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Abstract—Preserving the availability and integrity of networked computing systems in the face of fast-spreading intrusions requires

advances not only in detection algorithms, but also in automated response techniques. In this paper, we propose a new approach

to automated response called the response and recovery engine (RRE). Our engine employs a game-theoretic response strategy

against adversaries modeled as opponents in a two-player Stackelberg stochastic game. The RRE applies attack-response trees

(ART) to analyze undesired system-level security events within host computers and their countermeasures using Boolean logic to

combine lower level attack consequences. In addition, the RRE accounts for uncertainties in intrusion detection alert notifications.

The RRE then chooses optimal response actions by solving a partially observable competitive Markov decision process that is

automatically derived from attack-response trees. To support network-level multiobjective response selection and consider possibly

conflicting network security properties, we employ fuzzy logic theory to calculate the network-level security metric values, i.e.,

security levels of the system’s current and potentially future states in each stage of the game. In particular, inputs to the network-

level game-theoretic response selection engine, are first fed into the fuzzy system that is in charge of a nonlinear inference and

quantitative ranking of the possible actions using its previously defined fuzzy rule set. Consequently, the optimal network-level

response actions are chosen through a game-theoretic optimization process. Experimental results show that the RRE, using Snort’s

alerts, can protect large networks for which attack-response trees have more than 500 nodes.

Index Terms—Intrusion response systems, network state estimation, Markov decision processes, stochastic games, and fuzzy logic

and control

Ç

1 INTRODUCTION

THE severity and number of intrusions on computer
networks are rapidly increasing. Generally, incident-

handling [1] techniques are categorized into three broad
classes. First, there are intrusion prevention methods that
take actions to prevent occurrence of attacks, for example,
network flow encryption to prevent man-in-the-middle
attacks. Second, there are intrusion detection systems
(IDSes), such as Snort [2], which try to detect inappropriate,
incorrect, or anomalous network activities, for example,
perceiving CrashIIS attacks by detecting malformed packet
payloads. Finally, there are intrusion response techniques
that take responsive actions based on received IDS alerts to
stop attacks before they can cause significant damage and to
ensure safety of the computing environment. So far, most
research has focused on improving techniques for intrusion
prevention and detection, while intrusion response usually

remains a manual process performed by network adminis-
trators who are notified by IDS alerts and respond to the
intrusions. This manual response process inevitably intro-
duces some delay between notification and response, which
could be easily exploited by the attacker to achieve his
or her goal and significantly increase the damage [3].
Therefore, to reduce the severity of attack damage resulting
from delayed response, an automated intrusion response is
required that provides instantaneous response to intrusion.

This paper is built upon our previous work [4]. In this
paper, we present an automated cost-sensitive intrusion
response system called the response and recovery engine
(RRE) that models the security battle between itself and the
attacker as a multistep, sequential, hierarchical, nonzero-
sum, two-player stochastic game. In each step of the game,
RRE leverages a new extended attack tree structure, called
the attack-response tree (ART), and received IDS alerts to
evaluate various security properties of the individual host
systems within the network. ARTs provide a formal way to
describe host system security based on possible intrusion
and response scenarios for the attacker and response
engine, respectively. More importantly, ARTs enable RRE
to consider inherent uncertainties in alerts received from
IDSes (i.e., false positive and false negative rates), when
estimating the system’s security and deciding on response
actions. Then, the RRE automatically converts the attack-
response trees into partially observable competitive Markov
decision processes that are solved to find the optimal
response action against the attacker, in the sense that the
maximum discounted accumulative damage that the
attacker can cause later in the game is minimized. It is
noteworthy that despite the mathematical cost minimization
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in RRE that itself requires some time to complete in practice,
RRE’s ultimate objective is to save/reduce intrusion response
costs and the system damages due to attacks compared to
existing intrusion response solutions. Using this game-
theoretic approach, RRE adaptively adjusts its behavior
according to the attacker’s possible future reactions, thus
preventing the attacker from causing significant damage to
the system by taking an intelligently chosen sequence of
actions. To deal with security issues with different
granularities, RRE’s two-layer architecture consists of local
engines, which reside in individual host computers, and the
global engine, which resides in the response and recovery
server and decides on global response actions once the
system is not recoverable by the local engines. Furthermore,
the hierarchical architecture improves scalability, ease of
design, and performance of RRE, so that it can protect
computing assets against attackers in large-scale computer
networks. To support network-level intrusion response
where the global security level is often a function of
different specific properties and business objectives, RRE
employs a fuzzy control-based technique that can take into
account several objective functions simultaneously. In
particular, reports from local engines are fed into the global
response engine’s fuzzy system as inputs. Then, the RRE
calculates quantitative scores of the possible network-level
response actions using its previously defined fuzzy rule set.
The fuzzy rule set is defined using fuzzy numbers, and
hence, various input parameters can take on qualitative
values such as high or low; therefore, the real-world
challenge that accurate crisp values of the involved
parameters are not always known is addressed completely.

RRE extends the state of the art in intrusion response in
three fundamental ways. First, RRE accounts for planned
adversarial behavior in which attacks occur in stages in
which adversaries execute well-planned strategies and
address defense measures taken by system administrators
along the way. It does so by applying game theory and
seeking responses that optimize on long-term gains.
Second, RRE concurrently accounts for inherent uncertain-
ties in IDS alert notifications with attack-response trees
converted to a partially observable Markov decision process
that computes optimal responses despite these uncertain-
ties. This is important because IDSes today and in the near
future will be unable to generate alerts that match perfectly
to successful intrusions, and response techniques must,
therefore, allow for this imperfection to be practical. Third,
for ease of design purposes, RRE allows network security
administrators to define high-level network security prop-
erties through easy-to-understand linguistic terms for the
particular target network. This is a crucial facility that RRE
provides, because unlike system-level security properties,
for example, the web server availability, which can be
reused across networks, the network-level security proper-
ties usually should be defined specifically for each network
by the security administrators manually. RRE achieves the
above three goals with a unified modeling approach in
which game theory and Markov decision processes are
combined. We demonstrate that RRE is computationally
efficient for relatively large networks via prototyping
and experimentation, demonstrate that it is practical by

studying commonly found power grid critical infrastruc-
ture networks. However, we believe that RRE has wide
applicability to all kinds of networks.

2 PROBLEM FORMULATION

We formulate the optimal response selection as a decision-
making problem in which the goal is to choose the cost-
optimal response action at each time instant. The optimal
action m is picked out of the set of all possible response
actions m 2 M, including the No-OPeration (NOP) action.
For example, an intrusion response system can respond to
SQL’s buffer overflow exploitation by closing its TCP
connection. The optimization problem is solved in the
response system, given the following inputs:
W: a set of the computing assets w 2 W, for example, an

SQL server, that are to be protected by the response engine.
O: a set of IDS alerts o 2 O that specifically indicate an

adversarial attempt to exploit the existing specific vulner-
abilities of the assets, for example, alerts from Snort [2]
warning about a packet transferring the Slammer worm [5]
that exploits a buffer overflow vulnerability in an SQL server.
G: a set of ART graphs g 2 G that systematically define

how intrusive (responsive) scenarios about the attacker
(response engine) affect system security.

The following sections are devoted to a solution to the
response selection problem; in other words, we will focus
on how the RRE finds the optimal response action based on
given input arguments.

3 RRE’s HIGH-LEVEL ARCHITECTURE

Before giving theoretical design and implementation de-
tails, we provide a high-level architecture of RRE, as
illustrated in Fig. 1. It has two types of decision-making
engines at two different layers, i.e., local and global. This
hierarchical structure of RRE’s architecture, as discussed
later, makes it capable of handling very frequent IDS alerts,
and choosing optimal response actions. Moreover, the two-
layer architecture improves its scalability for large-scale
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Fig. 1. High-level architecture of the RRE.



computer networks, in which RRE is supposed to protect a
large number of host computers against malicious attack-
ers. Finally, separation of high- and low-level security
issues significantly simplifies the accurate design of
response engines.

At the first layer, RRE’s local engines are distributed in
host computers. Their main inputs consist of IDS alerts and
attack-response trees. All IDS alerts are sent to and stored in
the alert database (see Fig. 1) to which each local engine
subscribes to be notified when any of the alerts related to its
host computer is received. It is noteworthy that the current
RRE design assumes that the triggered alerts are trusted.
Using the mentioned local information, local engines
compute local response actions and send them to RRE agents
that are in charge of enforcing received commands and
reporting back the accomplishment status, i.e., whether
the command was successfully carried out. The internal
architecture of engines includes two major components: the
state space generator, and the decision engine. Once inputs
have been received, all possible cyber security states, which
the host computer could be in, are generated. The state space
might be intractably large; therefore, RRE partially generates
the state space so that the decision-making unit can quickly
decide on the optimal response action. The decision-making
unit employs a game-theoretic algorithm that models
attacker-RRE interaction as a two-player game in which each
player tries to maximize his or her overall benefit. This
implies that, once a system is under attack, immediate greedy
response decisions are not necessarily the best choices, since
they may not guarantee the minimum total accumulative cost
involved in complete recovery from the attack.

Although individual local engines attempt to protect their
corresponding host computers, they may become malicious
themselves if they get compromised. Furthermore, it could
become very complicated, even impossible, for local engines
to choose and take a global network-level response action,
due to their limited local knowledge. To deal with these
problems, RRE’s global engine, as its second layer, obtains
high-level information from all host computers in the
network, decides on optimal global response actions to take,
and coordinates RRE agents to accomplish the actions by
sending them relevant response commands. Additionally, if
a local engine is detected to be compromised or does not
respond, the RRE’s global engine takes network level actions
to prevent further damage, for example, to quarantine the
compromised node, and/or possibly recover from the
attack, for example, to switch to the secondary repilca of
the compromised node in the network. In addition to local
security estimates from host computers, network topology
as well as the global network access control policies are also
fed into the global engine. RRE converts the network
topology and access control policies into the competitive
Markov decision process (CMDP) model automatically.
Moreover, security administrators define the network
security properties as a function of the security of the
network’s critical assets using easy-to-understand linguistic
terms. RRE employs the defined network-level security
properties as security metrics to select the optimal network-
level response action by solving the generated network
CMDP model.

The ART model in the global server within RRE
formulates the high-level organizational objectives that are
subjective and require human involvement by the security
administrators to capture the attack consequences that
affect those objectives. For instance, confidentiality of a
logging server in a financial institute may be considered as
a critical security property while it could be ignored in a
process control network. Consequently, the single global
ART model in RRE’s global server needs to be designed
manually; however, the local ART models within indivi-
dual hosts, such as the Apache web server, capture the
system level consequences, for example, the web server
availability. Hence, the local ART models can be reused
across systems in different networks as they are not
dependent on the high-level objectives. The reusability of
the ART models reduces the manual endeavor requirement
for the overall system deployment.

4 LOCAL RESPONSE AND RECOVERY

We present the design of these components in detail.
Starting with the lowest level modules in RRE, we explain
how local engines, residing in host computers, protect local
computing assets using security-related information, i.e.,
IDS alerts, about them.

Attack-response tree. To protect a local computing asset, its
corresponding local engine first tries to figure out what
security properties of the asset have been violated as result of
an attack, given a received set of alerts. Attack trees [6] offer a
convenient way to systematically categorize the different
ways in which an asset can be attacked. Local engines make
use of a new extended attack tree structure, called an attack-
response tree (ART), that makes it possible 1) to incorporate
possible countermeasure (response) actions against attacks,
and 2) to consider intrusion detection uncertainties due to
false positives and negatives in detecting successful intru-
sions, while estimating the current security state of the
system. The attack-response trees are designed offline by
experts for each computing asset, for example, an SQL
server, residing in a host computer. It is important to note
that, unlike the attack tree that is designed according to all
possible attack scenarios, the ART model is built based on the
attack consequences, for example, an SQL crash; thus, the
designer does not have to consider all possible attack
scenarios that might cause those consequences.

The purpose of an attack-response tree gw 2 G for an
asset w 2 W is to define and analyze possible combinations
of attack consequences that lead to violation of some
security property of the asset. This security property, for
example, integrity, is assigned to the root node of the tree
that is also called the top-event node. In the current
implementation of RRE’s local engines, there are at most
three ART graphs Gw ¼ fgcw; giw; gawg for each asset w, which
are typically concerned with confidentiality, integrity, and
availability of assets; Gw � G can be expanded to include
other security properties. An attack-response tree’s struc-
ture is expressed in the node hierarchy, allowing one to
decompose an abstract attack goal (consequence) into a
number of more concrete consequences called subconse-
quences. A node decomposition scheme could be based on
either 1) an AND gate, where all of the subconsequences
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must happen for the abstract consequence to take place, or
2) an OR gate, where occurrence of any one of the
subconsequences will result in the abstract consequence.
For a gate, the underlying subconsequence(s) and the
resulting abstract consequence are called input(s) and
output, respectively. Being at the lowest level of abstraction
in the attack-response tree structure, every leaf node
consequence l 2 L is mapped to (reported by) its related
subset of IDS alerts Ol � O, each of which represents a
specific vulnerability exploitation attempt by the attacker.

Some of the consequence nodes in an ART graph are
tagged by response boxes that represent countermeasure
(response) actions m 2 M against the consequences to
which they are connected. Fig. 2 illustrates how a sample
abstract consequence node (output), i.e., an unavailable web
service, is decomposed into two subconsequences (inputs)
using an OR gate; this means that the web service becomes
unavailable if either the web server is compromised or the
domain name server is corrupted. Furthermore, if a web
service is unavailable due to the compromised web server,
the response engine can switch to the secondary web server.
Fig. 3 shows how a typical ART would finally look.

For every ART graph, a major goal is to probabilistically
verify whether the security property specified by ART’s
root node has been violated, given the sequence of 1) the
received alerts, and 2) the successfully taken response
actions. Boolean values are assigned to all nodes in the
attack-response tree. Each leaf node consequence l 2 L is
initially 0, and is set to 1 once any alert ol from its
corresponding alert set Ol � O (defined earlier) is received
from the IDS. These values for other consequence nodes,
including the root node, are simply determined bottom-up
according to leaf nodes’ values in the subtree whose root is
the consequence node under consideration. Response boxes
are triggered once they are successfully taken by the
response engine; as a result, all nodes in their subtree are
reset to zero, and the corresponding received alerts are
cleared. As a case in point, if the response box, that is
connected to ART’s root node is triggered, all nodes in the
ART graph are reset to zero.

Dealing with uncertainties. In reality, determining Boolean
values of the leaf node consequences in ART is more
complicated, due to the uncertainty about whether 1) the
received alerts actually represent some consequence occur-
rence, and 2) no consequence has happened if no alert has
been received. Taking such uncertainties into account, RRE
makes use of a naive Bayes binary classifier, similar to eBayes
[7], that uses Bernouli variables, i.e., alerts, to determine the
value of each leaf consequence node l, given the set of its
related received alerts Orl � Ol:

�ðl j Orl Þ ¼
P ðlÞ � �ol2Orl P ðol j lÞ

P ðlÞ ��ol2Orl P ðol j lÞ þ P ð�lÞ ��ol2Orl P ðol j �lÞ
; ð1Þ

where �ðl j Or
l Þ represents the probability that the leaf node

l’s corresponding event has actually occurred given that the

alerts Or
l have been triggered by the IDSes. P ðlÞ, the so-

called class prior, is the probability of consequence l’s
occurrence, and P ð�lÞ is simply its complement, i.e.,

P ð�lÞ ¼ 1� P ðlÞ. Furthermore, P ðol j lÞ denotes the prob-
ability that alert ol was already received, given that

consequence l has actually happened. These probability

measures are calculated based on historical information
about the system. One possible technique to obtain those

measures is periodic alert verification [8], which is an
automatic or manual, possibly time-consuming, process to

periodically check whether the attack consequence l has

occurred using the visible and checkable traces that a
certain attack leaves at a host or on the network, for

example, a temporary file or an outgoing network connec-
tion. Consequently, P ðlÞ is calculated as a proportion of the

past periodic checks that verified the occurrence of

consequence l, and using Bayes’ theorem:

P ðol j lÞ ¼
P ðol; lÞ
P ðlÞ ; ð2Þ

where P ðol; lÞ denotes the fraction of checks which verified
that consequence l had occurred, and alert ol had been

received.
Given the satisfaction probabilities of leaf nodes, the

output probability of gate q with inputs i 2 I is simply

calculated as follows:

�ðqÞ ¼ �i2I�ðiÞ; if q is an AND gate;
1��i2I ð1� �ðiÞÞ; otherwise;

�
ð3Þ

where �ðiÞ denotes the probability that the consequence
denoted by the input i had occurred. In the above equation,

there is an implicit assumption that gate inputs are
independent; otherwise, �q is computed using joint prob-

ability distributions of inputs.
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Starting from the root node and recursively using (3), it is
simple to obtain �g, i.e., that is the probability that the
security property of the root node in ART graph g has been
compromised. This value, as a local security estimate, is
reported by the local engine to the RRE server, where
optimal global response actions are decided upon according
to received local estimates (see Section 5). Next, we will
explain how ART graphs and their nodes’ satisfaction
probabilities are used in a game-theoretic algorithm to
decide on the optimal response action.

Stackelberg game: RRE versus attacker. Reciprocal interac-
tion between the adversary and response engine in a
computer system is a game in which each player tries to
maximize his or her own benefit. The response selection
process in RRE is modeled as a sequential Stackelberg
stochastic game [9] in which RRE acts as the leader while the
attacker is the follower; however, in our infinite-horizon
game model, their roles may change without affecting the
final solution to the problem.

Specifically, the game is a finite set of security states S that
cover all possible security conditions that the system could
be in. The system is in one of the security states s at each
time instant. RRE, the leader, chooses and takes a response
action ms 2 M admissible in s, which leads to a probabil-
istic security state transition to s0. The attacker, which is the
follower, observes the action selected by the leader, and
then chooses and takes an adversary action os0 2 O
admissible in s0, resulting in a probabilistic state transition
to s00. At each transition stage, players may receive some
reward according to a reward function for each player. The
reward function for an attacker is usually not known to
RRE, because an attacker’s reward depends on his final
malicious goal, which is also not known; therefore,
assuming that the attacker takes the worst possible
adversary action, RRE chooses its response actions based
on the security strategy, i.e., maximin, as discussed later. It is
also important to note here that although S is a finite set, it
is possible for the game to revert back to some previous
state; therefore, the RRE-adversary game can theoretically
continue forever. This stochastic game is essentially an
antagonistic multicontroller Markov decision process,
called a competitive Markov decision process (CMDP) [10].

A discrete competitive Markovian decision process � is
defined as a tuple ðS;A; r; P ; �Þ where S is the security
state space, assumed to be an arbitrary nonempty set
endowed with the discrete topology. A is set of actions,
which itself is partitioned into response actions and
adversary actions depending on the player. For every
s 2 S, AðsÞ � A is the set of admissible actions at state s.
The measurable function r : K ! < is the reward where
K :¼ fðs; a; s0Þ j a 2 AðsÞ; s; s0 2 Sg, and P is the transition
probability function; that is, if the present state of the
system is s 2 S and an action a 2 AðsÞ is taken, resulting in
state transition to state s0 with probability P ðs0 j s; aÞ, an
immediate reward rðs; a; s0Þ is obtained by the player
taking the action. � is the discount factor, i.e., 0 < � < 1.

Automatic conversion: ART-to-MDP. Using the ART
graphs, RRE’s local engines automatically construct re-
sponse Markov decision process (MDP) models, where
security states are defined as a binary vector whose
variables are actually the set of satisfied/unsatisfied (1/0)

leaf consequence nodes in the ART graph under considera-
tion. In other words, as a binary string, each MDP security
state vector represents the ART leaf node consequences
that have already been set to 1 according to the received
alerts from IDS systems. For instance, an ART graph with n
leaf nodes results in a generated MDP model with 2n

security states, i.e., n-bit vectors. For ART graphs with a
large number of leaf nodes, this exponential growth of the
security state space usually results in the state space
explosion problem, which RRE deals with by making use
of approximation techniques.

Once local engines have generated the security state
space, the next step in the decision process model
generation is to construct state transitions for each state s,
i.e., AðsÞ. As mentioned above, in a current security state s,
there can be either of two types of actions, responsive ArðsÞ
and adversarial AaðsÞ, depending on the player making the
decision. First, in state s, a response action m 2 M yields a
transition to state s0, in which bits are all similar to those of s
except for those bits that reflect leaf nodes of the ART
subtree, whose root is m, which are 0 in s0. For example,
assume that the system is in state s 2 S, and RRE decides to
enforce response action mr, which is connected to the root
node in the ART graph. The system’s next state will be s0 in
which all bits are 0, i.e., the most secure state. Although it is
tempting to always take mr whenever any leaf nodes take 1,
a cost-benefit evaluation, as discussed later, may result in
the choice of another, less expensive response action, or in
taking no action at all.

The second type of state-action-state transitions in
CMDPs are those due to adversarial actions. During
automatic ART-to-CMDP conversion in RRE, each leaf
consequence node l in the ART graph is mapped to an
adversarial action that causes that l to be set to 1. In other
words, suppose that the system is in a security state s of
CMDPs. For every leaf node l whose bit in s is 0, a transition
is built to state s0, where all bits are the same as in s, but the
bit related to l is 1.

The probabilities of state transition arcs k 2 K in CMDP
are assigned based on previous actions’ success rates
computed using reports from local agents; moreover,
reward functions r : K ! < must also be calculated.
Indeed, rðs; a; s0Þ is payoff gained by the player, who is
successfully taking action a in state s and causing a
transition to state s0:

rðs; a; s0Þ ¼ ð�gðsÞ � �gðs0ÞÞ�1CðaÞ�2 ; ð4Þ

where 0 � �1 � 1 and �2 � 0 are two fixed parameters. �gðsÞ
denotes the root node compromisation probability of the
ART graph g whose leaf nodes’ Boolean variables are set
according to bits in s. This probability is simply computed
using (1) and (3). Obviously, �gðs0Þ � �gðsÞ, since a is a
response action. Furthermore, CðaÞ is the positive cost
function for action a regardless of the source and destina-
tion states. This cost function should be defined specifically
depending on the application for which it is used; for
instance, one reasonable option would be the mean-time-to-
accomplish measure.

Having automatically generated CMDP using the ART
graph, RRE can now solve the decision process to find the
optimal response action. As discussed earlier, due to a lack
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of knowledge about the attacker’s cost function, given a
system’s current state, RRE uses the maximin approach to
find the security strategy for the game. To do so, it must
know the exact current state of the system. At every time
instant, a reasonable choice (according to leaf nodes) is state
s, where bits are 1 if their corresponding leaf nodes are set,
and zero otherwise. Thus, in local engines, where leaf nodes
of ART graphs are mapped to subsets of IDS alerts, the
system’s current state s consists of 1s for bits which
represent satisfied leaf nodes according to received alerts,
and 0s for other bits in s. As mentioned earlier, the fact that
leaf nodes have been set does not necessarily mean that they
are truly positive, as in (1); hence, uncertainty in received
information prevents RRE from precisely figuring out the
current security state of the system. However, the prob-
ability of being in each state is calculated as follows:

bðsÞ ¼
Y
l2L
ð1½sl¼1� � �ðlÞ þ 1½sl¼0�:ð1� �ðlÞÞÞ; ð5Þ

where L is the set of leaf nodes in the ART graph; �ðlÞ is
computed as in (1); sl is the bit in state s that corresponds
to leaf node l; and 1½expr� is the indicator function, and is 1
if expr is true, and 0 otherwise. It is worth noting that (5)
is based on the implicit assumption of independence
among leaf nodes. As discussed, each belief state
represents a probability distribution over state space
b : s! ½0; 1� s:t:

P
s2S bðsÞ ¼ 1, i.e., the probability that

the system in each state s 2 S when then system is in
belief state b. The equation demonstrates that how RRE
calculates the value of the belief state b for the state s that
is by definition a vector of bits each of which represent
individual security incidents (modeled by an ART leaf
node). Assuming that the incidents are independent of
each other, the probability that the system is in the state s
is the multiplication of the probabilities that the each
state notion bit is correct, i.e., �ðlÞ if the bit is 1 and 1�
�ðiÞ otherwise.

Therefore, to consider uncertainty, instead of determining
the exact current state of the system, we obtain a probability
distribution bð:Þ on state space s 2 S (called the belief state)
using (5). The axioms of probability require that 0 � bðsÞ � 1
for all s 2 S and that

P
s2S bðsÞ ¼ 1. Uncertainty in updating

inputs, i.e., IDS alerts, converts our Markovian decision
process into a higher level model, called a partially observable
competitive Markov decision process (POCMDP), which is
similar to the model described in [11] with the subtle
difference that [11] studies simultaneous games, whereas
the game here is sequential. Indeed, states b 2 B, in this higher
level model, are probability distributions over a set of statesS
in the underlying Markovian decision process model.

It is noteworthy that the rationale behind having the
ART models within RRE rather than having the security
administrators to design the state-based Markov decision
processes manually is that the ART trees are easier to
understand and hence to design manually partially because
of their tree structure and recursive design process for
individual subtrees. As discussed earlier, RRE uses the
manually designed ART model to construct the CMDP state
space automatically. In addition to ARTs’ easier under-
standability, to design the Markov decision process requires
more effort than designing its corresponding ART tree

because the number of security states in a Markov decision
process is exponentially more compared to the number of
nodes (more accurately number of leaf nodes) in its
corresponding ART tree.1

Optimal response strategy. As the last step in the decision-
making process in local engines, RRE solves the POCMDP
to find an optimal response action from its action space, and
sends an action command to its agents that are in charge of
enforcing received commands. Action optimization in RRE
is accomplished by trying to maximize the accumulative
long-run reward measure received while taking sequential
response actions. To accumulate sequential achieved re-
wards, here, we use the infinite-horizon discounted cost
technique [12], which gives more weight to nearer future
rewards. In other words, in each step, the game value is
computed by recursively adding up the immediate reward
after both players take their next actions and the discounted
expected game value from then on.

To formulize the explanation just given, the solution of a
POCMDP consists in computing an optimal policy, which is
a function �� that associates with any belief state b 2 B an
optimal action ��ðbÞ, which is an action that maximizes the
expected accumulative reward on the remaining temporal
horizon of the game. As discussed above, this accumulative
reward is defined as the discounted sum of the local rewards
r that are associated with the actual action transitions. The
Markovian decision process theory assigns to every policy �
a value function V�, which associates every belief state b 2 B
with an expected global reward V�ðbÞ obtained by applying
� in b. For finite-horizon POMDPs, the optimal value
function is piecewise-linear and convex [13], and it can be
represented as a finite set of vectors. In the infinite-horizon
formulation, a finite vector set can closely approximate the
optimal value function V �, whose shape remains convex.
Bellman’s optimality equations characterize in a compact
way the unique optimal value function V �, from which an
optimal policy ��, which is discussed later, can be easily
derived: V �ðbÞ ¼ maxar2ArðbÞ�ðV �; b; arÞ

�ðV ; b; aÞ ¼
X
o2O

P ðo j b; aÞ � f�
�
b; a; b0b;a;o

�

þ ffiffiffi
�
p � ½ min

aa2Aaðb0b;a;oÞ

X
o02O

P ðo0 j b0b;a;o; aaÞ�
�
�ðb0b;a;o; aa; b00b0;aa;o0 Þ þ

ffiffiffi
�
p � V

�
b00b0;aa;o0 Þ

�
�g;

ð6Þ

where AðbÞ ¼ [s2S:bðsÞ6¼0AðsÞ. Að:Þ is partitioned into Arð:Þ
and Aað:Þ for response and adversary actions, respectively.
� is defined in (6), in which � is the POCMDP reward
function. � is computed using reward function r in the
inherent CMDP: �ðb; a; b0Þ ¼

P
s;s02S bðsÞb0ðs0Þrðs; a; s0Þ. Here,

b0b;a;o is the updated next belief state if the current state is b,
action a is taken, and observation o is received from sensors:

b0b;a;oðs0Þ ¼ P ðs0 j b; a; oÞ

¼ P ðo j s0Þ
P

s2S P ðs0 j s; aÞbðsÞP
s002S P ðo j s00Þ

P
s2S P ðs00 j s; aÞbðsÞ

;
ð7Þ
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1. Recall that each CMDP state is represented by a bit-vector in which
each bit denotes an individual ART leaf node; therefore, a manually
designed ART tree with n leaf nodes results in a CMDP model with 2n

security states.



where due to the independence assumption among the ART
graph’s leaf nodes, we have

P ðo j sÞ ¼
Y
l2L
ð1½sl¼1� � P ðo j lÞ þ 1½sl¼0� � P ð�o j lÞÞ; ð8Þ

where P ð�o j lÞ ¼ 1� P ðo j lÞ, and P ðo j lÞ is simply ob-
tained using (2). Once the partially observable decision
process is formulized, the optimal response action is
chosen based on the optimal value function. There are
different techniques to obtain the optimal value function.
The decision-making unit in RRE uses a value iteration
technique [14] VtðbÞ ¼ maxar2ArðbÞ�ðVt�1; b; arÞ, that applies
dynamic programming updates to gradually improve on
the value until it converges to the "-optimal value
function, i.e., j VtðbÞ � Vt�1ðbÞ j< ". Through improvement
of the value, the policy is implicitly improved as well.
Finally, optimal policy �� maps the system’s current belief
state b to a response action:

��ðbÞ ¼ arg max
ar2ArðbÞ

�ðV �; b; arÞ; ð9Þ

which, in local engines, is sent to RRE agents that are in
charge of carrying out the received response action
commands. Agents then send status messages to the
decision-making unit, indicating whether the received
action command has been accomplished successfully. If it
has, the decision-making unit updates the leaf nodes and
variables in the corresponding ART graph.

So far, we have discussed how RRE’s local engine
estimates local security state and decides upon and takes
local response actions following alerts received from the
IDS. Next, we will address how RRE’s server makes use of
local information received from local engines to estimate
the security status of the whole network, and then decide
what global response actions to take. The information that
are sent by local engines to RRE’s server consist of root
probabilities �g, as computed in (3), of local ART graphs. In
the current implementation of RRE, these include three root
node probabilities of three ART trees reflecting confidenti-
ality, integrity, and availability of local host systems.

Agents. In the above-mentioned security battle between
RRE and the adversary, agents play a key role in
accomplishing each step of the game. They are in charge
of taking response actions decided on by RRE engines.
Actually, having received commands from engines, agents
try to carry them out successfully and report the result,
whether they were successful or not, back to the comman-
der, i.e., the engine. If the agent’s report indicates that some
response action has been taken successfully, the engines
update their ART trees’ corresponding variables, which are
leaf node values in the subtree for the successfully taken
response action node. Consequently, as explained above,
leaf node variables in ART trees are updated by two types
of messages: IDS alerts and agents’ reports.

5 GLOBAL RESPONSE AND RECOVERY

Although host-based intrusion response is taken into
account by RRE’s local engines using local ART graphs
and the IDS rule-set for computing assets, for example, the
SQL server, maintenance of global network-level security

requires information about underlying network topology
and profound understanding about what different combi-
nations of secure assets are necessary to guarantee network
security maintenance. As discussed, in the distributed local
response engines, most of the security properties (ARTs’
root nodes) are (objective) system-level concepts, for
example, Is the apache process available?, and can be
measured simply using the Boolean logic expressions
(ART trees) and the triggered IDS alerts. In RRE, global
network intrusion response is resolved in the central server.
Unlike in local engines, in the global intrusion response
engine, global network-level (possibly subjective) security
properties, for example, Is the network currently secure?, are
to be determined. Such global security properties do not
always take on only binary values. As a case in point, in a
large scale enterprise network, a web server compromise
affects the network’s current security level, but it does not
mean that the network is completely insecure. Additionally,
various network assets often have different levels of
criticality and impact on accomplishment of the enterprise’s
overall business objective, and hence, affect the global
security level differently.

To address the above-mentioned challenges in assessing
the global security properties for the whole network given
the real-time reports from local response engines, we
propose a multiobjective network security reward function
�n : S ! ½0; 1� (see Section 5.2) that uses a fuzzy logic-based
controller to calculate, at each time instant, a security
measure value for the whole network. Throughout this
paper, we will concentrate on the generic security property
of “Is the network currently secure?”. All other network-level
security properties can be calculated similarly.

5.1 Automatic CMDP Generation

To generate the CMDP model, RRE analyzes the network
topology input to find out about the set of known system
vulnerabilities and individual host computers, i.e., privilege
domains. Given the set of system vulnerabilities, the
connectivity matrix is updated accordingly to encode
adversarial paths only. In particular, RRE automatically
generates a CMDP by traversing the connectivity matrix
and concurrently updating the CMDP. First, RRE creates
the CMDP’s initial state ð�Þ and starts the CMDP genera-
tion with the network’s entry point (Internet) node in the
connectivity matrix. Considering the connectivity matrix as
a directed graph, RRE runs a depth-first search (DFS) on the
graph. While DFS is recursively traversing the graph, it
keeps track of the current state in the CMDP, i.e., the set of
privileges already gained through the path traversed so far
by DFS. When DFS meets a graph edge ½i; j� that crosses
over privilege domains wi to wj, a state transition in CMDP
is created if the current state in CMDP does not include the
privilege domain of the host to which the edge leads, i.e.,
wj. The transition in CMDP is between the current state and
the state that includes exactly the same privilege set as the
current state plus the host wj directed by the graph edge
½i; j�. The CMDP’s current state in the algorithm is then
updated to the latter state, and the algorithm proceeds until
no further updates to CMDP are possible according to the
connectivity matrix.
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In addition to the adversarial transitions, the above
algorithm also updates the CMDP regarding possible
response and recovery actions m 2M. In particular, host
redundancies, specified by the network topology input,
help RRE to create responsive state transitions. As a case
point, consider that for a web server in an enterprise
network there exists a redundant hot spare server desig-
nated for intrusion tolerance purposes. To model such a
proactive design, RRE creates a responsive state transition,
denoting the recover the web server action, from any state
in which the server is compromised to states containing
the same privileges except the web server. At that point, the
offline CMDP generation is complete, and by design, the
CMDP includes all possible attack paths launching from
remote (Internet) host systems against the network as well
as response and recovery scenarios. Matrix elements are
denoted as red arrows among network component pairs,
and as illustrated, a redundant web server can take on web
request processing if the main server gets compromised.

5.2 Multiobjective System Security Reward
Function

Local engines send their local security estimates, i.e., root
node probabilities �g of their ART graphs, to the RRE server.
RRE considers the network’s global security as a multi-
objective reward function for the response selection
procedure. Each objective is represented by a specific
system-level security property, and quantified by the �g
values, which are calculated in the local engines. In our
multiobjective game scheme, there is usually not a single
solution that simultaneously minimizes each objective to its
fullest. In each case, we are looking for a solution for which
each objective has been optimized to the extent that if we try
to optimize it any further, then the other objective(s) will
suffer as a result. RRE makes use of a fuzzy-logic based
controller that merges the involved objective function
values using an information fusion algorithm according to
the network security definition, and consequently, result in
a single scalar reward value.

Fuzzy logic is a form of multivalued logic derived from
fuzzy set theory to deal with reasoning that is approximate
rather than precise. In contrast with binary sets which
follow the binary logic, the fuzzy logic variables may have a
membership value of not only 0 or 1. Just as in fuzzy set
theory, with fuzzy logic, the set membership values can
range (inclusively) between 0 and 1, and the degree of truth
of a statement, for example, The network is currently secure.,
can range between 0 : false and 1 : true and is not
constrained to only two digital values as in classic
propositional logic. In particular, RRE calculates the global
network security level, i.e., the truth degree of the “The
network is currently secure” predicate, using a fuzzy control
system [15] that analyzes analog input values in terms of
logical variables (system-level security properties) from
local response engines that take on continuous values �g,
and produces the network-level security measure values.

Formally, inputs to the fuzzy controller, that is in charge
of calculating the global network-level security measure
values for individual network security states �n : S ! ½0; 1�,
represent root node values of the ART trees within the local
response engines �g g 2 G. Before getting into technical

details, as a clarifying example scenario, let us consider that
the fuzzy controller defines the global network-level
security as a function of two inputs: AðWSÞ: availability
of the web server and IðDBÞ: integrity of the database
server. So, given degrees of the system availability, for
example, AðWSÞ ¼ high, and system integrity, for example,
IðDBÞ ¼ low, in a sample network belief state b, the fuzzy
controller computes the security status of the system, for
example, �nðbÞ ¼ medium.

The global engine’s fuzzy controller is composed of the
following four elements:

1. A rule-base (a set of If-Then rules), which contains a
fuzzy logic quantification of the experts linguistic
description of how to achieve accurate global
network-level security measure estimates.

2. An inference module, which emulates the experts’
decision-making in interpreting and applying
knowledge about how best to estimate the global
network-level security measure values.

3. A fuzzification interface, which converts the con-
troller inputs �g from local response engines into
information that the inference mechanism can easily
use to activate and apply rules.

4. A defuzzification interface, which converts the
conclusions of the inference mechanism into real
number values as inputs to the game-theoretic
intrusion response system to pick the cost-optimal
response action.

Here, we will discuss each of the above-mentioned compo-
nents of a fuzzy control system according to our game-
theoretic security battle formulation.

5.2.1 System Security Rule-Bases

Rule-base uses a linguistic qualification technique to
specify a set of rules that capture the expert’s evaluation
of each belief state’s security level in Stackelberg game
scheme used by the intrusion response system (discussed
in Section 4). It is noteworthy that, as discussed below, the
expert’s input on individual states (of the infinite contin-
uous state space) is not required, and instead, an abstract
discretized state space, with manageable number of states,
is used for querying the expert. The general form of the
linguistic rules is:

If premise Then consequent
The premises are associated with the fuzzy controller

inputs (i.e., the system-level security properties represent-
ing local ARTs’ root nodes) and are on the left-hand side of
the rules. The consequents are associated with the fuzzy
controller output (e.g., global network security) and are on
the right-hand side of the rules. As a case in point, following
the earlier example on two-input fuzzy controller, we may
define security measure rules as follows:

If WS-Availability is high and DB-Integrity is low

Then Global Network Security is medium:
ð10Þ

The rule listed above is a linguistic security metric rule,
since it is formed solely from linguistic variables and values
to qualitatively measure the security level of each state. The
main benefit of using linguistic variables and values over
traditional numerical security metrics [16] is that they are at
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a level of abstraction that the system operators are often
comfortable with in terms of specifying how to measure the
global network security level under different circumstances.

A tabular representation of one possible set of rules for the
above-mentioned example is shown in Table 1. The body of
the table lists the qualitative values of the rules, and the left
column and top row of the table contain the premise terms,
i.e., availability and integrity. As a case in point, the ð3; 1Þ
entry in Table 1 represents our earlier rule sample in (10).

5.2.2 Fuzzification of the Local Engine Reports

Fuzzy sets are usually defined by their membership
functions that describe the certainty that an element belongs
to the set as opposed to the traditional binary set member-
ships. For instance, a fuzzy membership could quantify
whether (or more precisely, how much) any system
situation (belief state) is a member of the network global
security set. The fuzzification block converts the fuzzy
system inputs, i.e., �g’s from local engines, to fuzzy sets that
are used by the fuzzy system’s inference engine later.
Similar to [17], RRE uses Gaussian and triangular member-
ship functions. In particular, we define �lð�gÞ to represent
the degree that �g is low, i.e., belongs to the low set. And
�mð:Þ and �hð:Þ membership functions are similarly defined
for the medium and high sets. A Gaussian fuzzy set
membership degree in name is defined as follows:

�lð�gÞ ¼ exp�ð�g � clÞ
2

2�2
; ð11Þ

where cl and � are the fuzzy number mean and standard
deviation and are assigned initially. In RRE, � ¼ 0:1, and as
the inputs �g take values in the range ½0; 1�, we assigned
cl ¼ 0:15, cl ¼ 0:5, cl ¼ 0:85. Using (11), RRE determines the
membership degree of the corresponding system-level
security property. As a clarifying example, if the database’s
integirty is believed to hold with 0.15 based on the reports
from the local engine and detection systems running on the
database server, the database integrity is completely a
member of the low set, i.e., �lð0:15Þ ¼ 1. Similarly, the
membership functions for all the fuzzy system inputs are
specified. In RRE, we use the same fuzzy sets, i.e., low,
medium, and high, for all the inputs. Consequently, using
these membership functions, RRE’s fuzzification compo-
nent converts individual inputs, i.e., �g’s, into fuzzy set
membership degrees so that they can be used by the global
security assessment system.

5.2.3 Security Metric Inference

Having encoded the knowledge and preferences of the
security administrators about the network in the rule-base,
we explain how RRE’s inference component uses the fuzzy

rules in the rule-base to come to conclusions about system-
wide security measure values.

Briefly, given a particular input vector by the local engines,
for example, (�gðWS-AvailabilityÞ; �gðDB -IntegrityÞÞ ¼
ð0:15; 0:9Þ, RRE uses an information fusion algorithm [15]
to determine the subset of rules that are needed for the
global security assessment. Briefly, the premises of indivi-
dual rules are compared to the inputs to identify the rules
that apply to the current situation, and the certainty that
each rule applies is determined. Consequently, the recom-
mendations of rules that apply to the current situation with
higher certainty are taken into account more strongly.

RRE’s information fusion component calculates the
applicability of individual rules using the membership
degree functions (see Section 5.2.2). In particular, RRE first
quantifies the meaning of the premise of each rule that is
composed of one or more input term(s). For instance, to
quantify the rule shown in (10) for the above input
(0:85; 0:6), RRE calculates the �hð0:85Þ ¼ 1:0 and �lð0:6Þ ¼
0:005 for the premise’s input terms. The main remaining
part is how to quantify the logical “and” operation that
combines the meaning of two linguistic terms into a single
premise membership function �prem. RRE picks the mini-
mum [15] of the membership degrees of the input terms in
each rule’s premise as the certainty measure that the rule
applies, and hence should contribute to the global network
security assessment. Hence, in the above example, we will
have �prem ¼ 0:005. In particular, we call a specific rule ON
if its premise membership function is greater than zero. In
the next step, the inference mechanism will combine the
recommendations from the ON rules to come up with a
single conclusion about the global network security
measure estimate.

5.2.4 Overall System Security Measure Defuzzification

RRE’s defuzzification component operates on the applic-
able rules produced by the inference module and combines
their effects to provide the most certain output, i.e., system
security level. The RRE employs the center of gravity
(COG) defuzzification method [18] for combining the
recommendations by all of the applicable rules. Let 	i
denote the mean for the membership function of the rule i’s
consequent. The COG of a given belief state is calculated
using the following equation:

COGðbÞ ¼
Pq

i

�
	i �
R1
�1 �

i
�
x; �iprem

�
� dx

�
Pq

i

R1
�1 �

i
�
x; �iprem

�
� dx

; ð12Þ

where q denotes the number of the ON rules, which are
applicable to the current network security belief state.R1
�1 �

iðx; �ipremÞ � dx denotes the area under the function �i

that is defined as

�i
�
x; �iprem

�
¼ �iconsðxÞ; if �iconsðxÞ < �iprem;

x; otherwise;

�
ð13Þ

where �icons represents the rule i’s consequent membership
function (e.g., �m for the rule in (10)).

Fig. 4 shows an implementation of the RRE’s defuzzifi-
cation engine for our two-objective network security
measure example. In particular, the X and Y axes represent
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the web server availability and database integrity inputs,
while the Z axis denote the global network security measure
estimate that is calculated by the RRE’s defuzzification
component according to the provided rule set.

6 EXPERIMENTAL EVALUATION

In this section, we investigate how the proposed response
and recovery engine performs in reality. We have imple-
mented RRE on top of Snort 2.7 [2], which is an open-source
signature-based IDS. The experiments were run on a
computer system with a 2.2-GHz AMD Athlon 64 Processor
3700þ with 1 MB of cache, 2 GB of memory, and the
Ubuntu (Linux 2.6.24-21) operating system.

Model generation performance. Although network topology
analyses and CMDP model generation in RRE is performed
during an offline phase, for practical usages, it is still
important to complete those steps within a reasonable time
interval. To validate RRE’s efficiency on various networks
with different sizes and topologies, we measured how long
RRE takes to generate the CMDP model for randomly
generated networks. Figs. 5a and 5b show the CMDP
generation time requirement and the model’s size. The
results were averaged over 1,000 runs. As illustrated, for
large-scale power networks with 330K host computers, RRE
analyzed the inputs and generated the CMDP model within
24 milliseconds.

Response optimization scalability. To evaluate how RRE
handles complex networks consisting of a large number of
host systems, we measured the time required by RRE to
compute the optimal response action versus various
metrics. Fig. 6d shows the average time-to-response over
ten runs versus the attack-response tree order, i.e., the
maximum number of children for each node.2 For each tree
order d, a balanced tree, in which each node has d children,
is generated; gates are assigned to be AND or OR with equal
probability, i.e., 0.5. The "-optimality termination criterion
in Bellman’s equation and discounting factor were set to
" ¼ 0:1 and � ¼ 0:99, respectively. Then, a decision process
is constructed and solved, and the total time spent is
recorded (see Fig. 6d). As expected, the figure shows that

increasing the ART order leads to rapid growth of the
required time-to-response by the response engine.

In another scalability evaluation experiment, we mea-
sured time-to-response versus the number of nodes in
balanced ART trees of order 2. Fig. 6 shows average results
on 10 runs for three scenarios. First, given IDS alerts and
the ART tree, the complete decision model consisting of all
states in the state space was constructed. As shown in
Fig. 6a, the response engine can solve for optimal response
actions for ART trees with up to 45 nodes within about
2 minutes. Second, an online finite-lookahead Markovian
decision model with an expansion limit of four steps was
generated and solved. As illustrated in Fig. 6b, limited
expansion improves a solution’s convergence speed
and increases the solvable ART size to trees with up to
120 nodes within 30 seconds. Third, to further improve
RRE’s scalability, we evaluated how fast a decision process
is solved with an upper expansion limit of 2. Fig. 6c shows
that ART trees with more than 900 nodes are still solvable
in less than 40 seconds. By solving ART trees with about
900 nodes in a minute, RRE can protect large-scale
computer networks.

Comparison. This section evaluates how beneficial RRE is
compared to static intrusion response systems, particularly
those that statically choose and take response actions from a
lookup table that stores alert-response mappings. In our
experiments, both IRS systems, i.e., RRE and static engines,
were given a sample ART tree with jLj ¼ 6 leaf nodes based
on which they computed response actions. RRE’s response
action selection has already been explained in detail; the
static IRS maps each alert, i.e., a leaf node in ART, to a
response action that resets that particular leaf node with
minimum cost. Given the current network state, we
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Fig. 4. The reward function fuzzy logic surface.

Fig. 5. Offline automated CMDP graph generation.

Fig. 6. Response system scalability analysis.
2. The graphs, in this section, are not completely smooth as the results

are averaged over only three runs.



compared how much cost RRE and the static IRS spent
toward the end of the game, i.e., the point at which all leaf
nodes had been cleaned. ART parameters and result graphs
are omitted due to space constraint; however, final results
are described here.

We modeled the attacker to be completely intelligent; in
other words, in each step, he or she took the most harmful
possible adversarial action. There were a total of 2jLj ¼ 64
starting scenarios (states) for two different game schemes.
In the first scheme, the action ratio between IRS and the
attacker was 1; in other words, for each action taken by the
response system, the attacker was allowed to pick one
adversarial action. As expected, for all initial scenarios, in
picking the optimal action, RRE required a recovery cost
less than or equal to what the static IRS did. In the second
game scheme, we fortified the attacker’s strength, and set
the action ratio to 1/2 meaning that for each action by the
IRS, the attacker was allowed to take two actions. In five
scenarios (out of 64), RRE caused more recovery cost than
its static competitor, the reason being that the RRE chooses
the optimal response action under the assumption that the
action ratio is 1.

7 RELATED WORK

EMERALD [19], a dynamic cooperative response system,
introduces a layered approach to deploy monitors through
different abstract layers of the network. Analyzing IDS
alerts and coordinating response efforts, the response
components are also able to communicate with their peers
at other network layers. AAIRS [20] provides adaptation
through a confidence metric associated with IDS alerts and
through a success metric corresponding to response actions.
Although EMERALD and AAIRS offer great infrastructure
for automatic IRS, they do not attempt to balance intrusion
damage and recovery cost.

LADS [21], a host-based automated defense system,

uses a partially observable Markov decision process to
account for imperfect state information; however, 
LADS is
not applicable in general-purpose distributed systems due
to their reliance on local responses and specific profile-
based IDS. Balepin et al. [22] address an automated
response-enabled system that is based on a resource type
hierarchy tree and a directed graph model called a system
map. Both 
LADS and the IRS in [22] can be exploited by the
adversary, since none of them takes into account the
malicious attacker’s potential next actions while choosing
response actions.

Game theory in an IRS-related context has also been
utilized in previous papers. Lye and Wing [23] use a game-
theoretic method to analyze the security of computer
networks. The interactions between an attacker and the
administrator are modeled as a two-player simultaneous
game in which each player makes decisions without the
knowledge of the strategies being chosen by the other player;
however, in reality, IDSes help administrators probabilisti-
cally figure out what the attacker has done before they
decide upon response actions, as in sequential games. AOAR
[24], created by Bloem et al., is used to decide whether
each attack should be forwarded to the administrator or
taken care of by the automated response system. Use of a

single-step game model makes the AOAR vulnerable to

multistep security attacks in which the attacker significantly

damages the system with an intelligently chosen sequence of

individually negligible adversarial actions.

8 CONCLUSIONS

A game-theoretic intrusion response engine, called the

response and recovery engine, was presented. We modeled

the security maintenance of computer networks as a

Stackelberg stochastic two-player game in which the

attacker and response engine try to maximize their own

benefits by taking optimal adversary and response actions,

respectively. Experiments show that RRE efficiently takes

appropriate countermeasure actions against ongoing at-

tacks that save system damage and intrusion response cost

compared to existing static and dynamic IRS solutions.
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