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a b s t r a c t

Using a large sample of time series, Hill et al. (2015) developed a procedure that aims to
predict whether a series is ‘‘forecastable’’; that is, whether the standard deviation of the
time series will later prove to be larger than that of the forecast errors. Their analysis is
based on forecasting using Holt’s method of exponential smoothing. We show that Holt’s
method is the wrong one to use for their time series, and we present a number of other
corrections and objections to their analysis.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Hill, Zhang, and Burch (2015) proposed a measure
called a ‘‘forecastability quotient’’ that estimates ‘‘. . . the
economic advantage of using a time phased reorder point
system (TPOP) with time series forecasting rather than a
simple reorder point system in an independent demand
inventory management context’’. In plain language, their
version of the TPOP uses the forecasts from a time series
method to determine when to reorder stock, while their
simple reorder point system uses a moving average fore-
cast (with the length or type of moving average unspeci-
fied).

Hill et al. define the forecastability quotient (Q ) as the
standard deviation of the time series divided by the stan-
dard deviation of the forecast errors. If this ratio is more
than one, the authors conclude that forecasting should be
done using a time series method. If the ratio is less than
one, the authors reject all time series methods and con-
clude that forecasting should be done using a moving av-
erage. Although research has long since established that a
method’s ex ante fit often has little to do with its ex post
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accuracy, Hill et al. claim that Q in the holdout sample can
be predicted as a function of Q in the fitting sample, to-
getherwith the parameters inHolt’s additive trendmethod
of exponential smoothing (Holt, 2004). We have a number
of corrections and objections to Hill et al.’s analysis and
conclusions, but our most important point is that Holt’s
method is the wrong one for the data.

2. Definition of forecastability

One of the motivations for Hill et al.’s paper appears
to be their misunderstanding of Granger and Newbold’s
(1976) work on the forecasting of transformed time
series. Hill et al. state that Granger and Newbold define
forecastability as the variance of demand divided by the
variance of the forecast error. This is wrong. Granger and
Newbold actually define it as the variance of the optimal
forecast divided by the unconditional variance of the time
series.

3. Data

Hill et al.’s original data set contained 1811 time series,
each with 24 months of data (available from http://dx.
doi.org/10.1016/j.ijforecast.2014.10.006). They state that
they removed all series with zero demand in 10% or more
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Fig. 1. Box plot of the coefficients of variation (computed over all 24 periods) for the corrected sample of 1629 time series.
of the observations (presumably all series with at least
three months of zero demand), leaving 1672 series for
analysis. However, we reviewed these 1672 series and
found 43 additional series with at least three months of
zero demand, and therefore removed these too, leaving
1629 series for re-examination.

The authors used 12 periods as a fit or estimation
sample and 12 periods as a holdout sample. They claim
that they deseasonalized the time series, but there is not
enough data to do so unless the fit and holdout samples are
combined, and even then the resultswould be dubious.We
could see no evidence of seasonal patterns in these series,
so we ignored seasonal adjustment in our re-examination
of the forecasting results.

Hill et al. reported the average coefficient of variation
(CV) for the fit sample only, whichwas 0.469, but this value
is based on all 1672 series, including the 43 with at least
three months of zero demand. We recomputed the CV for
the fit sample after excluding the 43 series, and obtained a
significantly smaller average of 0.453. For all 24 periods,we
obtained an average CV of 0.479. A box plot of the CVs for
all 24 periods is shown in Fig. 1. The distribution is skewed
right, with numerous outliers and level shifts in about 200
of the series.

4. Choice of forecasting method

In the abstract of their paper, Hill et al. claimed that
they forecasted the time series using ‘‘double exponential
smoothing with a damped trend’’. However, this is not
what they actually did. Since Brown (1963), double
exponential smoothing (DES) has been defined in the
literature as a single-parameter additive trend method. In
fact, Hill et al. actually used Holt’s two-parameter additive
trend method, and they did not damp the trend, despite
what the abstract says. We note that the parameters of
the Holt method can be constrained to make it equivalent
to DES (Gardner, 1985), but it does not appear that the
authors imposed such constraints.

Hill et al. justify their choice of the Holt method by
stating that: ‘‘In an extensive empirical study, Makridakis
and Hibon (2000) showed that DES is as good as or better
than any of the other forecastingmethods’’. This statement
is false. A number of other forecasting methods were more
accurate than Holt’s in the M3 competition, both overall
and at each individual forecast horizon. For example, the
damped trendmethod of exponential smoothingwasmore
accurate than Holt’s method, a finding that is consistent
with a large body of empirical research (Gardner, 2006).
It follows that there is no reason to use the Holt method to
provide forecasts for any inventory system. If the number
of parameters in the forecasting method is a concern, it
is possible to use discounted least squares to formulate
a two-parameter damped additive trend method, as in
Gardner (1985).

We also question Hill et al.’s recommendation to use a
moving average as an alternative to a time series method.
While Hill et al. do not give empirical results for a moving
average, nor do they specify the length or type of average,
we assume that they refer to a simple moving average. For
a variety of reasons, it is generally accepted that simple
exponential smoothing (SES) should bemore accurate than
an unweighted moving average of any kind. For empirical
evidence, see the comparisons of SES and simple moving
averages in the M-competition (Makridakis et al., 1982),
which appears to be the last time that moving averages
were used in forecasting research.

5. Empirical results

Hill et al. presented extensive model-fitting results
for the Holt method, but they gave only the Q value
for the holdout sample. We attempted to replicate their
results and also tested the damped trend, SES, and the
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Table 1
Forecast accuracy comparisons for the corrected sample of 1629 series.

Sample Periods Metric Hill et al. Holt Damped SES Naive

Fit 1–12 Q 0.87 0.97 1.05 1.01 0.71
MAPE 0.39 0.36 0.34 0.36 0.44
MASE 0.90 0.75 0.68 0.72

Holdout 13–24 Q 0.79 0.84 0.97 0.97 0.70
MAPE 0.45 0.42 0.38 0.44
MASE 1.07 0.96 0.84

Notes: Q is the ratio of the standard deviation of the time series to that of the forecast errors, so larger values of Q are better. The Hill et al. results are for
their version of the Holt method. Hill et al. did not present MAPE or MASE results for the holdout sample.
naïve method. Comparisons of Q values, mean absolute
percentage errors (MAPE), andmean absolute scaled errors
(MASE) are given in Table 1. The MASE scales the errors
by the fitted mean absolute error from the naïve (random
walk) forecastingmethod (Hyndman&Koehler, 2006). The
Hill et al. values are for their version of the Holt method.
Note that higher Q values are better. Following Hill et al.,
APEs that were greater than one were reset to one.

Our Holt results are significantly better than those of
Hill et al. Part of the difference may be due to the fitting
procedure. We used the Excel Solver to find parameters,
but Hill et al. used a grid search, even though their
calculations were done in Excel. One of the referees for
this paper noted that the objective function for Holt’s
method is bumpy, and that a grid search can sometimes
give better results than anonlinear optimization.Weagree,
and consider that it makes sense to test both approaches in
case of doubt.

Hill et al. call their parameters optimal, but we doubt
that this is the case. Their average level and trend
parameters were 0.377 and 0.508. Although these are
invertible parameters, our experience is that it is highly
unusual to obtain a trend parameter that is this much
larger than the level parameter.

As expected, the damped trendwasmore accurate than
Holt in every comparison. We also expected the damped
trend to be more accurate than SES, as it was in the M-
competitions, but SES was clearly the best method. SES
produced a MASE of 0.84 in the holdout sample, compared
to 0.96 for the damped trend and 1.07 for Holt. In noisy
time series such as these, the fitted damping parameter
is usually quite small, making the damped trend forecasts
about the same as SES. However, the fitting sample is only
12 periods, which is much too short to allow the damped
trend method to adapt to the data.

6. Predicting Q in the holdout sample

Hill et al. present an equation for predicting Q in the
holdout sample as a function of Q in the fitting sample and
the level and trend parameters of the Holt method. The
authors argue that these relationships in their equation are
intuitive, but we do not see how parameter values can be
used to predict the performance of a forecasting method.
However, there is no point in discussing this equation
further here, because Holt’s method is the wrong one for
the time series.
7. Conclusions

Contrary to Hill et al., Granger and Newbold did not
define forecastability as the ratio of the demand variance to
the forecast error variance, the Holt method is not double
exponential smoothing, the Holt method was not the most
accurate method in the M3 Competition, and the best
forecasting method by a wide margin for these time series
is SES, not the Holt method.

We question the need for a forecastability quotient in
the first place. The correct way to deal with a time series
that is difficult to forecast is to compare the accuracy
to a naïve benchmark using the MASE, which is easy to
interpret. Values of the MASE greater than one indicate
that the forecasts are worse, on average, than fitted one-
step-ahead forecasts from the naïve method, and this idea
is easy to extend to simulated errors in a test or holdout
sample. If no forecasting method that can beat the naïve
method can be found, then the naïve method is the best
choice.

Fildes and Kingsman (2011) demonstrated that the se-
lection of a forecasting method is a critical determinant of
inventory costs, but the question of how to select the best
method for inventory forecasting is far from settled. For
further discussion, see Gardner (2006), Snyder, Koehler,
and Ord (2002), Syntetos, Boylan, and Disney (2009) and
Syntetos, Nikoloupoulos, and Boylan (2010). We believe
that the best simple procedure is to select the method that
yields the smallest MASE on a test set. When it is possible
to build a model of the inventory system, we recommend
method selection based on aggregate operational perfor-
mance measures such as costs, efficiency, or customer ser-
vice, as discussed in Acar and Gardner (2012) and Gardner
(1990).
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