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Today, there is heightened controversy about the value of partial least squares (PLS) path modeling as a
quantitative research method, including within the domain of European management research. Critical
lines of argument within the management and psychology literature assert that there is no reason to use
PLS path modeling at all. At the same time, authors using PLS path modeling continue to advance
fallacious arguments to justify their choice of method. This paper identifies flaws on both sidesdinvalid
arguments in favor of using PLS path modeling and invalid arguments opposing its usedwithin the
context of a unifying framework and a realist philosophy of science.

© 2016 Elsevier Ltd. All rights reserved.
You are in Rome. Something wonderful is waiting for you in
Brussels. Unfortunately, there are only two flights available to
you. One goes to Frankfurt, and the other goes to Paris. As you
ponder this choice, some people confront you. “Frankfurt?” they
scoff. “Why fly to Frankfurt? Brussels is in BelgiumdFrankfurt is
not even in the same country. It would be ridiculous to fly to
Frankfurt, because the city you are trying to reach is Brussels.”
They confidently conclude, “Frankfurt doesn't work. Fly to
Paris.”
1. Introduction

Perhaps there has always been controversy between different
approaches to structural equation modeling (SEM), ever since
Herman Wold unveiled a composite-based alternative to Karl
J€oreskog's common factor-based innovation. In the last few
yearsdperhaps in response to a new vibrancy within the partial
least squares (PLS) path modeling communitydthe tenor of this
controversy has become sharper. Antonakis, Bendahan, Jacquart,
and Lalive (2010, p. 1103) declared, “… there is no use for PLS
whatsoever… We thus strongly encourage researchers to abandon
E., Choosing PLS path modeli
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it.” Referring to PLS path modeling, R€onkk€o and Evermann (2013, p.
19) assert, “… it is very difficult to justify its use for theory testing
over [factor-based] SEM…” Writing in a psychological journal,
R€onkk€o, McIntosh, and Antonakis (2015, p. 82) conclude, “… PLS
should not be adopted as a tool for psychological research.”

Perhaps the most recent and impactful contribution in this vein
is an editorial from the editors in chief of Journal of Operations
Management (Guide & Ketokivi, 2015, p. vii), who warned, “We are
desk rejecting practically all PLS-based manuscripts, because we
have concluded that PLS has been without exception the wrong
modeling approach in the kinds of models OM researchers use.”
However, Guide and Ketokivi went further, clarifying that desk
rejection was primarily a response to researchers making incorrect
claims about PLS path modeling (p. vii): “Consequently, we will
automatically desk reject a manuscript that makes incorrect claims
about the applicability of the estimator (obviously, any estimator,
not just PLS).”

Guide and Ketokivi's (2015) editorial points to two different
problems related to the use and understanding of PLS path
modeling. Today, too many researchers offer a flawed rationale for
choosing PLS path modeling as their method, citing strengths or
advantages for PLS path modeling that do not exist. At the same
time, critics offer flawed reasons to avoid PLS path modeling. Some
of these critical arguments falsely ascribe advantageous properties
to the factor-based approach to SEM that do not exist, while some
ng as analytical method in European management research: A realist
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are based on flawed evidence about the performance of PLS path
modeling.

The aim of this paper is to review and correct both types of
errorsdboth alleged strengths or advantages and alleged weak-
nesses of PLS path modeling which have not been supported with
valid evidence, despite publication in well-regarded academic
journals. This paper presents an alternative understanding of
structural equation modeling, one which is consistent with aspects
of factor-based and composite-based approaches to SEM which
both users and critics of PLS path modeling have tended to ignore.

It is easy enough to find oneself embracing the beliefs and biases
of one school of thought, to the point where contrary arguments and
perspectives seem not only wrong but nonsensical and even
dangerous. Unsuspecting researchers may quietly succumb to a
“methodological tribalism” (Saunders & Bezzina, 2015, p. 298).
While Saunders and Bezzina (2015) studied the implications of a
broad qualitative vs quantitative orientation among (primarily) Eu-
ropean management researchers, the same divide arises between
researchers with differing quantitative backgrounds. As with
Saunders and Bezzina (2015, p. 303), this is not a call for “method-
ological relativism,” that is, for simplywithholding judgment. Rather,
the aim here is to overcome misunderstandings by embracing a
pluralism of quantitative methodologies which are all rigorously
consistent with a single framework. This paper is written in the hope
that it will (a) help researchers to make better design and methods
choices, (b) help writers to avoid crucial errors in explaining their
choices, and (c) help to move the SEM dialog forward.

2. A framework for understanding structural equation
modeling

Some disputes are particularly immune to resolution because
the different sides are operating on the basis of fundamentally
different assumptions, philosophies or worldviews. In such cases,
the “Yes, it is” from the one side and the “No, it isn't” from the other
side may both be correct (or incorrect) because the two positions
are referring to different realities. It may therefore be helpful to
briefly outline a framework within which one might understand
arguments about different approaches to structural equation
modeling.

Statistical tools that fall within the family of SEM methods
potentially could be used for a variety of purposes, but here the
focal purpose is better understanding of the behavior of unob-
served conceptual variables. From a scientific realist perspective
(Chakravartty, 2007; Haig & Evers, 2016; Leplin, 1984), these un-
observed conceptual variables are defeasibly real entities, like the
microorganisms that were once invisible or the subatomic particles
that remain beyond perception today. While they may remain
unobservable themselves, these conceptual variables are of interest
because of their direct or indirect causal consequences in the
observable world. From an empiricist perspective, in contrast, only
the observable phenomena would be considered real, with unob-
served conceptual variables being no more than labels for certain
observed empirical regularities (Creath, 2014). An operationalist, in
the tradition of P. W. Bridgman, Edwin Boring or S. S. Stevens, might
define a “conceptual variable” to be nothing more than the appli-
cation of a particular quantitative methodology (like factor anal-
ysis) to data collected under a particular protocol (Chang, 2009).
But again, for the scientific realist, unobservable conceptual vari-
ables are themselves real and are independent of data, of statistical
procedure, and of the researcher, though mistakes and mis-
understandings can lead to incorrect beliefs about particular con-
ceptual variables.

So far, this framework has described two types of variablesdthe
unobserved conceptual variables found in theoretical models and
Please cite this article in press as: Rigdon, E. E., Choosing PLS path modeli
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the observed variables found in datasets. Structural equation
modeling explicitly incorporates a third type of variable. In this
framework, the common factors in factor-based SEM and the
composites in composite-based SEM are together classed as “proxy
variables” (Wickens, 1972; Woolridge, 2009), defined as variables
that stand in for other variables which may be unobservable or
simply unavailable. Factor-based SEM and composite-based SEM
use common factors or composites to represent unobserved con-
ceptual variables. These representations are formed out of the
observed variables in a dataset. Because the representations are
formed out of data, they share the strengths and weaknesses of
data, to some degree. As such, the common factors or composites in
SEM's statistical models are not equivalent to or identical with the
conceptual variables that populate theoretical models. So, beyond
the important statistical differences between the factor-based and
composite-based approaches to SEM, there is a crucial underlying
similarity.

3. Flawed arguments in favor of PLS path modeling

As Guide and Ketokivi's (2015) editorial confirms, a great many
management research manuscripts that employ PLS path modeling
do a very poor job of justifying their choice of statistical method.
Unfortunately, many of the invalid arguments employed by these
papers date to the origin of PLS path modeling, and they are
stubbornly repeated in books and methodological manuscripts,
despite contrary evidence, some of which is common knowledge in
the factor-based SEM community. Granted, much statistical prac-
tice is justified using invalid arguments, when researchers even
bother to offer a justification (Gigerenzer, 2004; Wasserstein &
Lazar, 2016). Taking an approach that is less common or that de-
viates from the norm is more likely to provoke questions. Giger-
enzer (e.g., 2004) points out how null hypothesis significance
testing with p-values is mindlessly executed in paper after paper-
dand mindlessly described in textbook after textbook. When was
the last time a writer was asked to justify use of a p-value? Re-
viewers have even been known to demand themdwithout
providing a reason, and without regard to the potential to
mislead (Ziliak & McCloskey, 2008). But when the editors of Basic
and Applied Social Psychology took the opposite course and banned
p-values from their journal (Trafimow&Marks, 2015), there was an
uproardfollowed by thoughtful reconsideration at the highest
levels (Wasserstein & Lazar, 2016). It is probably true that many
manuscripts employing the common factor-based approach to SEM
either fail to justify their choice of technique or provide a justifi-
cation incorporating invalid arguments (Cliff, 1983). But the factor-
based approach is the most widely known approach to SEM, and so
applications of that approach may face less scrutiny. Regardless,
researchers who make unjustified claims in support of the use of
PLS path modeling can expect an unwelcoming reception for their
work.

3.1. Low sample size

Dataweaknesses were a primarymotivation forWold to create a
composite-based alternative to factor-based SEM. Wold touted the
ability of PLS path modeling to “work”dthat is, to produce
parameter estimates and standard errorsdeven when there were
fewer cases or observations than variables, and when the available
observations were not even mutually independent (Wold, 1988).
This stood in contrast tomaximum likelihood-based factor analysis,
which can fail entirely when sample size is low. In the context of
linear regression, it has been noted that the same statistical method
can imply different minimum sample sizes depending on the
particular purpose or criterion that is being pursueddwhether the
ng as analytical method in European management research: A realist
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research is looking for cross-validated R2, or for sufficient statistical
power, or for something else (Maxwell, 2000, pp. 434e5). Still, low
sample size was cited by Ioannidis (2005) as a primary driver in the
publication of false scientific findingsdregardless of analytical
method.

Given the focus on predictive validity that is widely shared
among PLS path modeling users, the simulations of Dana and
Dawes (2004) are especially relevant. Their study examined out-
of-sample R2 in regression. The authors created large populations
of simulation data and then for each population, (1) drew a sample,
(2) estimated model parameters from the sample, (3) predicted the
dependent variable at population level using the parameter values
estimated from the sample. They found that ordinary least squares
(OLS) regression weights produced the highest out-of-sample R2

only when both sample size was quite large and true predictability
(the true population R2 for the dependent variable) was high. At the
other end, when sample size was small and/or true predictability
was low, simple unit or equal weightsdthat is, just summing the
(standardized) predictorsdoutperformed regression weights.

Becker et al.'s (2013) simulations confirmed this result in the
context of PLS path modeling. Consistent with Dana and Dawes'
(2004) results for regression, Becker et al. (2013) found that, at
low sample sizes, researchers would do as well to simply sum their
multiple indicators and forget about weights. Becker et al.'s (2013)
simulations demonstrated bias in PLS parameter estimates when
sample size is low. Yes, PLS path modeling will produce parameter
estimates even when sample size is very small, but reviewers and
editors can be expected to question the value of those estimates,
beyond simple data description. With respect to both composite-
based and factor-based approaches to SEM, if sample size is
small, the best course is to get more data.

Sometimes (as an anonymous reviewer has pointed out), more
data are not obtainable. Sometimes, indeed, evidence is not avail-
able to allow a researcher to make an impactful contribution in a
given area. Before the advent of CERN's Large Hadron Collider, it
was impossible to obtain experimental evidence for the existence
of the Higgs boson subatomic particle (http://home.cern/topics/
higgs-boson). Before the upgrading of the Laser Interferometer
Gravitational-Wave Observatories (LIGO), no researcher had been
able to demonstrate the existence of gravitational waves (Abbott
et al. 2016). In other cases, a population itself may be countably
finite. In some areas of statistics, adjustment procedures may be
available to account for this deviation from the standard assump-
tion of an infinite population (e.g., Royall, 1970). However, the
generalizability of findings is limited to the population fromwhich
data are sampled. Making a significant contribution will require
that this population be of particular interest in itself. So it will be
the nature of the population that justifies the small sample size, and
not the small sample size that justifies the choice of PLS path
modeling. Whether PLS path modeling performs better than
alternative approaches in analysis of data from finite populations is
a little-explored research area.

3.2. Non-normal data

J€oreskog's (e.g., 1969) creation of an inferential basis for factor
analysis initially relied on maximum likelihood (ML) estimation.
J€oreskog (1969) proved analytically that, when its assumptions
held, no method yielding unbiased estimates could be more sta-
tistically efficient than ML estimation. In creating PLS path
modeling, Herman Wold was pushing back against the distribu-
tional assumptions that supported ML estimation (Dijkstra, 2010),
which included an assumption of conditional multivariate
normality (Finney & DiStefano, 2013). Since those early days, PLS
users have linked the multinormality assumption not with ML
Please cite this article in press as: Rigdon, E. E., Choosing PLS path modeli
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estimation in particular but with factor-based SEM broadly:
“CBSEM [factor-based SEM] generally requires a multivariate
normal distribution of the sample data” (Peng & Lai, 2012, p. 470).

For many years now, there have been a variety of procedures
available for estimating the parameters of factor-based models. The
distributional requirements underlying these various procedures
have ranged from strict to loose to almost none. ML estimation it-
self is somewhat robust to modest violations of multinormality,
especially in regard to parameter estimates (Finney & DiStefano,
2013). While the earliest of these techniquesdBrowne's (1984)
weighted least squares approachdrequired infeasible sample
sizes numbering in the thousands, more recent alternatives have
been shown towork well at sample sizes as small as 200 (Lei&Wu,
2012; Yuan & Bentler, 1998). Moreover, there is little cause to
compare ML estimation of factor model parameters with PLS esti-
mation of composite model parameters. The factor-based model
and the composite-based model are two different models. Even if
ML estimation did a poor job of estimating a factor-based model in
a certain situation, this failure would argue for a change of esti-
mation method, not for a change from factor-based SEM to
composite-based SEM.

3.3. Formative/reflective

“Reflective measurement” is a term used to describe a situation
where a set of observed variables are jointly dependent upon
another variable which is not itself observed. With appropriate
constraints on the residual variances of the observed variables, this
arrangement describes a common factor model, so it is easy to
understand how “reflective measurement” might represent the
norm in factor-based SEM. The reverse arrangement, where the
unobserved variable is modeled as dependent on the observed
variables, is then known as “formative measurement.” The factor-
based SEM literature struggles mightily with formative measure-
ment, on both practical and conceptual grounds (e.g., Bollen &
Bauldry, 2011; Diamantopoulos & Winklhofer, 2001; Edwards,
2011). Given this, researchers sometimes argue that they must
use PLS path modeling because “their concepts are formative.”

A realist perspective clarifies these issues significantly. If con-
ceptual variables transcend data, then it is impossible to “form”

conceptual variables out of data. By definition, conceptual variables
are themselves the causes of data. Both the factor-based and the
composite-based approaches to SEM form proxies, not conceptual
variables, out of data. Because PLS path modeling is a composite-
based method, it creates proxies as weighted composites (Rigdon,
2012), consisting of one or more variables. In the factor-based
approach to SEM, proxies are formed as common factors (except
for single indicators), even when it may appear otherwise (Rigdon
et al. 2014).

Among its estimation options, PLS path modeling includes two
which have been known for decades as “Mode A” and “Mode B.”
Many writers associate Mode A estimation with “reflective mea-
surement” and associate Mode B with “formative measurement”
(e.g., Hair, Hult, Ringle, & Sarstedt, 2014, pp. 42e43). This is an
illusion. Both modes create composite proxies, because PLS path
modeling cannot do anything else. Using Mode A instead of Mode B
means using correlation weights (Waller & Jones, 2010) instead of
OLS regressionweights (Becker, Rai,& Rigdon, 2013; Rigdon, 2012).
Unlike OLS regression weights, correlation weights ignore collin-
earity among predictors. This means that users of correlation
weights do not experience parameters having unexpected signs
due to the impact of collinearity on weights, and will not be misled
into deleting indicators based on collinearity-driven signs and
inflated standard errors. As confirmed by Becker et al. (2013) in the
PLS context, Dana and Dawes (2004) demonstrated that, while
ng as analytical method in European management research: A realist
016/j.emj.2016.05.006

http://home.cern/topics/higgs-boson
http://home.cern/topics/higgs-boson


E.E. Rigdon / European Management Journal xxx (2016) 1e84
correlation weights yield a somewhat lower in-sample R2 than OLS
regression weights, they yield a higher out-of-sample R2 when
sample size and true predictability are moderate, potentially
covering amuch larger range of practice than the special conditions
required for OLS regression weights to excel. So there can be good
reason to choose Mode A or Mode B within a PLS path model, but
this has nothing to do with a choice between “formative” and
“reflective.” Thus, researchers do face real choices, between com-
mon factor proxies and composite proxies, and between regression
weighted composites and correlation weighted composites. In
contrast, the terms “formative” and “reflective” only obscure the
statistical reality.

3.4. Exploratory

Wold recognized that factor-based SEM required the researcher
to have awell-developed statistical model inmind. He also saw that
there were circumstances where data were available but the prior
knowledge was not. A poor factor model may produce no results
whatsoever, while a PLS path modeling analysis is very likely to
produce parameter estimates and bootstrapped standard errors.
Thus, Wold (1985, p. 589) recommended his composite-based
method for situations that were “data-rich but theory-primitive.”
This association between PLS path modeling and exploratory
analysis continues in the literature (Hair et al. 2014, p. 2, 14).

From a realist perspective, there is a substantial problem with
using any SEM method in an exploratory context. Findings drawn
from SEM analysis face a substantial validity challenge, relating
specifically to the proxies that represent unobserved conceptual
variables. For findings to be judged valid, the proxies themselves
must be valid representations of particular conceptual variables. In
an exploratory context, a researcher may have no ideawhat sorts of
conceptual variables may be at work, and thus may be in no posi-
tion to make any statements, pro or con, about the validity of the
proxy variables in a model. So, as in the case of low sample size, PLS
analysis can be executed in an exploratory environment, but it is
unlikely to lead to a significant contributiondunless the
dataset alone is so interesting and unique that data description
itself amounts to a contribution. That could happen, if data are rare,
difficult to obtain, and (within the scope of this journal) relate
directly to constituencies and issues of especially keen or urgent
interest to European management researchers. More likely, re-
searchers who attribute their choice of PLS path modeling to the
exploratory nature of their research will be declaring, in effect, that
their work has no contribution to make.

4. Flawed arguments against the use of PLS path modeling

Clearly, a substantial number of researchers are building justi-
fications for choosing PLS path modeling out of flawed arguments.
Just as clearly, a phalanx of incorrect or unsupported claims are
being presented to back a rejection of PLS path modeling as an
analytical method. Some of these invalid arguments are tied to
weaknesses in the factor-based approach which the factor-based
SEM community has long ignored, while some of these issues
have only become clear in recent years. The position here is not
necessarily that these arguments are incorrect but that they are
invalid as arguments favoring the factor-based approach to SEM
over PLS path modeling, particularly from a realist perspective.

4.1. Biased parameter estimates

From the birth of PLS path modeling, it has been known and
acknowledged that the method yields biased estimates of factor
model parameters. Wold (1982, p. 27, 28) spoke of his method as
Please cite this article in press as: Rigdon, E. E., Choosing PLS path modeli
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being a “deliberate approximation” to ML factor analysis, accepting
less accuracy in exchange for greater speed and relaxed assump-
tions. A number of studies have used simulation to demonstrate
this bias (e.g., Aguirre-Urreta & Marakas, 2013; McDonald, 1996;
R€onkk€o & Evermann, 2013). As various PLS path modeling texts
note, estimates of factor model loadings will tend to be biased
upwards (away from 0), while estimates of paths between factors
will tend to be biased downwards (toward 0).

However, all of these simulations, and perhaps Wold's own
thinking, were flawed (Wold, 1982, p. 25). Some of these studies
were flawed inmultiple relevant ways. One flaw is common to all. A
simulation must begin by specifying a populationda true state
from which data are sampled. Even though these studies aimed to
evaluate the performance of composite-based PLS pathmodeling, all
of the simulations noted here began by defining a truth consistent
with a common factormodel. Thus, these simulations evaluated PLS
models that were misspecified relative to the population. Statistical
methods in general perform less well when the model is mis-
specified, and the same is true of PLS path modeling. Factor-based
SEM itself is known to perform less well when the model being
estimated is inconsistent with the population (e.g., Hu & Bentler,
1998), but scholars have repeatedly chosen to evaluate PLS path
modeling using discrepant populations.

Simulations employing a correct population have shown that
PLS path modeling estimates are consistent (Becker et al. 2013).
Becker et al.'s (2013) simulations first defined composite-based
populations, and then examined the performance of PLS path
modeling in analyzing samples drawn from those populations.
Becker et al. (2013) found the bias in PLS path modeling estimates
approaching 0 as sample size increased. Even in these simulations,
at lower sample sizes, PLS parameter estimates showed clear bias,
with the nature of that bias varying based on simulation conditions.
Thus, Becker et al.'s (2013) results provided further evidence
against the use of PLS path modeling at low sample sizes. No
simulations using composite-based populations have obtained re-
sults contradicting those of Becker et al. (2013).

Individual simulation studies critical of PLS path modeling have
included additional design errors. Aguirre-Urreta and Marakas
(2013) criticized the behavior of PLS path modeling in the context
of “formative measurement.” Aguirre-Urreta and Marakas (2013)
created the population for their simulation using a common fac-
tor model. To minimize the problems that can be encountered
when modeling a “formative” relationship with a factor-based
model, Aguirre-Urreta and Marakas (2013) specified a population
where a set of observed variables, along with another common
factor, served as predictors of a focal common factor. Statistical
identification for this model (a rather involved issue for factor-
based SEM) was achieved by including other common factors that
were exclusively dependent on the focal common factor, making it
a second order factor. The PLS path model that the authors esti-
mated, however, was different (Rigdon et al. 2014). In the PLS path
model, the observed variables, modeled as predictors in the popu-
lation, were now components of a compositeda composite which,
in turn, was predicted by another composite. In the population, the
observed variables and a common factor were predictors jointly,
but in the PLS path model the predictor composite was the only
predictor of a composite defined by the observed variables. These
differences between models, compounded with the factor-based
nature of the simulation population, invalidated Aguirre-Urreta
and Marakas' (2013) conclusions regarding the behavior of PLS
path modeling.

R€onkk€o and Evermann's (2013; R€onkk€o et al. 2015) simulations
included a different design flaw. R€onkk€o and Evermann's (2013)
simulations appeared to demonstrate that PLS parameter esti-
mates could be not only inconsistent but bimodal, a shocking
ng as analytical method in European management research: A realist
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deviation from the bell-shaped distribution that researchers would
be inclined to expect. R€onkk€o and Evermann's (2013) results sug-
gested that PLS path modeling could hardly be trusted as a statis-
tical method at all.

R€onkk€o and Evermann's (2013) results were obtained by spec-
ifying a model that violated the known conditions under which the
PLS path modeling estimation algorithm works. This algorithm
requires that every composite proxy must be correlated with at
least one other composite (e.g., Rigdon, 2013). The PLS path
modeling algorithm alternates what are called “inner proxies” and
“outer proxies.” The inner proxy for a given composite is formed
from other composites that have a direct relationship with the
given composite, in the statistical model. If a composite is uncor-
related with all other composites in the model, the algorithm fails.
R€onkk€o and Evermann (2013) specified a population model with
two common factors, with the population correlation between
them set at 0. Then they attempted to estimate PLS path models
using these data. The choice of population ensured that the PLS
estimation algorithm would only function when random sampling
error pushed the actual correlation between composites away from
0. Hence the simulation produced a bimodal distribution, with
estimates on the positive side and estimates on the negative side,
and little in between. PLS path modeling can certainly accommo-
date 0 paths between composites, but it cannot accommodate a
composite that is orthogonal to all other composites in a model.

Far from demonstrating the untrustworthy nature of PLS path
modeling, R€onkk€o and Evermann's simulations showed what
happens when you “break” a statistical method, asking it to work
outside of its boundary conditions. R€onkk€o and Evermann (2013)
could easily have demonstrated a similar limitation in factor-
based SEM, if that had been their purpose. Their simulation
model included three observed variables loading on each of the two
common factors. If the model had instead specified that four
observed variables loaded on one factor while two loaded on the
other, then the zero population correlation would have caused
factor-based SEM to fail, just as PLS path modeling failed, because
the factor model would have been under-identified (Bollen, 1989).
When a statistical model is under-identified, parameter estimates
are inconsistent and other negative consequences follow. The
“three indicator rule” for identification of factor models specifies
that a model will be identified if each common factor has at least
three “congeneric” indicators (loading on that factor alone, with no
residual correlations). The “two indicator rule” specifies that the
model can be identified with only two congeneric indicators per
factor as long as each factor is correlated with some other variable
in the model. R€onkk€o and Evermann included just enough in-
dicators for each factor in the population model so that estimation
of the factor model would not fail when the factor correlation was
0, and so that it would seem that PLS path modeling, by contrast,
was unreliable. If either common factor had had only two indicators
instead of three, factor-based SEM would have also failed, perhaps
even more spectacularly. In sum, the undesirable behavior attrib-
uted to PLS path modeling in each simulation study should actually
be attributed to design flaws in the studies themselves, not to a
fundamental weakness in PLS path modeling.

4.2. Not a latent variable method

Factor-based SEM is said to be distinguished from other multi-
variate statistical methods because it is a technique that models
“latent variables.” By contrast, it is said that PLS path modeling “is
not a latent variable method,” and on this basis that it is not
structural equation modeling at all (R€onkk€o et al. 2015).

“Latent variable,” like the noun “construct” (Michell, 2013), is a
term with multiple potential meanings. In different usages, the
Please cite this article in press as: Rigdon, E. E., Choosing PLS path modeli
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term appears to mean either (a) a conceptual variable in a theo-
retical model which is believed to affect the behavior of other
variables, or (b) a common factor. If by “latent variable,” someone
intends the second meaning, then of course it is correct to say that
PLS path modeling, a composite-based method, is not a factor-
based method, but this on its face appears to be mere methodo-
logical tribalism. It would be no less pointless to assert that
composite-based PLS path modeling is better than the factor-based
approach because the factor-based approach is not composite-
based.

On the other hand, if “latent variable” refers to an unobserved
conceptual variable, then the argument is incorrect. From a scien-
tific realist perspective, conceptual variables are as crucially
important to PLS path modeling as they are to the factor-based
approach to SEM. Without conceptual variables, a proxy is no
more than some function of the data. There can be no question of
validity, because the proxy, formed from the dataset, represents
nothing beyond the dataset. The composite-based approach and
the factor-based approach alike cannot be anything more than
exercises in data description. It may well be that, in practice, many
applications of both approaches are no more than this, but the two
approaches are equally stripped of their potential to build knowl-
edge if their proxies stand only for themselves.

It has also been argued that the patterns of correlation captured
by common factor models imply a common cause, so that common
factor models provide evidence for the existence of unobserved
conceptual variables in a way that composite-based models do not.
However, identical patterns can be induced by processes that lack
this common cause (van der Maas et al. 2006, 2014), though the
statistical models implied by these complex processes may be
beyond the power of existing software to estimate. Moreover, given
that factor models are generally no more than approximations to
data from real situations (J€oreskog, 1969; MacCallum, Browne, &
Cai, 2007), common factor proxies cannot be generally assumed
to carry greater significance than composite proxies in regard to the
existence or nature of conceptual variables. Moreover, the multiple
meanings associated with the terms “latent variable” and
“construct”make these terms no more useful than “formative” and
“reflective.”

4.3. No overall fit test

J€oreskog's (e.g., 1969) maximum likelihood factor analysis
became an inferential statistical method thanks to an overall test
statistic that, under assumptions, follows a central c2 distribution.
This statistic can be used to formally test the null hypothesis that
the data-based covariance matrix of the observed variables is equal
to the model-implied covariance matrix, within sampling error. PLS
path modeling, being a composite-based method more closely tied
to regression, offers no such test. Therefore it is argued that PLS
path modeling is not in position to falsify and reject models in the
same way as the factor-based approach to SEM. Critics of PLS path
modeling have suggested that this is a fatal flaw in PLS path
modeling, making it fundamentally less suitable for serious
research.

Of course, the factor-based SEM community itself does not think
much of the c2 statistic. Fit evaluation in factor-based SEM tends to
focus on alternative fit indices, not on the c2 itself. The null hy-
pothesis is assumed to be false (MacCallum et al. 2007), so that, “If a
sufficiently large sample were obtained this c2 statistic would, no
doubt, indicate that any such non-trivial hypothesis was statisti-
cally untenable.” (J€oreskog, 1969, p. 200).

Understanding structural equation modeling as involving con-
ceptual variables, observed variables and proxies, moreover, leads
to an even more fundamental question about the advantage, if any,
ng as analytical method in European management research: A realist
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that accrues to factor-based SEM on the basis of the c2 test statistic.
Statistical analysis is not an end in itself. The realist aims to reach
conclusions about the conceptual variables in a theoretical model.
Structural equation modeling facilitates this process to the extent
that the proxies (common factors or composites) in statistical
models, built from observed variables, are valid representations of
the conceptual variables. If they are, then researchers can learn
about the behavior of the conceptual variables through the
behavior of the proxies. If the proxies are not valid, then the sta-
tistical model is uninformative regarding the conceptual variables.

The c2 test statistic tells the researcher essentially nothing about
this most fundamental validity question. What does it indicate?
According to J€oreskog (1969, p. 201), “If a value of c2 is obtained,
which is large compared to the number of degrees of freedom, this
is an indication that more information can be extracted from the
data.” So the c2 might indicate whether or not the common factors
in a model account for all systematic variance among the observed
variables. But that is not the same thing as indicating whether the
proxies are valid representations of particular conceptual variables.
It might well be that valid proxies could be formed while leaving a
substantial amount of the observed variables' systematic variance
un-accounted for. Similarly, a good c2 value, indicating that the
common factors do account for all systematic variation in the
observed variables, offers no reason to believe that those factors are
valid proxies for particular conceptual variablesdbecause the same
c2 value applies to the statistical model, no matter what conceptual
variables are hypothetically being studied. In terms of the validity
of the factor proxies employed in a statistical model, the c2 statistic
is no more than a very sophisticated and powerful answer to the
wrong question.

4.4. Measurement error

One of the seemingly most compelling criticisms of PLS path
modeling is that the method fails to address measurement error.
The presence of measurement error can be shown to induce bias in
parameter estimates (e.g., Rigdon, 1994), not just in parameters
directly linked to a single error-tainted observed variable but across
an entire model. Factor-based SEM, it is argued, has a built-in
mechanism accounting for measurement errorda mechanism
which composite-based PLS path modeling lacks, leaving PLS path
models vulnerable to the negative consequences of measurement
error in a way that factor-based structural equation models are not.

Being composite-based, PLS path modeling partially reduces the
impact of any random variance within individual components
(Rigdon, 2012). The variance of a sum of components is equal to (a)
the sum of the components' individual variances plus (b) twice the
sum of the covariances among the components. Randomvariance is
universally orthogonal. The correlated parts of the components
thus are counted three times (once in the original variance and
twice in the covariances), while random variance is represented
only once. If the components areweighted, as in PLS pathmodeling,
then the variance of the sum is similarly weighted. Theweighting in
PLS pathmodeling is aimed at maximizing correlations. Again, with
random variance being orthogonal, components that are high on
random variance will tend to be under-weighted, and this will tend
to further reduce the influence of random variance. However,
random variance will not be completely eliminated in this way, so
that the PLS path modeling user will still be exposed to some share
of any negative consequences.

The “measurement error argument” figures prominently in the
literature critical of PLS path modeling (e.g., Antonakis et al. 2010;
R€onkk€o & Evermann, 2013). Nevertheless, the measurement error
argument is not a valid objection to the use of PLS path modeling,
because neither the factor-based approach nor the composite-based
Please cite this article in press as: Rigdon, E. E., Choosing PLS path modeli
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approach to structural equation modeling protects users from
measurement error.

This position runs counter to the vast bulk of factor-based SEM
literature, but the roots of the argument go as far back as Wilson
(1928). A researcher might represent a factor model linking p
observed variables yi (i ¼ 1 to p) to a single common factor F as:

yi ¼ liF þ εi

The p terms εi (i ¼ 1 to p) are specific factors or residuals, the
part of each yi not accounted for by the common factor, F. These
terms have often been described as “measurement errors” (e.g.,
J€oreskog,1983). No such terms figure in PLS pathmodeling, because
PLS path modeling is a method of composites and not factors. With
“measurement error” thus explicitly represented in the factor
model and not in PLS path modeling, researchers could easily
believe that the factor-based approach addresses measurement
error while the composite-based approach does not.

Yet the failure of the factor-based approach to address or ac-
count for genuine measurement error is apparent on both con-
ceptual and analytical grounds. Consider again the conceptual
framework featuring observed variables, conceptual variables and
proxies. Defining the εi terms in the factor model as “measurement
errors” implies that the common factor F is that which is to be
measured. Yet the original purpose of the research effort was to
learn about the behavior of a conceptual variable, not to learn about
a common factor. These two different goals could be pursued
simultaneously if the conceptual variable and its common factor
proxy were identical or equivalent. For that matter, the factor
model residuals would indeed be “measurement errors” if it could
be assumed that the common factor proxy was identical to the
conceptual variable that it was intended to represent.

For common factors, such an identity is essentially impossible
due to the phenomenon of factor indeterminacy (Guttman, 1955;
Mulaik, 2010; Sch€onemann & Steiger, 1976). With a composite,
given the values of the composite's observed variable components
and a set of weights, it is easy to determine the one correct value for
the composite. With a common factor, however, this is almost al-
ways impossible. There is no one best value for a common factor,
except at a hypothetical limit, even if data and model parameters
are fully known. A given common factor can be represented as a
combination of two parts (Guttman, 1955; Sch€onemann & Steiger,
1976). One part is, indeed, a function of model parameters and
themodel's observed variables. However, the other part is arbitrary,
capable of taking on an infinity of different values even when the
values of observed variables and model parameters are all fixed.
The scope of variation permitted depends on the number of in-
dicators in themodel and the strength of their relationship with the
common factor. In general, however, the correlation between two
different realizations of the same common factor, with the same
observed variables and same parameters, need not be high, nor
even positive (Guttman, 1955).

The correlation between different realizations of the same
indeterminate common factor, in turn, governs the relationship
between that common factor and any variable not explicitly
included in the factor model (Steiger, 1979). The correlation be-
tween common factor and external variable can only be defined in
terms of a range. The greater the degree of indeterminacy, the
wider the range of possible correlations between common factor
and external variable. The conceptual variable, for which the
common factor proxies, is one such external variable. The concep-
tual variable is clearly not a part of the factor model itselfdif it
were, then there would be no need for a proxy. Thus, the extent to
which a researcher can establish the correlation between common
factor proxy and conceptual variable is a function of the common
ng as analytical method in European management research: A realist
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factor's indeterminacy. The researcher cannot claim evidence for a
perfect correlation, implying equality between proxy and concep-
tual variable, unless indeterminacy is 0. Zero indeterminacy can
only be approached when a common factor is associated with a
very large number of strong indicators, something that is never
observed in practice.

If the common factor and the conceptual variable are not iden-
tical, then the observed variable residuals are not “measurement
errors,” because it is the conceptual variable that is beingmeasured,
not the common factor proxy. A composite proxy will also fail to be
identical to the conceptual variable it represents, because, at a
minimum, the composite will be tainted by random variance. Of
course, any kind of proxy may be affected by systematic error, as
well. Whether a particular proxy is affected by error to a greater or a
lesser degree must be an empirical question, but there seems no
basis for arguing that factor proxies will have any overall advantage
over composite proxies. This is why a concern about “measurement
error” does not amount to a valid argument for favoring a factor-
based approach over a composite-based approach like PLS path
modeling.

5. Conclusion

As a family of statistical methods, structural equation modeling
is still young. The factor-based approach to SEM spread rapidly
across the social sciences (Bentler, 1986), while PLS path modeling
emerged later and developed more slowly, perhaps due to the
absence of strong software. Regardless, much of the “received
wisdom” on SEM has a limited evidentiary base for support. More
than that, the emergence of SEM invited researchers to think in
newways, at new levels of abstraction. Analogies and heuristics are
powerful tools in helping people to come to grips with things that
are new and difficult to understand. While useful, however, heu-
ristics can also be misleading. The more fundamental technology of
null hypothesis significance testing is itself widely misunderstood,
with textbooks enshrining mistakes as basic principles and
infecting whole generations of researchers with falsehoods and
confusion (Gigerenzer, 2004; Ziliak & McCloskey, 2008). Regarding
factor analysis, Stewart (1981, p. 51) noted a similar state: “So
widespread are current misconceptions about factor analysis in the
marketing community that even its defenders and some prominent
reviewers perpetuate misinformation.” The same might be said of
both factor-based and composite-based approaches to SEM today.
Saunders and Bezzina's (2015) “methodological tribalism” appears
to separate quantitative methods communities just as much as it
separates quantitative from qualitative.

It should be clear to Europeanmanagement researchers that PLS
path modeling is not a panacea for flaws in research design or
execution. It does not multiply a small sample size into a large one.
It does not transform a poorly conceived approach into a piercing,
insightful analysis. At the same time, PLS path modeling is not a
flawed analytical method. It may be misunderstood, but probably is
no more so than the factor-based approach to SEM, or any other
sophisticated data analysis technique.

So, if PLS path modeling is a valid tool for structural equation
modeling, when should researchers choose this composite-based
approach, and when should researchers choose the factor-based
approach? Answers to this question in the literature tend to
retreat to the same false beliefs and invalid arguments rejected
here. There may, indeed, be some set of specific circumstances
where one approach or the other has a predictable advantage, but
that will require future research. Comparisons of different ap-
proaches should be based not on the particulars of the statistical
models, which are different, but on their common outcome, proxies
for conceptual variables. When researchers have the ability to
Please cite this article in press as: Rigdon, E. E., Choosing PLS path modeli
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compare different empirical representations with the conceptual
variables being represented, then they will be able to determine
whether one set of representations is better than another.
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