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a b s t r a c t

This paper resolves differences in results and interpretation between Ericsson’s (2017)
and Gamber and Liebner’s (2017) assessments of forecasts of U.S. gross federal debt. As
Gamber and Liebner (2017) discuss, heteroscedasticity could explain the empirical results
in Ericsson (2017). However, the combined evidence in Ericsson (2017) and Gamber and
Liebner (2017) supports the interpretation that these forecasts have significant time-
varying biases. Both Ericsson (2017) and Gamber and Liebner (2017) advocate using
impulse indicator saturation in empirical modeling.
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1. Introduction

Using impulse indicator saturation (IIS), Ericsson (2017)
tests for and detects economically large and statistically
highly significant time-varying biases in forecasts of U.S.
gross federal debt over 1984–2012, particularly at turning
points in the business cycle. Gamber and Liebner (2017)
discuss Ericsson (2017), obtaining different empirical re-
sults and offering a different interpretation. The current
paper resolves those differences through a re-examination
of IIS.

Gamber and Liebner (2017) examine Ericsson’s (2017)
choice of IIS’s significance level and interpretation of
the estimated bias, concluding that the empirical basis
for time-varying bias per se is weaker than claimed, and
that the outliers detected by IIS could easily arise from
heteroscedasticity rather than from time-varying bias.
Because IIS does have power to detect heteroscedasticity,
heteroscedasticity could explain the IIS results in Ericsson
(2017). However, as Sections 2 and 3 below show,
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time-varying bias is more consistent with the combined
evidence in Ericsson (2017) and Gamber and Liebner
(2017). Section 4 comments further on modeling with IIS.

2. Analysis of alternative model specifications

Ericsson (2017) and Gamber and Liebner (2017) assess
forecasts of U.S. federal debt, focusing on the economic
and statistical bases for the selected impulse indicators
from IIS. Although Ericsson (2017) and Gamber and
Liebner (2017) evaluate the same set of forecasts, they
obtain different empirical results and offer different
interpretations of those results. Section 3 below resolves
the differences in interpretation through a re-examination
of IIS. The current section resolves the differences in
the empirical results themselves—both qualitatively and
quantitatively—through an encompassing approach by
examining alternative model specifications.

In particular, encompassing analysis of an analytical ex-
ample demonstrates how certain model specifications re-
duce the power of tests to detect impulse indicators, where
that power depends directly on t-ratios for the indica-
tors. The encompassing analysis implies that some rele-
vant indicators may nonetheless appear unimportant in
certainmodels, simply because thosemodels omit relevant
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variables, thereby increasing the residual standard error
and hence reducing the t-ratios. The current section first
presents the analytical example and then applies it to the
disparate empirical results with IIS.

This type of assessment is sometimes called ‘‘mis-
specification analysis’’ because some models analyzed
omit certain relevant variables and hence are mis-
specified, relative to the data generation process; see
Sargan (1988, Chapter 8). Mizon and Richard (1986)
propose a constructive utilization of mis-specification
analysis—known as the encompassing approach—in which
a given model (Model M0, below) is shown to explain or
‘‘encompass’’ properties of the other models (Models M1
and M2, below). In the current section, model properties
include t-ratios, residual variances, and the selection of im-
pulse dummies. See Bontemps and Mizon (2008), David-
son, Hendry, Srba, and Yeo (1978), and Mizon and Richard
(1986) for further discussion.

Analytical example. To put the encompassing analysis
in context, suppose that both blocks of observations
for bare-bones IIS include impulse dummies that have
nonzero coefficients in the data generation process (DGP).
In bare-bones IIS, estimation of coefficients for dummies
that saturate a given block then implies omission of
the other block’s relevant dummies in the corresponding
model. These omitted dummies typically result in reduced
power to detect the significance of included dummies. An
analytical example illustrates.1

In a notation similar to that in Ericsson (2017,
Example 2), let the DGP for the variable wt be as follows.

DGP : wt = δ0 + δ1I1t + δ2I2t + εt ,

εt ∼ NID(0, σ 2), t = 1, . . . , T . (1)

That is, wt is normally and independently distributed
with a constant mean δ0 and constant variance σ 2 over T
observations, except that wt ’s mean is δ0 + δ1 in period
t = t1 (when the impulse indicator I1t is nonzero) and
δ0 + δ2 in period t = t2 (when I2t ≠ 0). For expository
purposes, assume that δ1 and δ2 are both strictly positive,
and that t1 and t2 are in the first and second blocks of
observations respectively.

Consider three models, denoted M0, M1, and M2.
Model M0 is specified as the DGP (1) itself.

Model M0 : wt = δ0 + δ1I1t + δ2I2t + εt . (2)

Models M1 and M2 entail omitted variables. Model M1
includes I1t but omits I2t .

Model M1 : wt = δ0 + δ1I1t + v1t . (3)

Model M2 includes I2t but omits I1t .

Model M2 : wt = δ0 + δ2I2t + v2t . (4)

For Model M1, the error v1t is (δ2I2t + εt), so Model M1’s
mean squared error σ 2

1 is:

σ 2
1 = (σ 2

+ δ2
2/T ), (5)

1 This analysis and its empirical application below ignore changes in
the estimated coefficients that arise from the omitted impulse indicators.
However, because impulse indicators are orthogonal, those changes
should not be an important consideration here.

which is larger than σ 2, the error variance for Model M0.
Likewise, for Model M2, the error v2t is (δ1I1t +εt), and the
mean squared error σ 2

2 is:

σ 2
2 = (σ 2

+ δ2
1/T ), (6)

which also is larger than σ 2.
One possible consequence of model specifications such

as M1 and M2 is to shrink t-ratios on included variables.
As Eqs. (5) and (6) imply, the estimated residual variance
in a model with an omitted relevant variable is typically
larger than the estimated residual variance in the DGP.
Hence, the estimated standard error on the coefficient
of a variable included in that model is larger than the
corresponding coefficient’s estimated standard error in the
DGP. That shrinks the coefficient’s t-ratio in themodelwith
the omitted variable.

For example, the t-ratio for I1t in Model M1 uses σ̂1 in
the coefficient’s estimated standard error, rather than σ̂ ,
which would be used for its t-ratio in Model M0. Thus, I1t
might be significant in Model M0 but appear insignificant
in Model M1, simply because Model M1 excludes I2t and
so σ̂1 > σ̂ . Likewise, the t-ratio for I2t in Model M2 uses σ̂2
in the coefficient’s estimated standard error, rather than
σ̂ . Hence, I2t might be significant in Model M0 but appear
insignificant in Model M2 because Model M2 excludes I1t
and so σ̂2 > σ̂ . As Hendry and Doornik (2014, p. 243)
summarize, ‘‘[w]hen there is more than a single break, a
failure to detect one [break] increases the residual variance
and so lowers the probability of detecting any others.’’

Empirical application. Gamber and Liebner (2017) dis-
cuss t-ratios, significance levels, and empirical power for
IIS, illustrating with the CBO forecasts. To interpret these
empirical results in an encompassing framework, consider
a baseline specification that includes all seven impulse in-
dicators selected in Ericsson (2017). The observed t-ratios
on retained impulses in Gamber and Liebner’s models are
closely matched by t-ratios as numerically solved from
an encompassing analysis that starts with that baseline
seven-indicatormodel. This comparison appears in Table 1.
Moreover, the retention (or not) of individual impulse in-
dicators in Gamber and Liebner (2017) is consistent with
the losses in power implied by the encompassing analysis.

Key empirical results can be summarized, as follows.
Using the ‘‘bare-bones’’ implementation of IIS, Gamber and
Liebner (2017, Section 3) detect the following impulse
indicators in the second subsample (1998–2012):

(a) I2001, I2008, and I2009 (at a 1% significance level);
(b) I2008 only (at a 1% significance level, but re-selected

from (a)); and
(c) I2001, I2002, I2003, I2008, I2009, and I2010 (at a 5% significance

level).

For the first subsample (1984–1997), Gamber and Liebner
find that:

(d) I1990 is not significant, nor is any other impulse
indicator.

Columns ##1–4 in Table 1 report the t-ratios from (a)–(d).
Using IIS in Autometrics, Ericsson (2017, Table 3) detects
seven impulse indicators:
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Table 1
Actual and solved t-ratios and residual standard errors for regressions of the CBO forecast errors on various impulse indicators.

Regressor or statistic Block analyzed, significance level or target size, and result and column
Bare-bones IIS Autometrics IIS
2nd block
(1%)

2nd block
(1%, 1%)

2nd block
(5%)

1st block
(–)

Multi-block
(1%)

Estimated coefficient δ̂i

(a) (b) (c) (d) (e) (e)
col. #1 col. #2 col. #3 col. #4 col. #5a col. #5b

I1990 1.2 4.0*** 2.96
⟨1.5⟩

I2001 2.4* 3.5** 4.8*** 3.52
⟨2.7∗

⟩ ⟨3.8∗∗
⟩

I2002 3.1** 4.2*** 3.12
⟨3.4∗∗

⟩

I2003 2.6* 3.6** 2.66
⟨2.9∗∗

⟩

I2008 4.6*** 3.8*** 6.4*** 8.5*** 6.27
⟨4.8∗∗∗

⟩ ⟨3.9∗∗∗
⟩ ⟨6.7∗∗∗

⟩

I2009 2.5* 3.6** 4.8*** 3.53
⟨2.7∗

⟩ ⟨3.8∗∗
⟩

I2010 2.6* 3.5** 2.57
⟨2.8∗

⟩

σ̂ 1.24 1.44 0.94 1.74 0.72 –
⟨1.28⟩ ⟨1.58⟩ ⟨0.91⟩ ⟨1.88⟩

Calculated rescaling factor ⟨0.57⟩ ⟨0.46⟩ ⟨0.80⟩ ⟨0.38⟩ – –

Notes. Column headers indicate the version of IIS employed, the block(s) analyzed, the significance level (for bare-bones IIS) or target size (for Autometrics
IIS), associated result (a)–(e), and the column number. Unbracketed numerical values are observed empirical t-ratios, σ̂ , and (for Column #5b) estimated
coefficients from the designated regressions. Values in angled brackets ⟨·⟩ are as solved from the encompassing analysis. Superscript asterisks *, **, and
*** denote rejections of the null hypothesis at the 5%, 1%, and 0.1% levels respectively; and the null hypothesis is that the coefficient on the corresponding
impulse indicator is zero. All actual and solved values are reported to just one or two decimals for readability, but solved quantities are calculated from
unrounded actual values. All regressions include an intercept; σ̂ is in percent; and the sample period is 1984–2012. In Column #2, selection at the 1%
significance level is repeated.

(e) I1990, I2001, I2002, I2003, I2008, I2009, and I2010 (at a 1% target
size).

Column #5a in Table 1 reports the t-ratios in that
specification.

The results in (a)–(e) present a puzzle. From (a)–(d)
combined, Gamber and Liebner (2017) find that only I2008
is significant at the 1% level. By contrast, all seven impulses
in (e) are significant at not only the 1% level but at the 0.5%
level; and all but I2003 and I2010 are significant at the 0.1%
level.

These apparently contradictory results can be rec-
onciled by an encompassing analysis that treats (e) as
Model M0 (the DGP), (a)–(c) as versions of model M1, and
(d) as model M2. In this context, specifications (e), (a)–(c),
and (d) generalize Eqs. (2), (3), and (4) to (potentially) in-
clude multiple indicators in each subsample.

The encompassing analysis begins with σ̂ . Note that
σ̂ in Column #5a is 0.72, which is σ̂ for the assumed
DGP. In Columns ##1–4, the values of σ̂ are much larger,
as would be expected with omitted relevant indicators.
Directly under those four values of σ̂ , the values in angled
brackets ⟨·⟩ report the corresponding residual standard
errors, as solved numerically from the analytical example
above. These solved values are calculated from formulas

(5) and (6), generalized for multiple impulses, and using
the values of σ̂ and δ̂i for the model in Column #5. The
solved values for σ̂ are very close to the actual values for σ̂ ,
indicating how well the analytical example helps explain
(and encompass) Gamber and Liebner’s empirical results.

Similarly, the values in angled brackets ⟨·⟩ under ac-
tual t-ratios report the t-ratios as solved from the en-
compassing analysis. To obtain a ‘‘solved’’ t-ratio, the
actual t-ratio in Column #5a is rescaled by the ra-
tio of Column #5a’s σ̂ to the solved value of the
residual standard error. The values of the solved
t-ratios also are very close to their actual values. The last
line in Table 1 reports the calculated rescaling factor,which
highlights the considerable anticipated loss of information
from the omitted impulse indicators in (a)–(d).

To illustrate concretely how these encompassing cal-
culations proceeded, consider the solved values for Col-
umn #3. From Eq. (6), the solved value of σ̂ is the square
root of (0.722

+ (2.962/29)), or 0.91. The solved t-ratio on
(e.g.) I2001 is 4.8 · (0.72/0.91), or 3.8. These solved values
for σ̂ and the t-ratio are very close to the actual values of
0.94 and 3.5.

Please cite this article in press as: Ericsson, N. R., Interpreting estimates of forecast bias. International Journal of Forecasting (2017),
http://dx.doi.org/10.1016/j.ijforecast.2017.01.001



4 N.R. Ericsson / International Journal of Forecasting ( ) –

Table 2
Calculated probabilities for retaining different numbers of impulse indicator dummies under an assumption of heteroscedasticity, at 5% and 1% target sizes.

Number of retained dummies Monte Carlo (5%) Binomial solution (5%) Binomial solution (1%) Binomial solution (1%)
[σb = 2.842]

0 1.9 0.3 5.4 0.4
1 6.4 2.0 17.5 2.8
2 13.3 6.8 26.2 8.6
3 16.5 14.0 24.3 16.4
4 17.4 20.2 15.6 21.6
5 15.1 21.4 7.4 20.9
6 11.9 17.1 2.6 15.3
7 8.1 10.6 0.7 8.6
8 5.0 5.1 0.2 3.8
9 2.7 1.9 0.0 1.3
10 1.0 0.5 0.0 0.3
11 0.5 0.1 0.0 0.1
12 0.1 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0

Probability of retaining 6+ dummies 29.4 35.3 3.5 29.4
Probability of retaining 7+ dummies 17.5 18.2 0.9 14.1
Average number of dummies retained 4.4 4.9 2.6 4.6

Notes. All values for Monte Carlo and binomial calculations are in percent, except for the ‘‘average number of dummies retained’’. Values in the column
for ‘‘Monte Carlo (5%)’’ are from Gamber and Liebner (2017, Table 1), rounded to the first decimal in light of the implied uncertainty in their Monte Carlo
simulation; see Hendry (1984). Probabilities in the antepenultimate and penultimate rows are calculated from unrounded values. The final column is
calculated for the alternative value of σb equal to 2.842.

3. The power of impulse indicator saturation

Gamber and Liebner (2017) observe that IIS has power
to detect heteroscedasticity in the disturbances as well
as nonconstancy in the forecast bias. Gamber and Liebner
then conduct Monte Carlo simulations, which suggest that
heteroscedasticity is a likely interpretation of the empiri-
cal results from IIS in Ericsson (2017). Paralleling Gamber
and Liebner’s Monte Carlo simulations, a direct analytical
solution shows that heteroscedasticity can give rise to IIS
detecting multiple impulse dummies. However, the num-
ber of impulse dummies actually detected by IIS for the
government debt forecast errors would likely require sub-
stantially more heteroscedasticity than assumed. This sec-
tion summarizes the statistical framework for Gamber and
Liebner’s Monte Carlo simulations, derives an alternative
analytical solution, summarizes implications for the em-
pirical results, and reconsiders the potential role of het-
eroscedasticity.

To show that pure heteroscedasticity might explain
the empirical results from IIS, Gamber and Liebner (2017)
adopt the following DGP for wt :

wt ∼ NID(0, σ 2
a ), t = 1, . . . , Ta; and (7)

wt ∼ NID(0, σ 2
b ), t = (Ta + 1), . . . , T . (8)

Based on the empirical setting for debt forecasts as ana-
lyzedwith bare-bones IIS, Gamber and Liebner choose Eqs.
(7)–(8) with subsamples of length Ta = 14 and Tb = 15
where Tb ≡ (T − Ta), and subsample standard deviations
ofσa = 1.007% andσb = 2.122%. Gamber and Liebner gen-
erate 104 replications ofMonte Carlo datawith these prop-
erties, apply bare-bones IIS to each replication, and count
the number of dummies retained across replications. Ta-
ble 2’s column labeled ‘‘Monte Carlo (5%)’’ reports Gamber
and Liebner’s (2017, Table 1) estimated probabilities for re-
taining different numbers of impulse indicator dummies

when selecting them at a 5% significance level on individ-
ual t-ratios in bare-bones IIS. These estimated probabilities
imply a nearly one-in-three chance of detecting six ormore
impulse indicators, six being the number of indicators de-
tected in (c) above. The average number of indicators de-
tected in the Monte Carlo simulation is 4.4.

The statistical problem posed by Gamber and Liebner
can also be solved analytically, noting the following
features. First, the t-ratios on the impulse indicators in
bare-bones IIS have t-distributions, once the t-ratios are
rescaled by σa/σb or σb/σa, as appropriate. Second, the
probability of retaining a specific number of dummies
can be derived from a generalization of the binomial
distribution; see Stuart and Ord (1987, Chapter 5). Solving
that probability obtains the values in Table 2’s column
‘‘Binomial solution (5%)’’, which closely matches the
previous column, ‘‘Monte Carlo (5%)’’.

As Section 2 discusses, the empirically relevant target
size is 1% (not 5%), and it is of interest to calculate the
probability of retaining at least seven dummies (rather
than at least six). The corresponding calculations appear in
Table 2’s penultimate column, labeled ‘‘Binomial solution
(1%)’’. The average number of dummies retained is only 2.6,
and the probability of retaining at least seven dummies is
under 1%. Pure heteroscedasticity thus appears unlikely to
explain the retention of the seven impulse indicators found
in practice.

That said, if the difference between the subsample
standard deviations σa and σb were greater, the implied
heteroscedasticity could have been a likely explanation
for IIS’s empirical behavior. Specifically, if σb were 2.842
rather than 2.122 (and σa unchanged), then the probability
of retaining at least six dummies would have been 29.4%,
the same value as obtained by Gamber and Liebner.
The corresponding calculations appear in Table 2’s final
column, labeled ‘‘Binomial solution (1%) [σb = 2.842]’’.
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4. Remarks

Several issues merit additional remarks, including al-
gorithmic implementation, the models considered, power,
time-invariant bias, and directions for further research.

First, algorithmic implementation of IIS requires im-
portant choices, as Hendry and Doornik (2014) discuss.
Choices include the construction of the blocks, model se-
lection criteria, use of diagnostic statistics, path search,
block combination and re-selection, iteration, and signif-
icance level. These choices may matter under the null
hypothesis of correct specification, under the alternative
hypothesis, or under both.

For example, under the null hypothesis, too loose a
significance level may inadvertently retain many irrele-
vant dummies, downwardly biasing the estimated residual
standard error, and upwardly biasing t-ratios; see Gamber
and Liebner (2017). Hendry, Johansen, and Santos (2008)
and Johansen and Nielsen (2009, 2013, 2016) consider this
issue in detail. Hendry and Doornik (2014, Chapter 15)
and Johansen and Nielsen (2016) propose implementable
bias corrections. Even simpler, Hendry and Doornik (2014,
Chapter 15) recommend a relatively tight significance level
of 1/T as a rule-of-thumb to help keep such estimation bias
minimal. Ericsson (2017) employs an even tighter level of
about 0.3/T for IIS. So, the seven impulse indicators dis-
cussed in Section 2 above are of substantive interest and
do not appear to have been retained spuriously. Relatedly,
bare-bones IIS can actually selectmore (andnot only fewer)
impulse indicators than Autometrics IIS, as Figures 6g and
6h in Ericsson (2017) imply.

Second, the models considered—and those not
considered—can affect the model selected. Thus, the re-
sults in Section 2 may depend on differences between
bare-bones and Autometrics implementations of IIS, in-
directly through which models the two algorithms con-
sider in their selection processes. For instance, if one of the
blocks in bare-bones IIS had included 1990 in addition to
1998–2012, bare-bones IIS would have detected the im-
pulse indicator for 1990 at the 1% significance level. When
the null hypothesis is false, the choice of blocks and the
implied set of models can strongly influence IIS’s ability
to detect the alternative. Hence, Autometrics searches over
manyblocks, includingpossibly overlapping andunequally
sized blocks; see Doornik (2009).

Third, IIS has power to detect heteroscedasticity—and
many other alternatives as well. Applications of IIS re-
flect that wide-ranging ability: see Hendry (1999) on
nonconstancy, Johansen and Nielsen (2009) and Marczak
and Proietti (2016) on outliers, Hendry and Doornik (2014,
Chapter 15.6) on thick-tailed distributions, Hendry and
Santos (2010) on heteroscedasticity and super exogeneity,
Ericsson (2011) on omitted variables and regime changes,
Castle, Doornik, and Hendry (2012) on multiple breaks,
Pretis, Schneider, Smerdon, and Hendry (2016) on ‘‘de-
signer’’ breaks, and Ericsson (2016) on measurement er-
rors. Gamber and Liebner (2017) underscore the benefits
of IIS, stating that ‘‘. . . the IIS technique is useful as an ex-
post diagnostic tool for detecting points in time when the
model is biased’’ (Section 4), and that IIS is valuable ‘‘. . . as
a general diagnostic tool for detecting model misspecifica-
tion’’ (abstract).

Fourth, in order to achieve good power against many
different alternatives, Hendry and Doornik (2014) inten-
tionally allow Autometrics to beneficially (and temporar-
ily) relax the significance level in ‘‘. . . search[ing] for
potentially significant, but as yet omitted, variables’’
(p. 235). Doing so has little effect under the null hypothesis
but may be helpful under alternatives, as Section 2 high-
lights.

Fifth, time-invariant bias in the government debt
forecasts is empirically detectable at the 0.2% significance
levelwhenusing IIS, even if the retained impulse indicators
are thought of as arising purely from ‘‘outliers’’. By contrast,
without IIS to robustify estimation and inference, the
forecast bias appears insignificant at even the 10% level;
cf. the Mincer–Zarnowitz A and A∗∗ tests for the CBO in
Ericsson (2017, Tables 3 and 7).

Sixth, many directions for further research are highly
promising. In particular, generalized saturation offers
parsimonious representations of outliers and breaks;
see Castle, Doornik, Hendry, and Pretis (2015) on step
indicator saturation, and Ericsson (2011) for a typology
of saturation techniques. One saturation technique—
multiplicative indicator saturation—embodies a structure
similar to that of regime-switchingmodels, while allowing
a given regime to differ quantitatively across its multiple
occurrences. Highlighting this aspect, test (iii) in Ericsson
(2017, Table 7) shows that forecast biases are not equal
across different occurrences of the same ‘‘event’’ (or
regime), where that event is a peak or a trough. A
standard regime-switching model would have difficulty
accommodating such heterogeneity, and would have
difficulty even detecting turning points as regimes because
of their brief nature.

5. Conclusions

Gamber and Liebner (2017) raise important issues con-
cerning the interpretation of empirical results, particularly
when employing impulse indicator saturation. In the dis-
cussion above, the analysis of alternative model specifi-
cations and the calculation of empirical power functions
highlight consequences for IIS when the null hypothe-
sis is incorrect. Specifically, IIS has power to detect many
empirical features, including heteroscedasticity, structural
breaks, outliers, and omitted variables. As a practical im-
plication, the evidence in Ericsson (2017) and Gamber and
Liebner (2017) supports the interpretation that U.S. gov-
ernment agencies’ forecasts of U.S. gross federal debt have
time-varying biases.
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