
Int. J. Electron. Commun. (AEÜ) 73 (2017) 1–8
Contents lists available at ScienceDirect

International Journal of Electronics and
Communications (AEÜ)

journal homepage: www.elsevier .com/locate /aeue
Regular paper
Efficient architecture of variable size HEVC 2D-DCT for FPGA platforms
http://dx.doi.org/10.1016/j.aeue.2016.12.024
1434-8411/� 2016 Elsevier GmbH. All rights reserved.

⇑ Corresponding author.
E-mail addresses: chenm003@gmail.com (M. Chen), yzzhang@siu.edu (Y. Zhang),

chaolu@siu.edu (C. Lu).
Min Chen a, Yuanzhi Zhang b, Chao Lu b,⇑
aMulticoreWare, Inc., St. Louis, MO, USA
bDepartment of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL 62901, USA

a r t i c l e i n f o
Article history:
Received 3 October 2016
Revised 11 December 2016
Accepted 25 December 2016

Keywords:
H.265/HEVC
Two-dimensional discrete cosine transform
(2D-DCT)
FPGA platform
Hardware architecture
a b s t r a c t

This study presents a design of two-dimensional (2D) discrete cosine transform (DCT) hardware architec-
ture dedicated for High Efficiency Video Coding (HEVC) in field programmable gate array (FPGA)
platforms. The proposed methodology efficiently proceeds 2D-DCT computation to fit internal compo-
nents and characteristics of FPGA resources. A four-stage circuit architecture is developed to implement
the proposed methodology. This architecture supports variable size of DCT computation, including 4 � 4,
8 � 8, 16 � 16, and 32 � 32. The proposed architecture has been implemented in System Verilog and syn-
thesized in various FPGA platforms. Compared with existing related works in literature, this proposed
architecture demonstrates significant advantages in hardware cost and performance improvement. The
proposed architecture is able to sustain 4 K@30 fps ultra high definition (UHD) TV real-time encoding
applications with a reduction of 31–64% in hardware cost.

� 2016 Elsevier GmbH. All rights reserved.
1. Introduction

Rapid advances in consumer electronics have resulted in a
variety of emerging video coding applications. Typical examples
include ultra-high definition (UHD) 4 K/8 K TV [1] or unmanned
aerial vehicle (UAV) reconnaissance and surveillance [2,3], which
demands aggressive video compression requirement. Despite the
success in the last decade, video compression efficiency of H.264
standard cannot satisfy stringent requirements [4]. Alternatively,
recently established H.265/HEVC standard has great potential to
improve video compression efficiency by around 50%, while retain-
ing the same video quality as H.264 [5,6]. As a result, HEVC has
been viewed as one of the most promising standard to overcome
these challenges [7,8].

Optimized coding efficiency in HEVC is attributed to increased
computational complexity [9]. For example, Discrete Cosine Trans-
form (DCT) and Inverse Discrete Cosine Transform (IDCT) are indis-
pensable building blocks of HEVC hardware implementation [10].
Previous study has reported that DCT and IDCT computation in
HEVC is estimated as 11% of total computational complexity in
hardware implementations [6]. Due to computational similarity
between DCT and IDCT, they can alter the coefficient matrix and
share same circuit architecture. Large block sizes of DCT and IDCT
(i.e., 16 � 16 and 32 � 32) are supported in HEVC standard, while
H.264 only accepts smaller block sizes (i.e., 4 � 4 and 8 � 8). Large
sizes of DCT and IDCT help to improve coding efficiency. For
example, the use of 16 � 16 and 32 � 32 DCTs and IDCTs in HEVC
reduces bit rate up to 10.1% [11]. However, the associated hard-
ware cost rises significantly. For instance, a transpose buffer of
32 � 32 � 16 bits is needed to store one-dimensional transform
coefficients for 32 � 32 2D-DCT, while a transpose buffer of
8 � 8 � 16 bits is sufficient for 8 � 8 2D-DCT. The hardware cost
of transpose buffer will continue to increase in next-generation
video coding standard, since it will include 64 � 64 and
128 � 128 DCT/IDCT operations [12]. Therefore, it is necessary to
investigate efficient circuit architectures to reduce hardware
implementation cost and computational complexity [13–15].

Nowadays, computational resources in FPGA are adequate to
implement HEVC codecs, such as FPGA implementation of 4 K
real-timeHEVCdecoder [16] and a fullHD real-timeHEVCmainpro-
file decoder [17]. The use of FPGA instead of application-specific
integrated circuit (ASIC), shortens design time tomarket, and hence
is a preferred approach for small volume production. Therefore, the
study of HEVC FPGA implementation is gaining more and more
attention. In order to satisfy real-time and high-efficiency coding
in these emerging video applications, a few design methodologies
and circuit architectures have been developed [11,18–24]. In [11],
the authors presented an IDCT implementation with zero-column
skipping technique to boost energy and area efficiency. However,
the use of single-port static random access memory (SRAM) does
not allow pipeline operation, hence the throughput of this design
is impeded. The proposed architecture in [18] focuses on reduction

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aeue.2016.12.024&domain=pdf
http://dx.doi.org/10.1016/j.aeue.2016.12.024
mailto:chenm003@gmail.com
mailto:yzzhang@siu.edu
mailto:chaolu@siu.edu
http://dx.doi.org/10.1016/j.aeue.2016.12.024
http://www.sciencedirect.com/science/journal/14348411
http://www.elsevier.com/locate/aeue

2 M. Chen et al. / Int. J. Electron. Commun. (AEÜ) 73 (2017) 1–8
of hardware utilization. A series of hardware minimization tech-
niques was applied, including operation reordering, multiplications
to shift-adds conversion, etc. In [19–21], the proposed designs uti-
lized distributed arithmetic hardware to perform multiplications
in 2D-DCT. These approaches are efficient for smaller DCT computa-
tion (e.g., 8 � 8). The proposed architectures in [19–21] did not con-
sider internal features and characteristics of FPGAplatforms. In [22],
a new algorithm and processing architecture for 2D-DCT were pre-
sented to achieve higher energy efficiency. Recently, the researchers
in [23,24] proposed FPGA-based 2D-DCTwith improved area-speed
efficiency. [23,24] are initial trials to efficiently utilize features and
dedicated components of FPGA platforms. However, the design
strategy of allocating FPGA resources to fit DCT architectures are
not elaborated in details.

These existing architectures are inefficient when implementing
HEVC 2D-DCT in FPGA platforms, because larger DCTs (e.g.,
32 � 32) involves a great number of transpose buffers, cascaded
additions and subtractions. When a design is synthesized towards
FPGA platforms, many general-purpose logics (i.e., Look-up Tables
(LUTs)) are utilized. Thus, the critical path delay of a synthesized
design is longer, and the maximum operation frequency is
degraded. On the other hand, if a designer is aware of internal
resources of FPGA, the resultant architecture may fit with FPGA
components and features. Thus, the synthesized design efficiently
utilizes FPGA resources, such as digital signal processor (DSP)
blocks, bus width, and on-chip memory. An efficient hardware
architecture should always make every effort to fit FPGA resources,
which is the focus of this paper.

This paper makes the following contributions: (1) our proposed
design methodology takes into account of hardware resources of
FPGA platforms, and efficiently utilizes bus width, DSP blocks,
BRAM blocks, and on-chip memory bandwidth. Thus, the required
general programmable logics (e.g., LUTs) are significantly reduced,
and video processing throughput is largely improved. (2) A hard-
ware architecture is proposed to support variable DCT sizes from
4 � 4 to 32 � 32, which can also be extended to larger DCT sizes
(e.g., 64 � 64 and 128 � 128). This architecture facilitates hard-
ware sharing and reusing among different DCT sizes. The design
details are described and illustrated through timing diagram. (3)
The proposed architecture has been synthesized in various FPGA
platforms. The benefits are presented through comparisons with
existing designs in literature. The proposed architecture is able to
sustain 4 K@30 fps ultra high definition (UHD) TV real-time encod-
ing applications with a reduction of 31–64% in hardware cost.

The rest of this paper is organized as follows. Section 2 reviews
basic DCT algorithm, hardware components and FPGA characteris-
tics. Section 3 describes the proposed design methodology and sys-
tem architecture. In Section 4, system implementation results are
provided. An in-depth comparisonwith related design architectures
in literature is presented. Finally, Section 5 concludes the paper.

2. Related work

2.1. Basic DCT algorithm

DCT is widely used in image coding and signal processing appli-
cations. DCT transforms images from spatial-domain into
frequency-domain, and provides a more efficient representation
of information. A 1D-DCT computation of an N � N block size can
be expressed as [10,24]

Yði; jÞ ¼
XN�1

k¼0

Xðk; iÞ � Cðj; kÞ ð1Þ

Here X and Y are the input and output data matrix, respectively.
C is an N � N transform matrix. N can be 4, 8, 16 or 32 in HEVC/
H.265 standard. For simplicity, integer values are usually chosen
in the transform matrix C in VLSI implementation. Thus, the hard-
ware implementation achieves finite precision DCT approximation
[9]. Thanks to the separability feature, a 2D-DCT is usually decom-
posed into two 1D-DCTs. 1D-DCT is firstly applied on individual
row of input data matrix X, then, another 1D-DCT is applied to
the results from the first 1D-DCT [18]. Two 1D-DCTs are connected
through a transpose buffer, which temporarily stores the results of
the first 1D-DCT. Because direct hardware implementation of
matrix multiplication in 1D-DCT requires intensive computation,
1D-DCT based on even-odd decomposition techniques is widely
accepted to minimize computational complexity [9].
2.2. Hardware components and features of FPGA platform

FPGA is one type of pre-fabricated integrated circuits designed
for rapid prototyping and functional verification. Nowadays, FPGA
platform consists of five main elements: DSP blocks, look-up tables
(LUTs), flip-flops, random access memory (RAM) blocks and
routing matrix. The DSP blocks, including pre-adder, multiplier,
accumulator, etc., are dedicated for accelerating complex arith-
metic computation. A look-up table is a collection of logic gates
to implement any arbitrarily user defined Boolean function. A
look-up table is composed of register arrays and works as a
combinational logic of inputs. Users can program look-up tables
to realize any combinational logic function. Each look-up table
may connect with flip-flops, which are indispensable components
of sequential logic modules. RAM block is an embedded storage
element, whose type could be single-port, dual-port or quad-
port. For example, a dual-port RAM enables simultaneously access
(i.e., write or read) by two agents. Routing matrix is used to route
signals and interconnect among FPGA processing resources.

Different FPGA companies implement these five main elements
differently. For example, Zynq is one FPGA of Xilinx 7-series fami-
lies. This FPGA has plentiful hardware resources, such as LUTs,
DSP48s, and BRAMs [25,26]. The LUTs of Zynq FPGA can be config-
ured as either six inputs with one output, or as five inputs with
multiple separate outputs. Some LUTs could be configured as
64-bit distributed RAMs or as 32-bit shift registers. A DSP48 block
consists of a 25-bit pre-adder, a 25 � 18 two’s complement multi-
plier, and a 48-bit accumulator. A DSP48 block may be configured
as a single-instruction-multiple-data (SIMD) arithmetic unit.
DSP48 block is optimized for short critical path, and hence reaches
clock frequency as high as 741 MHz. In addition, on-chip dual-port
block RAMs (BRAM) with port width up to 72 bits are embedded in
Zynq FPGA. This BRAM also supports asymmetric read or write
operations with variable port width.
3. Proposed design methodology and circuit architecture

As been reviewed in Section 2, FPGA owns rich on-chip high
performance resources. It is highly desirable to create HEVC archi-
tectures to fit FPGA components and characteristics. For example,
2D-DCT involves extensive matrix multiplications. Multiplications
could be implemented either by LUTs or DSP blocks inside FPGA
platforms. If a design is implemented using LUTs, due to dis-
tributed locations of LUT components and long wire routing, the
resultant design will exploit lots of LUTs and suffer from slower
system operation. In contrast, if dedicated DSP blocks are selected
to implement multiplications, its operating frequency and hard-
ware efficiency will be improved over LUT-based design scheme.

From the above discussion, it is clear that existing 2D-DCT
designs in literature do not fully explore internal resources and
characteristics of FPGA platforms. In this section, we propose a
FPGA-friendly DCT design methodology and circuit architecture

Table 1
Hardware resources for processing one pixel point vs. butterfly transform depth.

Butterfly Depth # of Multipliers required
in 1D-DCT

of Adders required in
1D-DCT

0 (i.e., no butterfly
transform)

32 31(bit width 16)

1 16 31(bit width 17)
2 12 31(bit width 18)
3 10 31(bit width 19)

Input DCT DataDCT Size Op�on

Bu�erfly

Register

Mul�ply and Accumulate (MAC)

1st Stage

2nd Stage

coefficients

User Inputs

Variable
Size DCT

two-row data

M. Chen et al. / Int. J. Electron. Commun. (AEÜ) 73 (2017) 1–8 3
to mitigate the design challenges of future video coding
applications.

3.1. Proposed methodology

Fig. 1 shows the proposed 2D-DCT algorithm, assuming
targeted FPGA is Xilinx Zynq. Input data for DCT computation is
a 9-bit 32 � 32 matrix. According to the separability property, a
2-D DCT is decomposed into two subsequent 1-D DCTs. Unlike
the conventional approach [18] where input data are read and exe-
cuted row by row, our proposed method performs two rows in par-
allel during the first 1D-DCT. The results (i.e., 4 points) in each
clock cycle are stored in BRAM. Because maximum port width of
a BRAM in Zynq is up to 72 bits, and width of intermediate results
from the first 1D-DCT is 16 bits, at most 4 points can be saved dur-
ing each clock cycle. 16 clock cycles are required to accomplish two
rows of data, and its output result during each clock cycle is a 2 � 2
matrix, as depicted in Fig. 1. Therefore, the output pattern of 4
points (i.e., 2 � 2 matrix) fits with the port width of BRAMs in Zynq,
which indicates computation throughput matches bandwidth of
storage memory and hence no idle computation resource. Note this
output 2 � 2 matrix will be transposed (also called re-ordered)
before saving into two columns of a BRAM. A total of 16 BRAMs
of each size 64 � 16 bits, are needed for a 32 � 32 2D-DCT compu-
tation. During the second 1D-DCT computation, each row of inter-
mediate results is read from all 16 BRAMs and proceeded. Each
clock cycle outputs 4 points (i.e., 1 � 4 matrix) as shown in Fig. 1.
Thus, throughput of two subsequent 1D-DCTs are balanced, avoid-
ing the risk of operation stall.

To increase hardware utilization efficiency, on-chip DSP blocks
are preferred to realize matrix multiplications. DCT transform
using even-odd decomposition results in drastic reduction in the
number of multiplications and additions, when compared with
direct matrix multiplication [9]. Here we propose to map butterfly
transform into DSP48 blocks in Zynq, where the pre-adder, multi-
plier and 48-bit accumulator efficiently collaborate to generate
outputs. Butterfly transform can be applied several times in DCT.
Each time an even data matrix splits into smaller even and odd
parts, until down to 4 � 4 size. Even parts may be reused for differ-
ent DCT sizes, but odd parts are prohibited. Table 1 illustrates how
hardware resources for processing one pixel point varies with
depth of butterfly transform. It is apparent that more levels of but-
terfly transforms require less number of multipliers. We propose to
apply butterfly transform only once, instead of three times as in
[6]. With the resource overhead of six more multipliers, the benefit
of our design is to reuse these computation elements in parallel in
smaller DCT sizes. For example, if the DCT size is 4 � 4, 16 multipli-
ers can be reconfigured in parallel to boost computation perfor-
mance, compared with conventional design which consists of
only 10 multipliers. Overall, 128 DSP48 blocks in Zynq FPGA are
enough to proceed 2D-DCT implementations.
1st 1D DCT

Input 32x32
DCT data

Intermediate results Output 32x32
DCT results

2nd 1D DCT

… ...
… ...
… ...
… ...
… ...
… ...
… ...

…
 ..

.
…

 ..
.

…
 ..

.

…
 ..

.
…

 ..
.

… ...
… ...…

 ..
.

…
 ..

.
…

 ..
.

…
 ..

.
…

 ..
.

… ...
… ...

… ...
… ...

… ...
… ...
… ...…

 ..
.

…
 ..

.
…

 ..
.

…
 ..

.
…

 ..
.… ...

… ...
… ...
… ...

… ...

Fig. 1. Proposed 2D-DCT 32 � 32 algorithm with row and column seperation.
3.2. Architecture design

Fig. 2 shows the proposed four-stage architecture to implement
our design methodology. During the first stage, input DCT data are
received from upstream module. Butterfly operation is executed
and results are stored into a register buffer. During the second
stage, data are fetched from the register buffer. These data are mul-
tiplied with coefficients, and the accumulated results are directly
stored into BRAMs. Coefficients are obtained from a read only
memory (ROM), whose address is sent by the control unit. So far,
the computation of first 1D-DCT is done. The third stage reads data
from BRAMs, executes one-level butterfly transform, and finally
stores the results into a buffer register. The fourth stage reads data
from the buffer register, and runs 1D-DCT again as described in the
second stage with higher bit width to adapt larger dynamic range.
As four pixels (64 bits) are processed every clock cycle, BRAMs are
used as transpose buffers due to its port width is up to 72 bits. We
only use 16 BRAMs and eliminate the use of any transpose register
buffers in FPGA. During each clock cycle, the first 1D-DCT writes
2 � 2 reordered pixels into a BRAM, and the second 1D-DCT out-
puts 1 � 4 pixels as system output. In this architecture, the internal
BRAM bandwidth and computation throughput of 2D-DCT match
each other. The control unit generates the required read/write sig-
nals for BRAMs, coefficient addresses for ROM, and handshaking
signals for input and output synchronization. Note the output
results of 2D-DCT will be quantized in a separate quantization
stage, so quantization process is not included in Fig. 2. The pro-
posed architecture is applicable to IDCT computation after switch-
BRAM

Control
Unit3rd Stage Bu�erfly

Register

Mul�ply and Accumulate (MAC)

Output

4th Stage

ROM

Output Data Ready

1D/2D address

coefficients

R/W address
one row data

Fig. 2. FPGA four-stage architecture of the proposed 2D-DCT transformation.

4 M. Chen et al. / Int. J. Electron. Commun. (AEÜ) 73 (2017) 1–8
ing multiplication coefficients tables and using a 16-bit input data
matrix.

DCT size option (i.e., 32 � 32, 16 � 16, 8 � 8, and 4 � 4 DCT/
DST) and input DCT data are inputs of this architecture. If DCT size
is less than 32 � 32, the architecture will be reconfigured to max-
imize throughputs and performance. For example, the control unit
needs 16 clock cycles to write two rows of data in 32 � 32 DCT.
While in 8 � 8 DCT mode, only 8 clock cycles are required to com-
pute all of 8 � 8 DCT computation, and 16 clock cycles are needed
to store results into BRAMs under the BRAM port width restriction,
so our architecture will proceed double samples per cycle in 8 � 8
DCT to avoid waste computational resources. This reconfiguration
property enables multiple transform sizes to be realized using
the same architecture, thus, facilitating hardware sharing and reus-
ing across different DCT block sizes.

Fig. 3 illustrates timing diagram of the proposed 2D-DCT archi-
tecture, where a 32 � 32 block size is chosen as an example. During
the first stage, two rows of input data (64 points) feed into this
architecture. Next, one level butterfly transform is executed and
the results are stored in a register buffer. During the second stage,
1D-DCT computation occurs and takes 16 clock cycles. The resul-
tant outputs (i.e., 2 � 2 points) in each clock cycle are written into
a BRAM. There are a total of 16 utilized BRAM blocks and 256 clock
cycles needed for a 32 � 32 1D-DCT computation. During the next
stage, 32 pixels are read from 16 BRAMs, which indicates 2 pixels
per BRAM, to compute one level butterfly transform. The outputs
are stored into a register. The last stage is responsible for the sec-
ond 1D-DCT computation. Overall, this architecture takes 500 clock
cycles to accomplish a 32 � 32 2D-DCT.

Fig. 4 shows architecture details of the first 1D-DCT stage,
which proceeds two-row data in parallel. As one level butterfly
transform is applied, the data of each row split into even and
odd parts. For example, E00-E15 and O00-O15 are the results of
each row after one level butterfly transform. These four groups of
even or odd parts multiply with individual DCT coefficients, then,
go through adding and rounding process. The 1D-DCT results of
first-row and second-row input data are stored in the first and
second columns of a BRAM, respectively. Through storing these
1D-DCT results in columns of BRAMs, no registers are needed to
implement matrix transposition.

Fig. 5 shows how the proposed architecture corresponds to vari-
able DCT sizes. Fifteen adders are organized as a tree structure. As
outlined by the dash lines, a 4 � 4 DCT is embedded within an
8 � 8 DCT, which in turn is embedded in a 16 � 16 DCT and so
on until a 32 � 32 DCT. Specially, in the HEVC standard, 4 � 4
blocks are transformed as either 4 � 4 DCT or 4 � 4 DST. The pro-
posed architecture handles this 4 � 4 case by choosing different
transform coefficient table. Based on the input DCT size option, this
architecture in Fig. 5 adjusts its control unit and concurrently
proceeds eight 4 � 4 1D-DCTs, four 8 � 8 1D-DCTs, two 16 � 16
1D-DCTs or one 32 � 32 1D-DCT. Note the multiplication
coefficients are also updated, when the DCT size option varies with
time. The proposed architecture can be easily modified for
2D-IDCT, where the input data are 16 bits and IDCT transform coef-
ficient tables are used.
Fig. 3. Timing diagram of the proposed 32 � 32 2D-DCT architecture.
4. System implementation results and discussion

The proposed DCT architecture has been described in System
Verilog. Synthesis has been conducted in various FPGA platforms,
including Altera Stratix III, Cyclone II and Arria II GX, as well as
Xilinx XC7VX330T and Zynq. The RTL compiler in [20] is no longer
supported by FPGA vendor. To make a fair comparison with [20],
our proposed design is synthesized in Cyclone II, which is the
found oldest FPGA that RTL compiler still supports. DCT transform
coefficients are stored in distributed RAMs or ROMs inside FPGA
platforms. This proposed 2D-DCT architecture is generic and it is
not limited to any fabrication technology. So the proposed

E00
E01

E15

… ...
… ...

mul�plier

coefficient
mul�plier

coefficient
mul�plier

coefficient

Adder+
Round

Even rows of
1st Column

… ...
… ...…

 ..
.

…
 ..

.

…
 ..

.
…

 ..
.

… ...
… ...
… ...

… ...

Even
Part

O00
O01

O15

… ...
… ...

mul�plier

coefficient
mul�plier

coefficient
mul�plier

coefficient

Adder+
Round

Odd rows of 1st

Column
Odd
Part

…
 ..

.

Input 32x32
DCT data

… ...
… ...
… ...
… ...
… ...
… ...
… ...

…
 ..

.
…

 ..
.

…
 ..

.

…
 ..

.
…

 ..
.

1st Row

E00
E01

E15

… ...
… ...

mul�plier

coefficient
mul�plier

coefficient
mul�plier

coefficient

Adder+
Round

2nd Column

Even
Part

O00
O01

O15

… ...
… ...

mul�plier

coefficient
mul�plier

coefficient
mul�plier

coefficient

Adder+
Round Odd rows of

2nd Column

Odd
Part

2nd Row

E

Intermediate
resultsEven rows of

Fig. 4. First 1D-DCT architecture with BRAM data storage allocation.

E00
E01
E02
E03

E04
E05

Mul�plier with coeffcient
Adder

Even Part of
32x32DCT

a�er 1st

Bu�erfly

Mul�plier with coeffcient

E06
E07

E08
E09
E10
E11
E12
E13
E14
E15

Mul�plier with coeffcient
Mul�plier with coeffcient

Adder

Mul�plier with coeffcient
Adder

Mul�plier with coeffcient

Mul�plier with coeffcient
Mul�plier with coeffcient

Adder

Mul�plier with coeffcient
Adder

Mul�plier with coeffcient

Mul�plier with coeffcient
Mul�plier with coeffcient

Adder

Mul�plier with coeffcient
Adder

Mul�plier with coeffcient

Mul�plier with coeffcient
Mul�plier with coeffcient

Adder

Adder

Adder

Adder

Adder

Adder

Adder

Adder

4x4 DCT result

8x8 DCT result

16x16 DCT result

32x32 DCT result

Fig. 5. Reconfiguration of DCT for variable block size.

M. Chen et al. / Int. J. Electron. Commun. (AEÜ) 73 (2017) 1–8 5
architecture of 2D-DCT in this work is applicable to different tech-
nology or process nodes. It is well known that an advanced fabrica-
tion technology usually leads to shorter propagation delay and a
higher clock frequency, but a constant number of 500 clock cycles
is required to accomplish a 32 � 32 2D-DCT.
The related references in literature are included in Table 2,
which lists key performance metrics of 2D-DCT architectures, such
as FPGA model name, utilization of LUTs/ALMs and DSP blocks, the
number of required clock cycle, clock frequency, and output
throughput. Our proposed architecture enables variable block size

Table 3
Hardware Resource Results for Variable Size of 2D-DCT Computation.

DCT Block Size [24] (ALM/Frequency) This work (ALM or LUT/Frequency) Performance Comparison at Arria II GX FPGA

4 � 4 8 � 8 16 � 16 32 � 32 Arria II GX Arria II GX Xilinx Zynq ALM number reduction Clock freq. degradation

� � � � 7269/200 MHz 5034/138 MHz 5806/222 MHz 31% 31%
� � � 6928/200 MHz 4108/138 MHz 5726/222 MHz 41% 31%

� � 6821/200 MHz 3424/143 MHz 4733/225 MHz 50% 29%
� 6792/200 MHz 2967/150 MHz 3898/237 MHz 56% 25%

� � � 5014/200 MHz 2586/179 MHz 3155/261 MHz 48% 11%
� � 3436/200 MHz 2097/206 MHz 2478/289 MHz 39% �3%

� � 4921/200 MHz 1781/185 MHz 2745/263 MHz 64% 8%

Table 2
FPGA Performance Results Summary.

[18] This work [20] This work

FPGA Stratix III Altera Flex10K100 Cyclone II

Supported DCT Size 16 � 16 16 � 16 4 � 4, 8 � 8, 16 � 16, 32 � 32 8 � 8 8 � 8 4 � 4, 8 � 8, 16 � 16, 32 � 32
of LUT/ALM 16 K 1.4 K 5.2 K 2.5 K 2.5 K 10.4 K
of DSP Block 0 16 32 0 64 128
of Clock Cycle 18 60 500 128 7 500
Frequency (MHz) 27 283 206 10 116 94
Throughput (Mega Pixels/s) 204 577 421 5.53 237 192

[21] This work [24] This work

FPGA Xilinx XC7VX330T Arria II GX Xilinx Zynq

Supported DCT Size 8�8 8�8 4 � 4, 8 � 8, 16 � 16, 32 � 32 4 � 4, 8 � 8, 16 � 16, 32 � 32 4 � 4, 8 � 8, 16 � 16, 32 � 32 4 � 4, 8 � 8, 16 � 16,
32 � 32

of LUT/ALM 3.1 K 1.7 K 5.6 K 7.3 K 5.0 K 5.8 K
of DSP Block 0 64 128 128 32 128
of Clock Cycle 15 7 500 N/A 500 500
Frequency (MHz) 256 239 177 200 138 222
Throughput (Mega Pixels/sec) 13 488 361 N/A 282 453

6 M. Chen et al. / Int. J. Electron. Commun. (AEÜ) 73 (2017) 1–8
(4 � 4, 8 � 8, 16 � 16 and 32 � 32), while the references [18,20,21]
only support one smaller block size (8 � 8 or 16 � 16). The refer-
ences [18,20,21] do not utilize on-chip DSP blocks. Due to the
use of on-chip DSPs, our proposed work results in much shorter
critical path and significant improvement in terms of frequency
and throughput. Due to [20] and this proposed work utilize differ-
ent FPGA platforms (as well as different fabrication technology),
the number of required clock cycle should be compared instead
of frequency. Under the same supported DCT size (8 � 8), both
works utilize the same amount of hardware resources (2.5 K LUT/
ALM). However, the required number of clock cycle in this work
is 7, which is equivalent to only 5.5% of that in [20]. Therefore,
our proposed work is advantageous than [20]. In the world, Xilinx
and Altera are two dominant FPGA companies. Their FPGA plat-
forms are distinctive in terms of design tools, reconfigurable logic
cells and system architecture. As a result, there is no intention to
compare these key performance metrics of the proposed design
between Arria II GX and Xilinx Zynq. The purpose of including
Xilinx Zynq results in Tables 2 and 3 is to demonstrate that our
proposed design is applicable to both primary FPGA manufactur-
ers. The results in Tables 2 and 3 indicate that our proposed idea
is generic and it is not limited to any specific FPGA company. Both
the reference [24] and this work support variable DCT sizes. Using
the same FPGA platform, our proposed architecture saves LUT
resources by 32% and DSP blocks by 75%. As a result, our proposed
architecture excels in hardware cost, while the clock frequency is a
little degraded than [24]. Alternatively, if Xilinx Zynq is the imple-
mented FPGA platform, our proposed architecture operates at a
clock rate of 222 MHz and achieves a throughput of 453 M pix-
els/second. Note the required number of clock cycle in our pro-
posed design is the same in both Arria II and Xilinx Zynq platforms.
Power Consumption is another important factor to compare
among these designs. Yet, because there are no power consump-
tion values available in references [18,21], we cannot include
power consumption for a quantitative comparison in Table 2.
Alternatively, we offer a comprehensive analysis as below. Accord-
ing to the statement of the primary FPGA Company Altera [27], the
DSP blocks in modern FPGA platforms are very power efficient.
These power-efficient DSP blocks enable the use of modern FPGA
platforms in high definition video coding applications (e.g., our
targeted application - HEVC encoder) [27]. Moreover, as reported
in [28], the DSP blocks only account for 1% of total dynamic power
consumption in Stratix III devices. 70% of power consumption are
from user logic and signal routing. Therefore, the number of user
logic (i.e., LUT/ALM) is a good indicator of energy consumption
estimation. Table 2 exhibits that our proposed design consists of
much less user logic than [18,21,24] under the same FPGA plat-
form. Under different FPGA platforms, the number of user logic
in the proposed work keeps the same as that in [20], but the
required clock cycle is reduced largely. Hence, it is highly possible
that our proposed design results in lower energy consumption due
to significant savings in user logic and signal routing. Even though
our proposed design uses 16 or 64 more DSP blocks than [18] or
[21], the power consumption resulted from DSP blocks is negligible
compared with that from user logic and signal routing. In all, con-
sidering the above two reasons, we estimate the use of DSP blocks
in modern FPGA platforms probably does not lead to significant
power consumption. Our proposed design is acceptable in hand-
held consumer electronics from an energy consumption point of
view.

Moreover, we focus on Altera ‘‘Arria II GX” and Xilinx ‘‘Zynq” to
thoroughly discuss system performance. Arria II GX and Zynq are

M. Chen et al. / Int. J. Electron. Commun. (AEÜ) 73 (2017) 1–8 7
based on eight-input adaptive-logic-modules (ALM8) and six-input
look-up tables (LUT6), respectively. Table 3 summaries hardware
resource results for variable size of 2D-DCT computation. Note
even though Arria II and Zynq are implemented with 40 nm or
28 nm process respectively, the required number of clock cycle in
our proposed design is the same (i.e., 500 for a 32 � 32 2D-DCT
in Table 2). Our proposed architecture in Zynq requires at least
15% more hardware resources than Arria II GX. Our proposed archi-
tecture demonstrates a higher clock frequency (i.e., 222–289 MHz)
at Xilinx Zynq, which is 30–38% faster than the system implemen-
tations at Arria II GX (i.e., 138-206 MHz). This is because our
architecture is designed inherently to best fit characteristics of
Zynq platform, where the distributed RAMs/ROMs helps to
improve operation speed and reduces the amount of LUTs for logic
synthesis. Table 3 also demonstrate the benefit of this work over
the reference [24]. Using the same FPGA platform, this work
achieves 31–64% reduction in the number of ALMs, while the clock
frequency overhead is no more than 31%.

Let us take a look at a 4 K@30fps UHD TV video encoding appli-
cation. The minimum throughput to accomplish a 32 � 32 DCT is
calculated as 3840 � 2160 � 30/(32 � 32) = 243,000 blocks/sec-
ond. Since our proposed 2D-DCT architecture needs 500 clock
cycles to complete one 32 � 32 block, therefore, our proposed
architecture demands 243,000 � 500 = 121.5 million cycles/sec-
ond, which is equivalent to a clock frequency of 121.5 MHz. As
shown in Table 2, no matter the FPGA platform is Arria II GX or Xil-
inx Zynq, the clock rate of our synthesized solution reaches at least
138 MHz. This number indicates our proposed architecture is able
to sustain 4 K@30 fps UHD TV real-time encoding applications,
meanwhile achieving lower hardware cost.
5. Conclusion

This paper presents a FPGA-friendly architecture design of vari-
able size 2D-DCT for HEVC standard. 4 � 4, 8 � 8, 16 � 16 and
32 � 32 sizes of 2D-DCT are embedded in one architecture. This
property enables multiple DCT sizes to share and reuse hardware
resources. The proposed methodology efficiently proceeds 2D-
DCT computation to fit internal components and characteristics
of FPGA platforms. Details of circuit architecture and timing dia-
gram are described in this work. The proposed architecture has
been implemented in several FPGA platforms. Synthesis and simu-
lation results demonstrate that the proposed architecture has great
advantages in hardware cost, operating frequency and throughput,
in contrast with prior works in literature. The proposed architec-
ture is able to sustain 4 K@30 fps UHD TV real-time encoding
applications with a reduction of 31–64% in hardware cost.
References

[1] Meuel H, Munderloh M, Ostermann J. Stereo mosaicking and 3D video for
singleview HDTV aerial sequences using a low bit rate ROI coding framework.
In: International conference on advanced video and signal based surveillance.
p. 1–6.

[2] Bhaskaranand M, Gibson J. Low-complexity video encoding for UAV
reconnaissance and surveillance. In: Military communications conference. p.
1633–8.

[3] Bhaskaranand M, Gibson J. Low complexity video encoding and high
complexity decoding for UAV reconnaissance and surveillance. In:
International symposium on multimedia. p. 163–70.

[4] Zhang Q, Chang H, Huang X, Huang L, Su R, Gan Y. Adaptive early termination
mode decision for 3D-HEVC using inter-view and spatio-temporal correlations.
Int J Electron Commun 2016;70(5):727–37.
[5] Bossen F, Bross B, Suhring K, Flynn D. HEVC complexity and implementation
analysis. IEEE Trans Circuits Syst Video Technol December 2012;22
(12):1685–96.

[6] Kalali E, Ozcan E, Yalcinkaya O, Hamzaoglu I. A low energy HEVC inverse
transform hardware. IEEE Trans Consum Electron 2014;60(4):754–61.

[7] Kessentini A, Samet A, Ayed M, Masmoudi N. Performance analysis of inter-
layer prediction module for H.264/SVC. Int J Electron Commun 2015;69
(1):344–50.

[8] Samcovic A. Mathematical modeling of coding gain and rate-distortion
function in multihypothesis motion compensation for video signals. Int J
Electron Commun 2015;69(2):487–91.

[9] Budagavi M, Fuldseth A, Bjontegaard G, Sze V, Sadafale M. Core transform
design in the high efficiency video coding (HEVC) standard. IEEE J Sel Top
Signal Process 2013;7(6):1029–41.

[10] Rao KR, Yip P. Discrete cosine transform: algorithms, advantages,
applications. Academic Press Inc; 1990.

[11] Tikekar M, Huang C, Sze V, Chandrakasan A. Energy and area efficient
hardware implementation of HEVC inverse transform and dequantization. In:
IEEE international conference on image processing (ICIP). p. 2100–4.

[12] JVET document, Joint video exploration team of ITU-T SG 16 WP 3 and ISP/IEC
JTC 1/SC 29/WG 11 meeting.

[13] Meher P, Park S, Mohanty B, Lim K, Yeo C. Efficient integer DCT architectures
for HEVC. IEEE Trans Circuits Syst Video Technol 2014;24(1):168–78.

[14] Zhu J, Liu Z, Wang D. Fully pipelined DCT/IDCT/Hadamard unified transform
architecture for HEVC codec. In: IEEE international symposium on circuits and
systems. p. 677–80.

[15] Budagavi M, Sze V. Unified forward+inverse transform architecture for HEVC.
In: IEEE international conference on image processing. p. 209–12.

[16] Abeydeera M, Karunaratne M, Karunaratne G, Silva KD, Pasqual A. 4K real-time
HEVC decoder on an FPGA. IEEE Trans Circuits Syst Video Technol January
2016;26(1):236–49.

[17] Engelhardt D, Moller J, Hahlbeck J, Stabernack B. FPGA implementation of a full
HD real-time HEVC main profile decoder. IEEE Trans Consum Electron August
2014;60(3):476–84.

[18] Conceicao R, Souza J, Jeske R, Zatt B, Porto M, Agostini L. Low-cost and high
throughput hardware design for the HEVC 16x16 2-D DCT transform. J Integr
Circuits Syst 2014;9:25–35.

[19] Huang J, Parris M, Lee J, Demara R. Scalable FPGA architecture for DCT
computation using dynamic partial reconfiguration. ACM transactions on
embedded computing systems 2009;9(1).

[20] Yusof Z, Suleiman I, Aspar Z. Implementation of two dimensional forward DCT
and inverse DCT using FPGA. Int Conf Electr Electron Technol 2000;3:242–5.

[21] Kitsos P, Voros N, Dagiuklas T, Skodras A. A high speed FPGA implementation
of the 2D DCT for ultra-high definition video coding. In: International
conference on digital signal processing. p. 1–5.

[22] Scrofano R, Jang J, Prasanna V. Energy-efficient discrete cosine transform on
FPGAs. Eng Reconfigurable Syst Algorithms 2003:215–21.

[23] Atitallah A, Kadionik P, Ghozzi F, Nouel P, Masmoudi N, Marchegay P.
Optimization and implementation on FPGA of the DCT/IDCT algorithm. In:
International conference on acoustics speech and signal processing
proceedings. p. 928–31.

[24] Pastuszak G. Hardware architectures for the H.265/HEVC discrete cosine
transform. IET Image Process 2015;9(6):468–77.

[25] Xilinx FPGA document, <http://www.xilinx.com/support/documentation/
white_papers/wp406-DSP-Design-Productivity.pdfg>.

[26] Xilinx 7 Series DSP48E1 Slice User Guide, <http://www.
xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.
pdf>.

[27] DSP blocks in Stratix series FPGAs, <https://www.altera.com/products/fpga/
features/stx-dsp-block.html>.

[28] Blasinski H, Amiel F, Ea T, Impact of different power reduction techniques at
architectural level on modern FPGAs. LASCAS; 2010.

Min Chen received the B.S. degree in Computer Science
and Technology from Shenzhen University, China. He
has more than 16 years of industry experience in video
coding software/hardware co-design, and FPGA-based
video codec. Now he is a H.265/HEVC software and
system design engineer of Multicoreware Inc. at St.
Louis, United States. His research interests include HEVC
software and hardware video encoder design, VP9 video
encoder/decoder, optimizations for multi-core codec
architectures.

http://refhub.elsevier.com/S1434-8411(16)30903-7/h0005
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0005
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0005
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0005
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0010
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0010
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0010
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0015
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0015
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0015
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0020
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0020
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0020
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0025
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0025
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0025
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0030
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0030
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0035
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0035
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0035
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0040
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0040
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0040
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0045
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0045
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0045
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0050
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0050
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0055
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0055
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0055
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0065
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0065
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0070
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0070
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0070
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0075
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0075
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0080
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0080
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0080
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0085
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0085
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0085
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0090
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0090
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0090
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0095
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0095
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0095
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0100
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0100
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0105
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0105
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0105
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0110
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0110
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0115
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0115
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0115
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0115
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0120
http://refhub.elsevier.com/S1434-8411(16)30903-7/h0120
http://www.xilinx.com/support/documentation/white_papers/wp406-DSP-Design-Productivity.pdf
http://www.xilinx.com/support/documentation/white_papers/wp406-DSP-Design-Productivity.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.altera.com/products/fpga/features/stx-dsp-block.html
https://www.altera.com/products/fpga/features/stx-dsp-block.html

8 M. Chen et al. / Int. J. Electron. Commun. (AEÜ) 73 (2017) 1–8
Yuanzhi Zhang received the B.S. and M.S. degrees in
Electronic Engineering from Shandong University, China
in 2011 and 2014, respectively. He is working towards
his Ph.D. degree at Southern Illinois University Car-
bondale, IL, United States since 2015 August. His
research interests include HEVC/H.265 video/image
processing circuit and system optimization, low power
SRAM VLSI design and methodology, and 3D-IC system
design.
Chao Lu received the B.S. degree in electrical engi-
neering from the Nankai University, Tianjin, China in
2004 and the M.S. degree in the Department of Elec-
tronic and Computer Engineering from the Hong Kong
University of Science and Technology, Hong Kong, in
2007. He obtained his Ph.D. degree at Purdue University,
West Lafayette, Indiana, in 2012. From 2013 to 2015, He
worked as a R&D circuit design engineer at Arctic Sand
Technologies Inc. and Tezzaron Semiconductors. Now
he works as an assistant professor in Electrical and
Computer Engineering Department of Southern Illinois
University Carbondale. His research interests include

design of micro-scale energy harvesting systems, HEVC/H.265 video/image pro-
cessor, power efficient memory design, and power management IC design for ultra-
low power applications. Mr. Lu was the recipient of the Best Paper Award of the

International Symposium on Low Power Electronics and Design (2007).

	Efficient architecture of variable size HEVC 2D-DCT for FPGA platforms
	1 Introduction
	2 Related work
	2.1 Basic DCT algorithm
	2.2 Hardware components and features of FPGA platform

	3 Proposed design methodology and circuit architecture
	3.1 Proposed methodology
	3.2 Architecture design

	4 System implementation results and discussion
	5 Conclusion
	References

