

β(1 − θ)
+


1 −

θ

β

 ∞
j=0

θ jxt−j. (21)

This shows that the filtered volatility is a linear combina-
tion of present and past values of xt with exponentially de-
clining weights.

(Pseudo) ML estimators of the structural parameters
(β, κ, σ 2

ε ) are obtained by inserting the ML estimators of
the de-meaned reduced form (β, θ, σ 2

u ) into Eqs. (16) and
(17). An estimator of the constant α∗ is obtained from
the equality α∗

= µ(1 − β), where µ is the mean of
xt . Based on the consistency and asymptotic normality
of the reduced form ML estimators, we can find similar
results for the estimators of the structural form using the
delta method. This gives closed form expressions for the

1 We are grateful to an anonymous referee for suggesting this
interpretation to us.
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asymptotic variances of
√
n(β̂ − β) and

√
n(κ̂ − κ), see

Appendix A.1. Note that, in practice, θ is often close to
unity. Therefore, an exact ML estimation method with
stationary initial values should be employed rather than
the popular nonlinear least-squares estimator, which sets
the initial values y0 and u0 to zero.Whenever εt is normally
distributed, the ML estimator is asymptotically efficient.

The estimation of the reduced formARMA(1,1)model in
Eq. (15) delivers parameter estimates of α∗, β and θ , which
could be used to obtain filtered volatilities in Eq. (21). The
simpler expression in Eq. (20) cannot be used directly,
since C is not known. We next propose an approach for
estimating this constant.
Estimation of the constant. Suppose that one uses Eq. (20)
but ignores the unknownconstantC , i.e., sets it to zero. This
delivers a filtered volatility process h∗

t = ht + C . It follows
from Eq. (9) that

y2t = eh
∗
t −Cξ 2t = c eh

∗
t ξ 2t ,

where c = exp(−C) and

ξ 2t =
y2t

c eh∗
t
.

Since we assume that E(ξ 2t ) = 1, we can estimate the
constant from the estimated values of ξ 2t as

1
T

T
t=1

ξ 2t = 1

⇔ c =
1
T

T
t=1

y2t
eh∗

t
,

whereh∗
t = xt − (θ/β)ut denotes the ARMA estimator of

the volatility series.
Maximum likelihood estimation. By making distribu-
tional assumptions on the error εt , it is possible to estimate
the parameters bymaximum likelihood. Assume for exam-
ple that ξt ∼ N (0, 1). Then Var(εt) = π2/2 (e.g., Tay-
lor, 1986), which implies a restriction between the reduced
form parameters and the residual variance, given by

σ 2
u =


πβ
√
2θ

2

. (22)

This restriction can be imposed on a pseudo ML estimator
that treats ut as being distributed normally with the
variance given in Eq. (22). Another gain in efficiency would
result from setting up the likelihood function based on the
more appropriate assumption that ut is the logarithmic
transformation of a χ2-distributed random variable. As
has been found in many empirical studies, however, the
GARCH innovation is typically fat-tailed, and therefore is
often modeled by invoking the t-distribution. We do not
advocate these more sophisticated estimation techniques
for several reasons. First, the computational effort required
for these refinements increases dramatically, and the
estimator cannot be obtained in the usual software
packages. Second, there are typically large sample sizes
available in financial applications, so that the estimation
error is negligible relative to the magnitude of ht , and
efficiency is ofminor importance. Third, it is not clear what
class of distribution is best suited to ξt or εt . Note that
if yt tends to zero, xt tends to −∞. Thus, to avoid large
negative outliers it is advisable to add some small number
(say 0.001 · σ 2

y ) to y2t before applying the logarithmic
transformation. In our experience, such slight adjustments
are much more important for the performance of the
estimator than the distributional assumptions.

4. Relationship to the stochastic volatility model

It is interesting to compare our approach to the
stochastic volatility (SV) model, where Eq. (8) is replaced
with
ht = α + βht−1 + ηt , (23)
assuming that ξt and ηt are independent. The ARMA
representation is then

xt = α∗
+ βxt−1 + ηt + εt − βεt−1, (24)

where εt = log(ξ 2t )−C . Again, we can find a second-order
equivalent reduced form ARMA model as in Eq. (15), i.e.,

xt = α∗
+ βxt−1 + ut − θut−1, (25)

that is, the autocovariance functions of xt in Eqs. (24) and
(25) are identical. Accordingly, the model parameters of
the SVmodel can be seen as transformations of the reduced
form parameters in Eq. (25). Specifically, we have

σ 2
u (1 + θ2) = σ 2

η + σ 2
ε (1 + β2) (26)

θσ 2
u = βσ 2

ε . (27)

It follows that

σ 2
ε =

θ

β
σ 2
u (28)

σ 2
η =


1 −

θ

β
− θ(β − θ)


σ 2
u . (29)

The Kalman filter applied to the state space representa-
tion of this model delivers the filtered volatility
ht|t = (1 − θ/β)xt + (θ/β)ht|t−1,

where the predicted volatility ht|t−1 is given by
ht|t−1 = α∗

+ (β − θ)xt−1 + θht−1|t−2.

Hence, we obtain

ht|t =
θ

β


α∗

1 − θ


+

κ

1 + κ

∞
j=0

θ jxt−j

=
θα∗

β(1 − θ)
+


1 −

θ

β

 ∞
j=0

θ jxt−j,

which shows that the SV filtered volatility is equivalent to
the filtered volatility using the ARMA model given by Eq.
(21). It should be noted that both parameter estimation
and the filtering itself are no longer optimal in the non-
Gaussian case. For more efficient approaches for dealing
with non-Gaussian models, see for example Durbin and
Koopman (2000).

In the next proposition, we show that this result
extends to the class of models with arbitrary error
correlations:
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Proposition 1. Let xt = C + ht + εt , where ht = α +

βht−1 + ηt , ηt ∼ i.i.d.(0, σ 2
η ), εt ∼ i.i.d.(0, σ 2

ε ), and
arbitrary covariance E(ηtεt) = ρσεση , with ρ ∈ [−1, 1].
It follows that

ht|t =
θα∗

β(1 − θ)
+


1 −

θ

β

 ∞
j=0

θ jxt−j.

The proof is provided in Appendix A.2.
Our model in Eq. (8) corresponds to the case ρ = 1,

while the classical SVmodel in Eq. (23) results from setting
ρ = 0. It follows from Proposition 1 that the correlation
between εt and ηt does not matter for the estimation of ht
based on the information set xt , xt−1, . . . . Therefore, there
is no need to invoke Kalman filter recursions for estimating
the variance process.

It is interesting to note that related results were found
byMorley, Nelson, and Zivot (2003) and Proietti (2006) for
trend-cycle decompositions, which can be seen as a special
case with β = 1. However, it should be noted that alter-
native structural representations involve different param-
eter estimates, and may have very different implications
for the reduced form. For example, the orthogonal decom-
position with ρ = 0 implies that the spectral density of xt
is bounded from below by σ 2

η , which is not the case for our
structural model with ρ = 1.

Note also that a non-zero correlation between εt and ηt
does not imply that ξt and ηt are correlated. The latter case
attracted some interest formodeling the so-called leverage
effect in stochastic volatility, see e.g. Harvey and Shephard
(1996). For example, consider our model in Eqs. (7)–(8),
i.e., the degenerate case of Proposition 1 with ρ = 1
and ηt = κεt , and suppose that the distribution of ξt
is symmetric. Then, the correlation between ξt and ηt is
zero even though εt and ηt are correlated perfectly. The
inclusion of a leverage effect requires the model to be
extended, which we will do in Section 6.

Finally, if the distribution of ξt is symmetric, it can be
shown that the white noise ut of the reduced form ARMA
representation in Eq. (25) is serially uncorrelated. In gen-
eral, however, it is not a martingale difference, as, for ex-
ample, E[utx2t−1] ≠ 0, see Francq and Zakoian (2006). The
fact that ut in the ARMA representation of the SV model is
neither i.i.d. nor a martingale difference also has implica-
tions for inference. The general sandwich-type formula for
the asymptotic covariance matrix of QMLE estimators re-
mains valid, but it is not available in closed form and is dif-
ferent from the asymptotic covariancematrix of ourmodel,
given in Appendix A.1. Thus, although the twomodels yield
the same filtered volatility estimates for given parameters,
estimation and inference are different, due to the different
properties of the error term ut .

5. Finite sample properties

In this section, we compare the finite sample properties
of alternative estimators for volatilities. The data are
generated as

yt = eht/2ξt t = 1, . . . , T ,
where ht may be

ARMA : ht = α + βht−1 + κεt , (30)
SV : ht = α + βht−1 + ηt , (31)

or EGARCH : ht = α + βht−1 + ψ |ξt−1|. (32)

The error process εt = log(ξ 2t )+ 1.27 with ξt
i.i.d.
∼ N(0, 1)

is independent of ηt
i.i.d.
∼ N(0, σ 2

η ). Accordingly, in the
stochastic volatility model (SV), xt = log y2t is composed of
two independent processes, whereas in the ARMA model,
xt is driven by a single stochastic process εt .

First, consider the case where the generated volatility
is a classical stochastic volatility process. We follow Sand-
mann and Koopman (1998) in specifying the parameters
of the SV model. Defining the coefficient of variation as
CV = Var[exp(ht)]/E[exp(ht)]

2, one obtains the expres-
sion CV = exp(σ 2

η /(1 − β2)) − 1. The coefficient of vari-
ation for this model is related directly to the kurtosis of yt ,
which is given by κ = 3(CV + 1). Here, α is an irrelevant
scaling parameter, but Sandmann andKoopman (1998) de-
termineα such that E[exp(ht)] = 0.0009,which gives a re-
alistic annualized standard deviation of 22% for generated
weekly data. To distinguish between highly and moder-
ately persistent volatility processes, we fix β alternatively
at 0.98 and 0.90. Similarly, we evaluate the effects of high
versus low coefficients of variation (or, equivalently, high
versus low kurtosis) by fixing CV alternatively at 10 and
1, with corresponding kurtosis coefficients of 33 and 6, re-
spectively. This gives four different parameterizations. The
sample sizes are T = 500 and 2000. Each process is simu-
lated k = 1000 times.

The volatilities of the process yt are estimated by
fitting a symmetric EGARCHmodel, a symmetric SVmodel,
and the ARMA approach proposed in Section 3, where
the constant is estimated as suggested in Section 4.
The performance is measured by an R2 type criterion,
computed as

R2
h = 1 −

T
t=1
(ht −ht)

2

T
t=1
(ht − h̄)2

,

where h̄ = T−1 T
t=1 ht . This variant of the usual R2

imposes a zero constant and a unit scaling coefficient in
order tomeasure the correspondence of the estimateswith
the original volatility process. Table 1 reports the results.

Not surprisingly, the R2 measures of the EGARCHmodel
are substantially smaller in all cases, both because of the
smaller information set that is used in estimation, and
because the model is mis-specified. Also not surprisingly,
the R2 values of SV and ARMA are very similar, since the
two models deliver the same filtered volatility estimates
for given parameters. Hence, the differences between them
are due solely to differences in the parameter estimates.
Note that the ARMA R2 tends to be higher when the
persistence is moderate (β = 0.9). Note also that, for an
increasing sample size, the R2 does not need to improve,
because the sample size affects the estimation error but not
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Table 1
Performance under the SV model in Eq. (30).

β CV EGARCH SV ARMA
R2 s.d. R2 s.d. R2 s.d.

n = 500

0.9 1 0.360 (0.143) 0.528 (0.115) 0.588 (0.095)
0.98 1 0.746 (0.165) 0.883 (0.066) 0.874 (0.079)
0.9 10 0.271 (0.199) 0.626 (0.071) 0.641 (0.061)
0.98 10 0.590 (0.321) 0.863 (0.072) 0.859 (0.074)

n = 2000

0.9 1 0.314 (0.099) 0.392 (0.078) 0.438 (0.047)
0.98 1 0.737 (0.097) 0.776 (0.061) 0.771 (0.064)
0.9 10 0.297 (0.149) 0.579 (0.048) 0.592 (0.044)
0.98 10 0.679 (0.232) 0.807 (0.051) 0.806 (0.051)

Note: Pseudo-R2 values of the fitted volatility models for ht compared with true, simulated stochastic volatility series. The standard deviation of the sample
R2 is indicated as s.d., and shown in parentheses. The coefficient of variation is denoted by CV = Var[exp(ht )]/E[exp(ht )]

2 .
Table 2
Performance under the ARMA model in Eq. (31).

β CV EGARCH SV ARMA
R2 s.d. R2 s.d. R2 s.d.

n = 500

0.9 1 0.453 (0.170) 0.843 (0.092) 0.917 (0.091)
0.98 1 0.794 (0.176) 0.959 (0.108) 0.953 (0.120)
0.9 10 0.263 (0.222) 0.956 (0.034) 0.971 (0.037)
0.98 10 0.623 (0.337) 0.982 (0.054) 0.978 (0.057)

n = 2000

0.9 1 0.430 (0.151) 0.857 (0.124) 0.958 (0.049)
0.98 1 0.808 (0.141) 0.976 (0.101) 0.969 (0.104)
0.9 10 0.317 (0.181) 0.964 (0.097) 0.981 (0.099)
0.98 10 0.673 (0.299) 0.987 (0.055) 0.985 (0.059)

Note: Pseudo-R2 values of fitted volatility models for ht compared with true, simulated ARMA series. The remaining notes are as in Table 1.
the signal to noise ratio, which is essentially determined by
σ 2
η and σ 2

ε .
In the second simulation setup, we generate reduced

form ARMA processes for ht with the parameters chosen
analogously to the SV case. More precisely, the persistence
parameter β and the intercept α are the same as in SV.
The moving average parameter θ is chosen such that CV ∈

{1, 10}, as before, by expressing θ as a function of ση , β ,
and σε . The results are reported in Table 2. Overall, the R2

tends to be higher than in the SV case, which is plausible,
as there is no second noise term in the volatility equation.
Furthermore, the volatility is a measurable function of
today’s and lagged information. Thus, for an increasing
sample size we expect the R2 to converge to unity, which
happens for the estimation methods based on both ARMA
and SV. Again, we observe the same effect as for a true
SV process, with the ARMA R2 being higher for moderate
levels of persistence.

Finally, we generate EGARCH processes as in Eq. (32)
with ξt ∼ N(0, 1), setting β ∈ {0.9, 0.98} and CV ∈

{1, 10} as before. Then, one can calculateψ from the equa-
tion CV = exp{ψ2(1−2/π)/(1−β2)}−1, and α from the
equation E[exp(ht)] = exp{α/(1−β)+ψ2/2(1−β2)} =

0.0009 as above. In the case of a true EGARCH process,
the ARMA and SV models should have no advantage of in-
cluding the current observation in the volatility, since the
volatility in the EGARCH case is a function of past values
only. The results of the correctly specified EGARCH model
are now much better than before. However, the perfor-
mance according to the R2 criterion is substantially worse
for some combinations, such as high persistence and high
CV (see Table 3).

6. An asymmetric extension

We account for the leverage effect that is often
encountered in empirical applications by defining the
dummy variable as dt = I(yt > τ), where I(·) is the
indicator function and τ is a predefined threshold (which
is typically zero), the mean of yt , or some other value of
interest.

An asymmetric extension of the above model is given
by

ht = α + βxt−1 + κ+dtεt + κ−(1 − dt)εt − βεt−1, (33)

which we call the ARMA model with leverage, or ARMA-L.
Note that, in contrast to Nelson’s EGARCHmodel and other
asymmetric GARCH models, the asymmetric effect in this
model is contemporaneous, not lagged.

The structural form for xt is

xt = α + βxt−1 + (1 + κ+)dtεt

+ (1 + κ−)(1 − dt)εt − βεt−1. (34)

Denote again the MA part of this model by vt = (1 +

κ+)dtεt + (1 + κ−)(1 − dt)εt − βεt−1; we then have the
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Table 3
Performance under the EGARCH model in Eq. (32).

β CV EGARCH SV ARMA
R2 s.d. R2 s.d. R2 s.d.

n = 500

0.9 1 0.865 (0.035) 0.810 (0.041) 0.816 (0.058)
0.98 1 0.956 (0.013) 0.965 (0.014) 0.958 (0.030)
0.9 10 0.854 (0.019) 0.827 (0.031) 0.808 (0.048)
0.98 10 0.713 (0.129) 0.966 (0.012) 0.964 (0.014)

n = 2000

0.9 1 0.880 (0.022) 0.763 (0.022) 0.743 (0.042)
0.98 1 0.912 (0.010) 0.943 (0.011) 0.937 (0.024)
0.9 10 0.837 (0.010) 0.794 (0.018) 0.769 (0.028)
0.98 10 0.786 (0.049) 0.947 (0.010) 0.945 (0.011)

Note: Pseudo-R2 values of fitted volatility models for ht compared with true, simulated EGARCH series. The remaining notes are as in Table 1.
following conditional second order moment structure:

Var(vt |dt) = ((1 + κ+)2dt + (1 + κ−)2(1 − dt)+ β2)σ 2
εt

(35)

E[vtvt−1|dt ] = −{(1 + κ+)dt + (1 + κ−)(1 − dt)}βσ 2
εt .
(36)

We can find an observationally equivalent ARMA(1,1)
process

xt = α + βxt−1 + ut − θ+dtut−1 − θ−(1 − dt)ut−1. (37)
This process has the same conditional second order
moment structure, provided that

κ+
= β/θ+

− 1 (38)

κ−
= β/θ−

− 1 (39)

σ 2
εt = {(1 + κ+)2dt + (1 + κ−)2(1 − dt)}−1σ 2

u . (40)

Note that the error term εt is conditionally heteroskedastic.
If the estimated model in Eq. (37) is invertible, then it is
easy to check that the model in Eq. (34) with parameters
given by Eqs. (38)–(40) will also be invertible.

We could have chosen the alternative solution

κ+
= βθ+

− 1 (41)

κ−
= βθ−

− 1 (42)

σ 2
ε =

σ 2
u

β2
, (43)

which is conditionally homoskedastic. However, if the
estimatedmodel in Eq. (37) is invertible, then themodel in
Eq. (34) with parameters given by Eqs. (41)–(43) will not
be invertible, and is therefore excluded.

Note that Eq. (37) is similar to the asymmetric ARMA
model proposed by Brännäs and De Gooijer (1994), with
the difference that the indicator variable in their model
is specified as dt = I(ut−1 > 0). The model in Eq.
(37) can be estimated by quasi-maximum likelihood. The
information matrix can be obtained by approximating the
Hessian as the sum of the outer products of the gradient,
as per (Brännäs & De Gooijer, 1994).

7. An empirical application

We apply our model to a large dataset, namely the de-
meaned daily (close to close) return on the S&P 500 index
from 1/1/1950–25/10/2012, a total of 16,058 observations.
We begin by estimating the classical EGARCH(1,1) with
N(0, 1) innovations, as was proposed by Nelson (1991):

yt = exp(ht/2)ξt , ξt ∼ N(0, 1)
ht = α + βht−1 − θξt−1 + γ |ξt−1|.

This model is estimated by maximum likelihood, and the
results are shown in Table 4.

We estimate the SV model in Eq. (23) by QMLE and the
Kalman filter, assuming ηt ∼ N(0, σ 2

η ) and εt ∼ N(0, σ 2
ε ).

These results are also presented in Table 4. The estimators
of σ 2

η and σ 2
ε correspond to Eqs. (28) and (29).

The ARMA(1,1) model in Eq. (15) is estimated using
nonlinear least squares with numerical optimization.
For the nonlinear ARMA model with leverage (ARMA-
L; see Eq. (33)), we choose a threshold τ = −0.01,
which corresponds to one negative unconditional standard
deviation of returns yt . The estimation results for the three
models are also reported in Table 4. All three models pass
portmanteau specification tests applied to the squared
residuals ξ̂ 2t .

The persistence of shocks to the volatility, measured by
β , is evenhigher in theARMAmodels than for EGARCH. The
parameter estimate of κ implied by the estimates of θ and
β is given by κ̂ = β̂/θ̂ − 1 = 0.0391 for the ARMAmodel,
and ˆκ+ = β̂ ˆθ+−1 = 0.0353 and ˆκ− = β̂ ˆθ−−1 = 0.0605
for the ARMA-L model. The estimated volatility process ĥ∗

t

is adjusted by the estimated constant Ĉ = − log(ĉ), where
ĉ is the sample mean of y2t / exp(ĥ

∗
t ), see Section 3.

Table 4 also presents a goodness-of-fit criterion that
is analogous to the pseudo-R2 measure used in the
simulations, but that replaces the unknown ht with the
observed xt :

R2
x = 1 −

T
t=1
(xt −h∗

t )
2

T
t=1
(xt − µ̂)2

, (44)

where µ̂ is the sample mean of xt . Note that this R2 is
smaller than that using the true ht as the target, due to the
additional noise in xt compared to the true but unknown
ht ; see Andersen and Bollerslev (1998). We see that the
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Table 4
Parameter estimates of alternative volatility models.

EGARCH SV ARMA ARMA-L

α −0.2666 (0.0100) −0.0755 (0.0204) −0.0822 (0.0166) −0.0792 (0.0148)
β 0.9839 (0.0009) 0.9932 (0.0018) 0.9926 (0.0015) 0.9930 (0.0013)
γ 0.1475 (0.0033)
θ −0.0647 (0.0019) 0.9552 (0.0038)
θ+ 0.9590 (0.0036)
θ− 0.9359 (0.0088)
σ 2
η 0.0097 (0.0022)

σ 2
ε 5.3156 (0.0950)

R̃2
x 0.1020 0.1512 0.1536 0.1562

Note: The R̃2
x criterion is given by Eq. (44), where h∗

t may be the predicted volatility using EGARCH, the updated volatility ht|t
using SV, or the estimated h∗

t using the ARMAmodel. ARMA-L is the asymmetric ARMAmodel in Section 6. Standard errors
are reported in parentheses.
(a) Nowcast log volatility using the ARMA-L model. (b) Predicted log volatility using EGARCH.

Fig. 1. Volatility estimates for daily S&P 500 returns.
fits of the ARMA and SV models are roughly similar, while
the EGARCH model fit is clearly worse according to this
criterion.

Fig. 1 shows both the nowcast of the log volatility
using the ARMA-L model in Eq. (33) and the predicted log-
volatility of the EGARCH model. The sample correlation
between the two volatility series is 91%. The predicted
EGARCH volatility was higher after the October 1987 crash
than after the Lehman crisis in 2008, while the updated
ARMA volatility was higher for the Lehman crisis. One
explanation for this might be that the 1987 crash was
driven mainly by an exceptionally severe one-day drop
in returns, while the absolute returns were exceptionally
high over a longer time period around the Lehman crisis.

8. Conclusions

The proposed ARMA representation of log squared
returns provides a simple method for estimating the
current volatility given the past and current information
on the underlying returns. Our results suggest that it
outperforms the predictions of GARCH-type models and
performs similarly to stochastic volatility models, while
being easier to estimate.

We have proposed an important extension of themodel
to incorporate the so-called leverage effect. Many other
extensions are possible, and are indeed the object of
future work. For example, it is straightforward to include
a ‘‘GARCH-in-mean’’-type risk premium in the conditional
mean of returns, where the risk premium depends on
the current volatility, not the predicted one. Second,
multivariate extensions are possible. For example, one
could use a factorization as in the orthogonal GARCHmodel
of Alexander (2001). We believe that these are important
topics for future research.
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Appendix

A.1. Asymptotic distribution of the estimators

Under our conditions, the maximum likelihood estima-
tor γ̂ = (β̂, θ̂ ) of the reduced formARMAmodel in Eq. (15)
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is consistent and asymptotically normal, with the asymp-
totic distribution given by
√
n(γ̂ − γ )→d N

×


0,

1 − βθ

(β − θ)2


(1 − β2)(1 − βθ) −(1 − θ2)(1 − β2)

−(1 − θ2)(1 − β2) (1 − θ2)(1 − βθ)


,

see e.g. Brockwell and Davis (1991). This gives the asymp-
totic variance of

√
n(β̂−β) directly, while that of

√
n(κ̂ −

κ) is obtained via the delta method. Straightforward
calculations yield

nVar(κ̂) →
(1 − βθ)2

(β − θ)2

1 − θ2

θ2
(1 − β2)

×


1

1 − θ2
+

2β
θ(1 − θβ)

+
β2

θ2(1 − β2)


.

A.2. Proof of Proposition 1

Denote Xt = σ(xt , xt−1, xt−2, . . .) and let ht|t−1 =

E[ht |Xt−1], ht|t = E[ht |Xt ], and Vt = Var(ht |Xt−1). First,
we note that

ut = xt − E(xt |Xt−1) = ht − ht|t−1 + εt

= α∗
+ ηt + β(ht−1 − ht−1|t−1)+ εt .

The estimator of the log-variance process is

ht|t = ht|t−1 +
Vt + E[(ht − ht|t−1)εt ]

Vt + 2E[(ht − ht|t−1)εt ] + σ 2
ε

ut , (45)

whereE[(ht−ht|t−1)εt ] = E(ηtεt), which follows from the
Kalman filter with correlated measurement and transition
errors, see e.g. Section 3.2.4 of Harvey (1989). For the case
of correlated errors, Eq. (27) generalizes to

Var(ut) = Vt + σ 2
ε + 2E(ηtεt)

=
β

θ
[σ 2
ε + E(ηtεt)],

which is the denominator in the second term of the
right hand side of Eq. (45). The numerator is obtained by
subtracting σ 2

ε + E(ηtεt) from this expression, obtaining

Vt + E(ηtεt) =


β

θ
− 1


[σ 2
ε + E(ηtεt)]

= κ[σ 2
ε + E(ηtεt)].

Finally, we obtain

ht|t = ht|t−1 +
Vt + E(ηtεt)

[Vt + E(ηtεt)] + [σ 2
ε + E(ηtεt)]

ut

= ht|t−1 +
κ

1 + κ
ut .

Since ht|t−1 is identical to the forecast of xt based
on xt−1, xt−2, . . . , the estimator ht|t is invariant to the
covariance E(ηtεt). Therefore, ht is identical to the estima-
tor based on a perfect correlation with εt = κηt , which is
given in Eq. (21). �
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