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a b s t r a c t

A framework for the forecasting of composite time series, such as market shares, is
proposed. Based on Gaussian multi-series innovations state space models, it relies on
the log-ratio function to transform the observed shares (proportions) onto the real line.
The models possess an unrestricted covariance matrix, but also have certain structural
elements that are common to all series, which is proved to be both necessary and
sufficient to ensure that the predictions of shares are invariant to the choice of base
series. The framework includes a computationally efficient maximum likelihood approach
to estimation, relying on exponential smoothing methods, which can be adapted to
handle series that start late or finish early (new or withdrawn products). Simulated joint
prediction distributions provide approximations to the required prediction distributions of
individual shares and the associated quantities of interest. The approach is illustrated on
US automobile market share data for the period 1961–2013.
© 2017 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Theneed for forecasts of proportions arises in awide va-
riety of areas, such as business, economics, demography,
and political science. Specific examples include the mar-
ket shares of competing products, the proportions of jobs
in different sectors of the economy, and the age compo-
sition of a population. In some cases, only measurements
of the proportions are available; in others, such as mar-
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ket share data, both total sales and proportions are avail-
able, although the analysis typically focuses on the latter.
Statistical methods for the analysis of data on proportions
are known as compositional time series methods, and one
essential component is some form of transformation to en-
sure that the specified random variables are non-negative
and defined on a simplex so that they sum to one.

The monograph by Aitchison (1986) is a key refer-
ence for compositional data analysis. His analysis shows
that we can draw on a wide variety of established and
well-understood statistical methods by using the log-ratio
transformation to map the proportions onto the real line.
This transformation has become relatively standard over
the years for both cross-sectional and time series analy-
sis (Aitchison & Egozcue, 2005; Brundson & Smith, 1998;
Quintana & West, 1988), and is adopted in our paper. A
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key advantage of the transformation is that it enables us to
develop the analysis on the whole real line, allowing pa-
rameter estimation to be based on least squares (min-
imum generalized variance) arguments. Of course, the
construction of prediction intervals requires explicit dis-
tributional assumptions, with themultivariate normal dis-
tribution being the most common choice.

Once the log-ratio transformation has been applied,
other forms of analysis become feasible, such as functional
data analysis (cf. Hyndman & Booth, 2008), which enables
the consideration of more general time-dependent mean
and variance structures. This paper does not consider this
possibility or the other approaches in the literature, based
on theDirichlet distribution (Grunwald, Raftery, &Guttorp,
1993) or the hyper-spherical transformation (Mills, 2010).

The novel feature of this paper is its coupling of the log-
ratio transformation with linear innovations state space
models and the associated technique of vector exponential
smoothing (De Silva, Hyndman, & Snyder, 2009, 2010;
Hyndman, Koehler, Ord, & Snyder, 2008). The rationale for
this shift in emphasis lies in the nature of market share
data, where new brands may be launched or old brands
fade away. State space models can be structured easily
to allow for the intrinsically non-stationary nature of a
start-up, so that varying numbers of series (‘‘births’’ and
‘‘deaths’’) may be considered. In contrast, vector ARIMA
models (Barceló-Vidal, Aguilar, &Martín-Fernández, 2011;
Brundson & Smith, 1998) assume that series are stationary
after suitable differencing, and can notionally extend to
the ‘‘infinite past’’. These authors do not consider births or
deaths.

One issue with log-ratio time series models when there
are three or more brands lies in the choice of the base
series. When there are no restrictions on the parameter
space, the results are not invariant to the choice of this
base. One of the contributions of this paper is the identi-
fication of necessary and sufficient conditions for the fore-
casts to be invariant to the choice of base.

The emphasis in this paper is on pure time series
models. Extensions that include explanatory variables are
clearly possible, although as Brodie, Danaher, Kumar, and
Leeflang (2001) observe, ‘‘causal models should only be
used when input variables can be forecast with reasonable
accuracy’’. In the absence of such information, they note
that the naïve random walk model works well over short
horizons, a scheme that one would hope could be bested
by the systematic development of time series models. It
should also be emphasized that we are not advocating
the exclusive use of time series models for the analysis
of market shares, but recognize that a combination of
methods often adds value, as was demonstrated by Kumar,
Nagpalb, and Venkatesan (2002).

The paper is structured as follows. The data on
(grouped) company shares of the US automobile market,
which serves as the example for our empirical work, are
described in the next section. The basic model and the
transformations that are used to ensure that the non-
negativity and adding up constraints are satisfied are
introduced in Section 3. Prediction distributions are devel-
oped in Section 4. Estimation procedures, with extensions
to allow for series of unequal lengths due to births and
deaths, are considered in Section 5, along with model se-
lection issues and the construction of prediction intervals.
A detailed analysis of market shares in the US automobile
market is undertaken in Section 6, including two cases of
newentrants into the overallmarket. Conclusionswith dis-
cussion are provided in Section 7. The necessary and suffi-
cient constraints on the parameter space that are required
for base series invariance are derived in the Appendix.

2. Description of the data

The annual log-ratios of US total vehicle sales market
share data (http://wardsauto.com/data-center), shown in
Fig. 1, exhibit many of the issues considered in this paper
and are used in Section 5 to illustrate our proposed
approach. The original shares series related to 31 principal
manufacturers who sell, or used to sell, in the American
market. For the purpose of discussion, we consolidated
them into six series as follows:

American: GM, Ford, Chrysler [3 series]
Japanese: Honda, Isuzu, Mazda, Mitsubishi, Nissan,

Subaru, Suzuki and Toyota [1 series]
Korean: Hyundai and Kia [1 series]
Other (principally German): BMW, Daimler, Volkswa-

gen and Other [1 series].
We selected these groupings with several factors in

mind: they should be reasonably homogeneous in terms
of market appeal; they should be small enough in number
that they can be discerned in graphs; and they should not
hide the entry of new products (Japan and Korea). It should
be noted that any analysis that is based upon log-ratios
will not be invariant under groupings of ‘brands’, but the
effects will be minimized as long as we select reasonably
homogeneous groups.

A fundamental issue concerning the use of log-ratio
models needs to be addressed at this point. Hierarchi-
cal time series modeling (e.g., Hyndman, Ahmed, Athana-
sopoulos, & Shang, 2011) relies upon linear structures for
combining elements (e.g., combine different options to
define the sales of a particular model of automobile, then
aggregate across all models of car produced by the manu-
facturer, then possibly across cars and trucks, and so on).
In principle, the granularity of the data can be made as
fine or as coarse as the analysis requires. However, the
level of aggregation cannot be changed once the log-ratio
transformation has been applied. Thus, the hierarchical
and compositional approaches are complementary, in that
hierarchical methods can be used to forecast component
series within a given level of aggregation, and composi-
tional methods are then used to compare entities at that
level of aggregation.

The non-stationary nature of the transformed series
is evident from Fig. 1. The market share for GM has
declined steadily, meaning that the relative market shares
of the other manufacturing groups have increased. The
Japanese and Korean manufacturers have increased their
shares relative to GM. The series for Chrysler chronicles
the relative decline and recovery of that company in the
seventies and eighties, whereas the ‘‘Other’’ series (mostly
German manufacturers) reflects a decline followed by a
more recent resurgence.

http://wardsauto.com/data-center
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Fig. 1. Plots of log-ratios of percentage market shares for annual automobile sales, 1961–2013, using GM as the base series for each case.
Source:Ward’s Auto Group.
As is to be expected, the series show a strong serial
dependence, meaning that the random walk model is
a viable choice, as was noted by Brodie et al. (2001).
However, things are not as straightforward as they appear,
as the total shares must still add to one and the prediction
intervals must remain in the interval (0, 1). A binary
logistic ‘‘Us versus Them’’ model (Brodie et al., 2001)might
be considered appropriate for an individual company,
but it fails to recognize movements among competitors
that could have major consequences. Thus, we seek
an approach that will handle all of: constrained total
shares equal to one, non-negative shares, strong serial
dependence, non-stationarity, non-uniform interactions
among the series, and new entries. The grouping that we
performed ensured that we are not confronted by missing
values or near-zeros in this example, but we address those
questions briefly as well.

3. Models and transformations

3.1. Data transformations

It is initially envisaged that there are r+1 time series, all
of equal length n. An adequate representation of the shares
data involves both a series index i and a time subscript
t . The r + 1 shares at time t are denoted by {zit; i =

0, 1, . . . , r; t = 1, 2, . . . , n}, where zit ≥ 0 and


i zit =

1. However, it is convenient to drop the t subscript
temporarily when considering the transformations.

One transformation is needed to convert the shares
vector z of dimension r + 1 into the unbounded vector
y ∈ Rr in order to ensure that that the constraint on the
sum is preserved without creating a singular distribution.
The preferred transformation is the log-ratio (Aitchison,
1986) yi = ln (zi/z0) for i = 1, . . . , r , where z0 is the base
series. For themoment, it is assumed that none of the series
contain zeros. Aswas noted by Brundson and Smith (1998),
the subsequent analysis must be invariant to the choice of
base series.
The inverse of the log-ratio transformation is the
logistic function

zi =



exp (yi)

1 +

r
j=1

exp

yj

 i = 1, . . . , r

z0 = 1 −

r
j=1

zj i = 0.

(1)

The log-ratio transformation is applied in each period in
order to obtain the unbounded r-vectors y1, . . . , yn in
what will be termed the log-ratio space. The resulting
series generally retain many of the features of the original
series, such as non-stationarity and serial dependence.

3.2. Innovations state space models for time series with
common structures

Vector innovations state space models are used to
represent the evolution of the transformed non-stationary
time series (it is assumed for the moment that all series
have common start and end dates). In these models, the
series vector yt in typical period t is related linearly
to a random matrix Xt−1 ∈ Rk×r of state variables,
representing the latent states from the end of the previous
period. This relationship is given by the row vector of
measurement equations

y′

t = w′Xt−1 + ε′

t , (2)

where w ∈ Rk is a fixed vector and the εt ∈ Rr

are serially independent N (0,V) innovations vectors. The
variance matrix V has non-zero covariances, reflecting
contemporaneous dependencies. The evolution of the
states is governed by the recurrence relationship

Xt = FXt−1 + gε′

t , (3)

where F ∈ Rk×k and g ∈ Rk are also fixed. The structural
vectors w and g and the matrix F may depend on a vector
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Table 1
The local level and local trend state space models and their reduced forms.

Model Specification Reduced form

Local level (LLM) yt = ℓt−1 + εt
∇yt = − (1 − α) εt−1 + εtℓt = ℓt−1 + αεt

Local trend (LTM)
yt = ℓt−1 + bt−1 + εt

∇
2yt = − (α − 1) εt−2 − (2 − α − β) εt−1 + εtℓt = ℓt−1 + bt−1 + αεt

bt = bt−1 + βεt
θ ∈ Rp of common parameters. The r (r + 1) /2 distinct
elements of V are additional parameters.

Such a model can always be reduced to the form of a
vector ARIMA model, provided that we keep in mind the
finite start-up times of some or all of the series, contrary to
the usual ARIMA assumptions. The details of this reduction
for the univariate case are given by Hyndman et al. (2008,
Chapter 11).

The multivariate model specified in Eqs. (2) and
(3) consists of a univariate model for each log-ratio
series. These univariate sub-modelswould be independent
except that it is assumed that they share common
structural features through {w, F, g}, and have correlated
innovations.

It is critical that the models be structured so that the
results do not depend upon the choice of the base se-
ries. We call this the fundamental requirement of log-ratio
models. It is established in the Appendix that the shared
(common) structure {w, F, g} is necessary and sufficient
for the maximum likelihood (or generalized variance) es-
timators of the parameters to be invariant to a change
in the base series used with the log-ratio transforma-
tion. Moreover, it ensures that pairwise comparisons of
series can be made independently of other series, includ-
ing the base series. Thus, the comparison between two se-
ries indexed by i and j, exploiting the common w in the
measurement equation (Eq. (2)), is governed by the rela-
tionship zit/zjt = exp


w′


xi,t−1 − xj,t−1


+


εit − εjt


,

where xi,t−1 and xj,t−1 are columns i and j of the Xt−1 ma-
trix.Moreover, it can be inferred fromEq. (3) that xit−xjt =

F

xi,t−1 − xj,t−1


+ g


εit − εjt


. Only the states and errors

for the two series enter these relationships.

3.3. Special cases of the general model

Several special cases of the general model are now con-
sidered, in order to provide a sufficiently rich set of options
for our market share analysis. We retain the assumption
εt ∼ NID (0,V) in all cases, where V is unrestricted for the
stochastic error terms. Conceptually, the simplest starting
point in any multivariate time series analysis is the global
means model yt = µ + εt , where µ ∈ Rr is a vector
of constant means. It allows for neither serial dependence
nor non-stationarity, but is relevant insofar as it illustrates
a case where the starting values (the means) are of criti-
cal importance and must be estimated efficiently. We do
not consider this model explicitly in our empirical analy-
sis. At another extreme is the multivariate random walk
yt = yt−1+εt (referred to by Brodie et al., 2001 as the naïve
model). It is of interest because it is the simplestmodel that
allows for both serial dependence and non-stationarity.
Table 2
Parameter restrictions for the local level and local trend models.

Model Traditional Invertibility/forecastability

Local level, LLM 0 ≤ α ≤ 1 0 ≤ α ≤ 2

Local trend, LTM 0 ≤ α ≤ 1 2α + β ≤ 4
0 ≤ β ≤ α α ≥ 0, β ≥ 0

The models used in this paper, called the vector local
level model (LLM) and the vector local trend model (LTM),
are shown in Table 1, together with their VARIMA ana-
logues. They include the elementary globalmeans and ran-
dom walk models, but provide a much richer framework
for the analysis of multivariate time series. Useful back-
ground on the univariate versions of these models is pro-
vided by Hyndman et al. (2008, Chapter 3). Ignoring the
elements of V, the common structure required for invari-
ance to the choice of the base series means that the vector
LLM and the vector LTM have just one and two structural
parameters respectively, reducing the proliferation of pa-
rameters that normally accompanies multivariate models.
However, the variance matrix is unrestricted. In addition,
there are also the starting values (k for LLMand2k for LTM).

The following notation is employed in Table 1: ℓt ∈ Rk

for a vector of levels; bt ∈ Rk for a vector of underlying
growth rates; α, β for the common parameters; and ∇ for
the difference operator.

Various restrictions must be imposed on the param-
eters in order to ensure forecastability (Hyndman et al.,
2008, pp. 152–155). For the models that we consider, fore-
castability corresponds to invertibility together with those
situations where some of the smoothing parameters may
be zero, but the traditional constraints that are applied in
exponential smoothing studies may also be used. Both sets
of constraints are shown in Table 2, but the traditional con-
straints are more restrictive in these cases (though not in
general), and the choice of constraint set continues to be
debated actively; see for example Hyndman et al. (2008,
Chapter 10).

These particular models can be expressed in terms of
the general notation established in the previous section,
with the formats being summarized in Table 3. The
constantmeansmodel is a limiting case of the LLM (α = 0)
and will rarely be of practical interest, but is worth noting
because the initial conditions determine the forecasts for
all future time periods. The random walk is also a special
case of the LLM (when α = 1), and is again a boundary
case when the traditional constraints are applied, but an
interior solution for the invertibility constraints. Reflecting
what is now common practice in forecasting, the random
walk will be used for benchmarking purposes. A special
case of LTM may be termed the local momentum model
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Table 3
The matrices and vectors associated with particular models.

Model xt w′ F g θ

Constant means µ 1 1 0 0
Random walk ℓt 1 1 1 1
Local level ℓt 1 1 α α

Local trend

ℓ′

t
b′

i

 
1 1

 
1 1
0 1

 
α

β

 
α

β


Local momentum


ℓ′

t
b′

t

 
1 1

 
1 1
0 1

 
1
β

 
1
β



(LMM), where the rate of change has a local level structure,
or ∇yt = ∇yt−1 + εt − (1 − β)εt−1. It is obtained
when α = 1, but its interpretation is of particular interest
because it corresponds to a local levelmodel for the second
derivative, or acceleration.

The structures of each of these models are summarized
in Table 3. We do not consider the constant means model
in the empirical section, but the other four models are all
estimated and compared.

4. Prediction

Prediction distributions form the primary focus of this
section because other forms of potential interest, such
as point predictions and prediction intervals, can then
be derived from them once they are known. In the log-
ratio space, they are multivariate normal distributions. By
applying the vec operator to the state space equations (Eqs.
(2) and (3)), it can be established that their means and
variances can be calculated recursively for future periods
t = n + 1, . . . , n + h using the relationships:

µ
y
t|n = Wµx

t−1|n

µx
t|n = Fµx

t−1|n

Vy
t|n = WVx

t−1|nW
′
+ V and

Vx
t|n = FVx

t−1|nF
′
+ GVG′,

where

1. µx
t|n and Vx

t|n are the conditional mean and variance of
the vectorised states xt = vec (Xt);

2. µ
y
t|n and Vy

t|n are the conditional mean and variance of
the log-ratios vector yt ;

3. W = I ⊗ w′, F = I ⊗ F, and G = I ⊗ g, where I ∈ Rr×r

is an identity matrix and ⊗ is the Kronecker product
operator; and

4. Vx
n|n is approximated by the zero matrix 0 ∈ Rr×r .

Despite the prediction distributions of market shares
being related to the multivariate normal distributions
in log-ratio space, explicit formulas for the prediction
intervals of individual shares are not available when there
are three or more series. However, these intervals can be
approximated from simulated samples, with the method
for typical period t > n being:

1. Randomly generate P vectors from the log-ratio space
prediction distribution N


µ

y
t|n,V

y
t|n


, apply the logistic

transformation (Eq. (1)) to each of them, and then
concatenate the resulting column vectors of shares to
form a matrix Zt ∈ Rr×P .
2. Each row of Zt is a simulated sample of size P from
a marginal distribution of the shares for a particular
market segment. Pertinent statistics can be calculated
as follows:
a. Point prediction with the row average.
b. A β-percent prediction interval with the β/2 and

100 − β/2 row percentiles.
c. The proportion of row values that are in excess

of the current market share as an estimate of the
probability of an increase in the market share.

An exception to the need for simulated prediction intervals
involves the chi-square statistic in the log-ratio space. The
assumption of multivariate normality provides a predic-
tion region by using the chi-square distribution to produce
a one-sided 90% interval Qt < χ2

0.90(rt); see Section 5.6.
Unfortunately, the quadratic form cannot be unscrambled
to produce intervals for the individual market shares for
r > 2.

5. Estimation

Looking at the local trend model as the most general
case under consideration, the r series could involve as
many as rk + p + r(r + 1)/2 parameters, where the
three terms correspond to the counts of the starting val-
ues, the smoothing parameters and the variance matrix el-
ements respectively. We consider two different maximum
likelihood-based estimation procedures in the next two
subsections, illustrated in terms of the LTM.

5.1. A vector ARIMA approach

The problem in this framework is the estimation of the
parameters (α, β) and the r (r + 1) /2 potentially distinct
elements of the variance matrix V. One advantage of the
ARIMA approach is that the unobservable random state
vectors appear to be absent and need not be estimated.
However, a direct specification of the unconditional
likelihood is not possible because of the existence of
the two unit roots (differences). Instead, it is necessary
to base the likelihood function on the density p (y3,
. . . , yn|y1, y2; α, β,V), which is conditioned on the first
two observations. Equivalently, this function may be
represented as the density p


∇

2y3, . . . ,∇2yn; α, β,V

of

second differences. Thus, the effective sample size for each
transformed series is n − 2.

The evaluation can be simplified by using the predic-
tion decomposition of this density

n
t=3 p


∇

2yt |∇2y3,
. . . , ∇2yt−1; α, β,V


. Options for doing this include the
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Kalman filter. However, each pass of the Kalman filter
requires the specification of trial values of α, β and the
r (r + 1) /2 elements of V. By way of example, a search
that is designed to find the maximum likelihood estimates
would need to iterate over a (2+r (r + 1) /2)-dimensional
parameter space. In the context of our empirical example
in Section 6, r = 5; therefore, there are 17 dimensions!

5.2. The innovations state space approach

Consider the general innovations state space model
again. Given a value for the seed state matrix X0, the errors
can be calculated recursively using the general exponential
smoothing equations (in the notation of Section 3.2):

e′

t = y′

t − w′Xt−1 (4)

and

Xt = FXt−1 + ge′

t .

The Xt and et that emerge for typical period t are
conditioned on X0 and y1, . . . , yt−1. The focus is on the
density p (y1, . . . , yn|X0; θ,V) of the entire sample, but
the existence of unit roots means that, as before, we
must condition on something, in this case the seed state.
Exponential smoothing in this context is the analogue of
the Kalman filter in the previous subsection: it allows
us to create a prediction decomposition of the likelihood
function, albeit one that is conditioned on the seed state
X0. This decomposition

n
t=1 p (yt |y1, . . . , yt−1,X0; θ,V)

in turn can be written in terms of the one-step-ahead
prediction errors

n
t=1 p (et |X0; θ,V). Unlike the sample

values y1 and y2 in the previous subsection, X0 must be
observed indirectly by estimation.

However, we may produce a concentrated version of
the likelihood as follows. Given a trial value for X0, the log
of the conditional likelihood can be written as

L (θ,V,X0) = −
nr
2

ln (2π) −
n
2
ln |V| −

1
2

n
t=1

e′V−1e.

For given values of (θ,X0), the maximum likelihood
estimator for V is

V̂ (θ,X0) =

n
t=1

ete′

t/n. (5)

Substituting this into the log-likelihood function gives its
concentrated counterpart:

L (X0, θ) = −
nr
2

ln (2π) −
n
2
ln

V̂ −
nr
2

. (6)

We maximize Eq. (6) so as to obtain the maximum
likelihood estimates of the seed state matrix X0 and the
parameter vector θ. This also has the effect of minimizing
the estimated generalized variance

V̂.
The benefit of this approach to maximum likelihood

estimation is that it reduces the dimensionality of the
search space from p + r (r + 1) /2 to rk + p. In our case
study with a local trend, r = 5, k = 2 and p = 2, so
that the search dimension drops from 17 to 12. In general,
the advantage of the exponential smoothing approach over
the ARIMA approach with a Kalman filter is much more
pronounced for data sets with larger numbers of series,
because the dimensionality is linear rather than quadratic
in the number of series.

Finally, for longer series, we observe that a simple
heuristic may be used to obtain good approximations of
the starting values, thereby reducing the dimensionality
of the parameter space further to only one or two. Such
heuristics are often used in single-series applications (see
Hyndman et al., 2008, pp. 71–73, for further discussion),
but are unreliable when α and β are small. Our application
in Section 6 uses maximum likelihood predictors of the
seed states.

5.3. Accounting for different series lengths

It was noted earlier that there is a need to take into
account all of the following features: a constrained total
(to one), non-negativity, strong serial dependence, non-
stationarity, non-uniform interactions among the series,
and new entries. The state space formulation in Section 3
accounts for all of these factors, but does not address the
issue of new entrants explicitly. The auto share time series
for Japan and Korea are shorter than the others, and the
model formulation must be adapted to account for this.

To ensure that the error terms for Japan and Korea
make no contribution to the estimate in Eq. (5) of the
variance matrix in the periods 1961–1964 and 1961–1985
respectively, the ‘errors’ for these run-in periods are forced
to zero using the formula

eit =

yit − w′xi,t−1 if series i
is observed in period t

0 otherwise.
(7)

Corresponding adjustments to the sample sizes are also
required, so that the estimator for the typical element of
V becomes

v̂ij =

n
t=1

eitejt/min

ni, nj


, (8)

where ni and nj designate the sample sizes of series i and
series j.

The differences in the series’ start-up dates also imply
that not all of the seed state vectors are coincident in time.
In our example, GM, Ford, Chrysler and Others have 1960
as their origin, whereas the origins for Japan and Korea
are 1964 and 1985 respectively. A general approach to
this issue requires a frameworkwhichminimizes the extra
effort required from a coding perspective. Fortunately, this
difficulty may be resolved using the following approach,
which is described in the context of the automobile sales
series but is quite general in application.

Make 1960 the origin of all of the series, so that each
has a seed state vector in this year. Those for Japan
and Korea can be thought of as artificial seed states.
General exponential smoothing is applied in the usual way
between 1961 and 2003, except that Eq. (7) is now used
to determine the errors instead of Eq. (4). This means that
the seed states for Japan and Korea in 1964 and 1985 are
related deterministically to their artificial counterparts in
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1960. The optimization of the artificial seed states for 1960
then leads to appropriate optimised values for the 1964
and 1985 seed states.

The generalized variance, used as the fitting criterion
in Section 5.2, also needs to be adapted so that only those
series that are observed at time t contribute. To this end,
let Dt ∈ Rrt×r be a matrix that selects the rt-vector ỹt of
observed series values from the vector yt using the formula
ỹt = Dtyt . The structure of the matrix Dt can be seen
most readily by ordering the series into the (r − rt) series
that are not observed at time t , followed by the rt series
that are observed. Then Dt = [0rt×(r−rt ), Irt×rt ] and the
one-step ahead prediction errors are given by the rt vector
ẽt = Dtet , with the associated rt × rt variance matrix
Vt = DtVD′

t . The natural logarithm of the generalized
variance can then be written as:

V̂ =

n
t=1

ln
V̂t

 .
In the current context of series with unequal lengths, and
for reasons similar to those outlined by Schmidt (1977),
a conclusive link between the minimum generalized vari-
ance and maximum likelihood estimators has proven ana-
lytically intractable thus far. However, our investigation of
this matter has provided strong hints that the two types of
estimates are indeed identical, and, in the special case of
series of equal lengths, as indicated in Section 5.2, the two
types of estimates are the same for series of equal lengths.

5.4. Zero or near-zero values

The approach in Section 5.3 is designed explicitly to
cover new entrants (and, by implication, can also be ap-
plied in reverse when a series drops permanently to zero).
A different situation arises when a series dips temporar-
ily below a small threshold but then recovers (e.g., non-
supplies in a strike, or health-related issues depressing
sales). In such circumstances, it is straightforward to ap-
ply a modified version of the solution proposed by Fry, Fry,
and McLaren (2000), involving a small perturbation of the
(near) zero values so as to avoid numerical difficulties with
the log-ratio transformations. The procedure is as follows:

• At time period t , determine howmany of the r+1 series
have values that fall below a pre-specified threshold,
say τ . Denote the number of such values bymt .

• If mt = 0, retain the observed values for that time
period.

• If mt > 0, define the adjusted values z∗

it = τ if zit ≤ τ

and z∗

it = (1 − τmt)zit/St if zit > τ where St =
zit>τ zit .

Note that the sum of the adjusted values in each time
period is still 1.0, and the ratios of the adjusted values for
values that are not deemed to be near zero are unchanged.
Clearly, this approach is ad-hoc, but it appeared to work
well with other series that we considered where near-zero
values were an issue.
5.5. Model selection

The Akaike information criterion (Akaike, 1974) is used
for model comparisons and selection. Often, the small
sample variant AICc is preferred; however, it is more
model-specific than the AIC, and is currently unknown
for innovations state space models. In our context, the
AIC is defined as AIC# = V̂ + 2 (rk + p + 0.5r (r + 1)).
This replaces the optimised likelihood in the traditional
definition with the optimised generalized variance. The
# is used to signal that it may not correspond to the
AIC exactly in this particular circumstance, because the
link between the optimised likelihood and optimised
generalized variance, as noted in Section 5.3, has not yet
been established for series of unequal lengths.

In the above formula for AIC#, the penalty includes rk
for the number of seed states, p for the number of free
smoothing parameters and r(r + 1)/2 for the number of
distinct elements in the variance matrix. As the number of
elements in the variance matrix does not vary here, it has
no impact on the model selection process in the present
framework; however, such terms should be included in
order to allow comparisons with other possible cases with
restricted versions of the variance.

5.6. Model checking

The usual panoply of plots for residuals may be
employed to check the validity of the selected model,
but these analyses are generally univariate in nature. A
multivariate check may be formulated by considering the
joint distribution of ỹt and letting ˆ̃yt denote the fitted value
of ỹt . The quadratic form Qt = (ỹt − ˆ̃yt)′V̂

−1
t (ỹt − ˆ̃yt) is

distributed asymptotically as χ2 (rt) when the errors are
multivariate normal, so that when the null hypothesis of
a valid model holds, approximately 100(1 − α)% of the
vectors of residuals should satisfy the inequalities

Qt < χ2
1−α(rt). (9)

The degrees of freedom depend upon the number of series
that are actually observed at time t .

6. Results for the automobile data

6.1. Estimation and model selection

The US automobile data described in Section 2 were
analyzed using the methods developed in the previous
sections. We considered four of the possibilities shown in
Table 2, based on two models (local level and local trend)
and the two constraint sets (traditional and invertibility).
The final ten years of data were reserved as a holdout
sample for prediction evaluation purposes.

The estimation results are summarized in Table 4.
The models are parsimonious in having only one or two
smoothing parameters; however, it should be kept inmind
that this constraint is both necessary and sufficient if we
are to obtain results that are invariant to the choice of
base series, as demonstrated in the Appendix. The AICs
indicate that the vector local trend models are likely
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Table 4
Summary of the estimation results.

Models Restrictions Alternative description Log generalized variance AIC# Alpha Beta Coverageb

RWM None Random walk −745.94 −705.94 0.83
LLM Traditional SESa −771.97 −731.97 1.00 0.81
LLM Stability SESa −778.21 −736.21 1.20 0.84
LTM Traditional TESa −799.95 −747.95 1.00 0.21 0.81
LTM Stability TESa −799.97 −747.97 1.01 0.21 0.81
a SES and TES denote (multivariate) simple exponential smoothing and trend-corrected exponential smoothing, respectively.
b Coverage refers to nominal 90% one-sided intervals for the chi-square statistic.
to produce better forecasts than the vector local level
models. It should be noted that the optimum LLM and LTM
schemes with the ‘traditional’ restrictions produced the
random walk and local momentum models respectively.
Given the previous interest in the random walk model (cf.
Brodie et al., 2001), its relatively poor performance in this
example is noteworthy. The AIC results also indicate that
the use of the invertibility restrictions on the parameters
leads to better predictions (minimizing the AIC) than the
traditional exponential smoothing restrictions.

The fitted local trend model with the traditional con-
straints has α̂ = 1. A local trend model with α = 1 can
be rewritten as ∇yt = bt−1 + εt , where bt = bt−1 + βεt .
This model is of interest in its own right. In effect, the first
differences follow a local levelmodel. Accordingly, the pre-
dictions must be exponentially weighted averages of the
differenced series. A first difference may be interpreted as
the actual growth (in the transformed data) and bt as the
structural growth rate. Overall, the margin of difference for
the two LTM versions is small, and the simpler interpre-
tation of the local momentum model might override the
slight statistical differences.

In all cases, large values of α mean that the prediction
intervals widen substantially as the forecast horizon
increases, but this is a function of the length of the time
period used in the example. We could reasonably expect
much smaller α values in conventional market share
studies that look at monthly or even weekly data.

6.2. Model diagnostics

The coverages of the nominal 90% semi-infinite inter-
vals (closed from above) for the chi-square error statistic
in Eq. (9) are also shown in the final column of Table 4. The
coverage is somewhat below the nominal level in all cases,
but the plot of the Q-statistics for the local trend model in
Fig. 2 suggests that this model ‘‘settled down’’ after the Ko-
rean entry in 1986, with the later results being in line with
expectations.

6.3. Forecasts and prediction intervals for the best local trend
model

The point predictions and 80% prediction intervals from
the best fitting local trend model are illustrated in Fig. 3.
The point predictions are simple averages of the simulated
sample of proportions. The lower and upper limits of the
prediction intervals are the 10th and 90th percentiles. The
observed shares are also shown, and all lie well within the
prediction intervals.
Fig. 2. Plot of Q-statistics and 90% upper limits for the local trendmodel:
1961–2003. The shifts in the confidence limits are due to the Japanese and
Korean entries into the market.

The point forecasts are quite good but the 80%
prediction intervals are too wide. This may be due to a
decline in volatility in the later part of the series.

One question that is often asked is whether a particular
manufacturer is likely to increase its share of themarket in
future years. Fig. 4 provides estimates of the probability of
such an increase for each group in 2004.

7. Discussion

This paper has developed a state space approach for the
forecasting of compositional time series that is invariant to
the choice of the base series in the log-ratio transformation
and satisfies the constraints that the predicted proportions
must be non-negative and sum to one. The associated
models may be extended to include seasonal patterns and
explanatory variables, provided that common parameters
are specified for the state variables, as is the case in the
basic models defined in Table 1. The coefficients for the
explanatory variables will be different in each equation, as
those inputs have differential effects on shares (e.g., falling
oil prices boost the sales of SUVs). For non-seasonal
schemes in particular, the notion of local momentum may
be useful for describing changes in shares, and it also
requires one fewer parameter, which could be important
when only short series are available.

Other features of compositional data are the entry into
and exit from the market of ‘brands’, and the existence
of zero or near-zero values. These are handled using
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Fig. 3. One- to 10-year-ahead forecasts using the LTM models with the invertibility constraints. The solid lines are actual shares, the dashed lines are
predictions, and the dotted lines are the 80% prediction limits.
Fig. 4. Probabilities of increased market shares, by manufacturer, for
2004 (one step ahead).

the extensions described in Sections 5.3 and 5.4. The
state space approach provides a convenient mechanism
for dealing with such issues. The births and deaths of
series may be incorporated using a redefined generalized
variance criterion, while zero or near-zero values are
typically occasional values fromwhich the series recovers,
and can be dealt with using a local perturbation technique.
We have also described model selection procedures using
the AIC, adapted to allow for different series lengths.

The approach could also be extended to include
estimation error. The methods outlined by Ord, Koehler,
and Snyder (1997) could be adapted to the context of this
paper if the additional accuracy seemed warranted.

The estimation procedure described in Section 5 uses
the innovations state space approach, which enables us
to bypass the numerically more costly ARIMA approach
based upon a Kalman filter. Although the total number of
parameters is large, we are able to concentrate the likeli-
hood in order to reduce the dimensionality to {starting val-
ues+ smoothing parameters} when the series are of equal
length. Provided that the series are not too short and the
parameter α is not too close to zero, heuristic starting val-
ues can be used to bring the number of parameters down
to one or two, and standard non-linear methods are easy
to apply in order to obtain the parameter estimates.

Generating point forecasts and computing prediction
intervals poses a problem because the standard approach,
based upon multivariate normal errors, only provides
intervals for the ratios of shares. This difficulty is resolved
by using the simulation procedure described in Section 4.

Finally, the methods developed in this paper are
demonstrated using annual sales data from the US
automobile market. In this case, the local momentum
and local trend models are found to provide better fits
than models involving only local levels, according to the
AIC. Typically, the interest focuses on changes in market
shares, a dynamic that the local level models are unable
to describe. Databases describing movements in market
shares across multiple brands do not seem to be readily
available for academic research purposes, butwe hope that
this paper will encourage the release of further examples.
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Appendix. Invariance to rebasing

A feature of themultivariatemodel in Eqs. (2)–(3) is that
it is built from univariate state space models which share
common structural features (w, F, g). The issue explored
in this appendix is whether this common structure is
necessary to ensure that the predictions of market shares
are invariant to the choice of base series in the log-ratio
transformation.

Theorem 1. Let yt ∈ Rr and ỹt ∈ Rr be the log-ratio series
obtained with different base series z0t and z1t respectively.
This means that yit = ln (zit/z0t) for i = 1, . . . , r, ỹ1t =

ln (z0t/z1t), and ỹit = ln (zit/z1t) for i = 2, . . . , r. Then ỹt
and yt are related linearly by

ỹt = Ayt , (A.10)

where A =


−1
−1 1
.
.
.

. . .

−1 1

. The matrix A ∈ Rr×r is in-

dependent of any model parameters, has a unit determinant,
and is self-inverse, in the sense that A = A−1.

See Aitchison (1986) for a proof of essentially the same
result.

A more general model than that in Eqs. (2)–(3) is
needed for an exploration of the issue of invariance and the
necessity of common structural features. Thus, the typical
series yit is now assumed to be governed by a state space
model with the measurement and transition equations
given by yit = w′

ixi,t−1 + εit and xit = Fixi,t−1 + giεit ,
respectively, where xit ∈ Rk is a state vector and εit is an
innovation. The structural elements wi ∈ Rk, Fi ∈ Rk×k

and gi ∈ Rk are now indexed by i. The εit are serially
independent normal randomvariables,with ameanof zero
and a time-invariant variance.

The primary focus here is on a special case wherewi =

1, a vector of ones. It is referred to here as a normalised
innovations state space model. Examples include the lo-
cal level and local trend models used in this study. A non-
normalised model can usually be converted to normalised
form by rescaling the associated states by their coeffi-
cients; see below for further details.

The multivariate version of the normalised innovations
state spacemodel, formed by stacking the normalised sub-
models, has the form

y′

t = 1′Xt−1 + ε′

t (A.11)

xt = Fxt−1 + Gεt , (A.12)

where Xt =

x1t · · · xrt


, xt = vec (Xt), and now

F = diag (F1, . . . , Fr) and G = diag (g1, . . . , gr). The εt are
serially uncorrelated normally distributed random vectors
with mean 0 and a time-invariant variance matrix V. The
key features of this multivariate model are:

1. Each series depends on its own state vector and no
others.

2. The matrices F and G have block diagonal structures.
3. The typical sub-model i has its own parameter vector
θi which potentially determines some of the elements
of Fi and gi. The implied relationships are written as
Fi = F (θi) and gi = g (θi), where F and g are functions
with the properties that (a) they are common to all sub-
models; and (b) the θi are identifiable from Fi and gi.

4. Interdependencies between series are not modelled
through the states directly, but through contemporane-
ously correlated innovations.

This normalised state space model is said to have a block-
diagonal structure here, although this should not be taken
to mean that the variance matrix V is block diagonal. It is
a time series analogue of a seemingly unrelated regression
(Zellner, 1962), and its sub-models are said to have a
common structure if F1 = · · · = Fr and g1 = · · · = gr ,
something that occurs when θ1 = · · · = θr .

The block diagonal normalised state spacemodel for the
rebased time series is written as

ỹ′

t = 1′X̃t−1 + ε̃
′

t (A.13)

x̃t = F̃x̃t−1 + G̃ε̃t , (A.14)

where the tildes are used to distinguish associated
quantities from their counterparts for yt .

Theorem 2. The normalised models in Eqs. (A.11)–(A.12)
and (A.13)–(A.14) for yt and ỹt are compatible if and only
if their sub-models share a common structure.

A proof of this theorem begins by temporarily ignoring
the block-diagonal property and using Eq. (A.10) to
establish that the two multivariate models are compatible
if and only if

ε̃t = Aεt (A.15)

X̃t = XtA′ (A.16)

F̃ = BFB (A.17)

G̃ = BGA (A.18)

Ṽ = AVA′, (A.19)

where B = A ⊗ I arises when Eq. (A.16) is vectorised
to give x̃t = Bxt . It is then established that if F and G
are block diagonal, F̃ and G̃ can only be block diagonal if
F11 = · · · = Frr and G11 = · · · = Grr . To illustrate
this aspect of the proof, consider the right hand side of Eq.
(A.18) for r = 2:
−I 0
−I I

 
g1 0
0 g2

 
−1 0
−1 1


=


g1 0

g1 − g2 g2


.

The block-diagonal property prevails if and only if g2 = g1.
Moreover, Eq. (A.18) implies that g̃1 = g1 and g̃2 = g2. The
general result follows by applying this same basic logic to
Eqs. (A.17) and (A.18) for any positive value of r .

Corollary 1. The two multivariate models are compatible if
and only if θ1 = · · · = θr = θ̃1 = · · · = θ̃r .

This is a consequence of Theorem 2 and the identifica-
tion property of the common functions F and g .
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Theorem 3. Let θ and θ̃ be the common unknown param-
eters for the multivariate models for yt and ỹt respectively.
Then, the conditional maximum likelihood estimates, desig-
nated with a circumflex, satisfy the following invariance con-

ditions: ˆ̃
θ = θ̂, ˆ̃X0 = X̂0A′ and ˆ̃V = AV̂A′.

This theorem follows because A has a unit Jacobian
determinant, meaning that the likelihood functions for the
two models are equal when θ̃ = θ, X̃0 = X0A′ and Ṽ =

AVA′. The respective maximum likelihood estimates are
then related by the same formulas. This property implies
that the choice of base series does not matter.

An innovations state space model need not always
possess a normalised form as defined above. In general,
measurement equation coefficients need not always equal
one, and may sometimes be zero, as in common additive
seasonal models. The above theory can be adapted for
this context by extending the definition of a normalised
form to involve measurement equations given by yit =

δ′xi,t−1 + εit , where δ is a vector of ones and zeros.
A non-normalised model has a measurement equation
yit = w′

ixi,t−1 + εit with wi = w (θi), where w is a
common function which may include a constant function.
This non-normalised model can be converted to extended
normalised form by introducing the diagonal matrix Wi ∈

Rk×k, where wiqq = wiq if wiq ≠ 0 and wiqq = 1 if
wiq = 0, with q = 1, . . . , r being the row (column) index.
The use of the common w function ensures that any zeros
in wi are in the same locations for all i. The measurement
and transition equations are transformed to the extended
normalised form yit = δ′


Wixi,t−1


+ εit and (Wixit) =

WiFiW−1
i

 
Wixi,t−1


+ (Wgi) εit , and the above theory

then carries over to this transformed model.
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