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Analytical Computation of the Magnetic Field Distribution
in a Magnetic Gear

Thierry Lubin, Smail Mezani, and Abderrezak Rezzoug
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We propose an analytical computation of the magnetic field distribution in a magnetic gear. The analytical method is based on the
resolution of Laplace’s and Poisson’s equations (by the separation of variables technique) for each subdomain, i.e., magnets, air gap, and
slots. The global solution is obtained using boundary and continuity conditions. Our analytical model can be used as a tool for design
optimization of a magnetic gear. Here, we compare magnetic field distributions and electromagnetic torque computed by the analytical
method with those obtained from finite-element analyses.

Index Terms—Analytical solution, electromagnetic torque, magnetic field, magnetic gear.

I. INTRODUCTION

M AGNETIC gears offer substantial advantages compared
to mechanical gears such as reduced maintenance, im-

proved reliability, minimum acoustic noise, and inherent over-
load protection. Physical and hermetic isolation between input
and output shafts are also specific to such contactless torque
transmission devices [1]–[5]. It has been shown that a trans-
mitted torque density of 100 can be obtained which
is comparable with that of mechanical gears. Recently, mag-
netic gear has been integrated into PM motors to obtain the so
called “pseudo-direct” drives that result in high-torque density
electrical machines [6]. The later actuators are suitable for high
torque low speed application like electric vehicles [7] or wind
power generation [8].

An accurate knowledge of the air-gap magnetic field distribu-
tion is necessary for predicting the performance of the magnetic
gear. The air-gap magnetic field can be evaluated by analytical
or semi-analytical methods or by numerical techniques like fi-
nite elements. Finite elements give accurate results considering
geometric details and nonlinearity of magnetic materials. How-
ever, this method is computer time consuming and poorly flex-
ible for the first step of design stage of a magnetic gear. Ana-
lytical methods are useful tools for first evaluation of magnetic
gear performances and for design optimization since continuous
derivatives issued from the analytical solution are of great im-
portance in most optimization methods.

As shown in Fig. 1, a magnetic gear contains a ring of fer-
romagnetic pole-pieces which are difficult to handle (open slots
on two sides) in the analytical prediction of the air-gap magnetic
field. Analytical approaches for air-gap magnetic field computa-
tion in slotted machines can be found in the literature [9]–[14].
However, the publications focus essentially on the determina-
tion of cogging torque in permanent magnet motors.

The aim of this paper is to propose an exact analytical solu-
tion of the magnetic field distribution in a magnetic gear. The
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Fig. 1. Geometry of the studied magnetic gear (� � �, � � �, � � �, and
� � �).

Laplace and Poisson’s equations are solved in each subdomain
(air-gap, magnet, and slots) and the solution is obtained using
boundary and interface conditions.

The paper is organized as follows. The problem description
and the assumptions of the model are presented in Section II.
Section III describes the analytical method for magnetic field
calculation in the air gap, permanent magnets and in the slot
subdomains. The analytical results are then verified with the
finite-element method in Section IV and Section V.

II. PROBLEM DESCRIPTION AND ASSUMPTIONS

Schematic representation of the studied magnetic gear is
shown in Fig. 1. It consists of a pole-pairs inner rotor, a
pole-pairs outer rotor and ferromagnetic pole-pieces.

Principle of operation of the magnetic gear is the modulation
of magnetic field created by the pole-pairs PMs rotor (prime
mover) by the Q pole pieces. The obtained field interacts with
the pole-pairs PMs rotor to transmit torque to the load (outer
rotor or pole pieces) at a different speed. The combination

results in the highest torque transmission capability of
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Fig. 2. �th slot subdomain with its boundary conditions.

the gear. If the pole pieces are kept stationary, the resulting gear
ratio is [1].

The geometrical parameters are
— for the inner rotor, the radius of the yoke and the outer

radius of the PMs ;
— for the ring, the inner and outer radii of the slots and

, respectively;
— for the outer rotor, the inner radius of PMs and the inner

radius of the yoke .
The slot opening angle is . The angular position of the th slot
is defined as

(1)

where is the initial angular position of the pole-pieces ring.
The following assumptions are adopted:
• end effects are neglected;
• permeability of the iron is infinite (the magnetic field in the

iron vanishes);
• relative recoil permeability of the magnets is .
As shown in Fig. 1, the whole domain is divided into five

subdomains: the inner and outer air-gap subdomains (regions II
and III), the inner and outer PMs subdomains (regions I and IV),
and the slots subdomains (regions i). The th slot subdomain
shape is shown in Fig. 2. The subdomains I, II, III, and IV have
annular shapes.

A magnetic vector potential formulation is used in 2-D polar
coordinates to describe the problem. According to the adopted
assumptions, the magnetic vector potential has only one com-
ponent along the z-direction and only depends on the and
coordinates. The notations used in the paper are

for the inner PMs subdomain

for the inner air-gap subdomain

for the th slot subdomain

for the outer air-gap subdomain

for the outer PMs subdomain.

III. ANALYTICAL MODEL

The solution of any partial differential equation (PDE) de-
pends on the domain in which the solution is to be valid as well
as the boundary conditions that the solution must satisfy. By

using separation of variables, we now consider the solution of
Laplace’s equation for the slots and the air-gap subdomains and
the Poisson’s equation for the PMs subdomains. For the sake
of clarity and simplicity of the general solutions in the different
subdomains, we adopt the following notations:

(2)

(3)

A. General Solution of Laplace’s Equation in the th Slot
Subdomain (Region i)

The th slot subdomain and the associated boundary condi-
tions are shown in Fig. 2. We have to solve the Laplace’s equa-
tion in a domain of inner radius and outer radius delim-
ited by the angles and

(4)
The boundary conditions for the th slot domain are (the tan-

gential component of the magnetic field at the sides of the slot
are null)

(5)

The continuity of the normal component of the flux density
between the th slot and the air-gap subdomains leads to

(6)

(7)

The general solution of (4) can be found by using the method
of the separation of variables, the solution can be written as [14]

(8)

where , , , and are arbitrary constants.
Considering the continuity conditions (6) and (7), the general

solution of the magnetic vector potential in the th slot domain
is rewritten as

(9)

where is a positive integer, is defined by (3).
The constants , , , and are determined using a

Fourier series expansion of the inner and outer air-gap magnetic
vector potentials and over the slot in-
terval

(10)
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Fig. 3. Inner air-gap subdomain (region II) with its boundary conditions.

(11)

(12)

(13)

The expressions for the coefficients , , , and are
given in the Appendix.

B. General Solution of Laplace’s Equation in the Air-Gap
Subdomains

1) Inner Air-Gap Subdomain (Region II): The inner air-gap
subdomain and the associated boundary conditions are shown
in Fig. 3. The problem to solve is

(14)

The continuity of the tangential component of the magnetic
field at leads to

(15)

The boundary condition at the radius is more difficult
to handle because of the existence of the slots as shown in Fig. 1.
Considering the continuity of the tangential magnetic field at the
interface between the slots and the air-gap and considering that
the tangential magnetic field is equal to zero elsewhere (infinite
permeability of the ferromagnetic pieces), the boundary condi-
tion at can be written as

(16)

Fig. 4. Schematic representation of ���� along the inner air-gap at � � � .

with

elsewhere
(17)

where is the magnetic vector potential in the th slot
given by (9). The distribution of along the air-gap domain
interval is schematically shown in Fig. 4.

The general solution of (14) is well known [15] (periodic
Sturm-Liouville problem in an annulus). By taking into account
the boundary conditions (15) and (16), the general solution of
the magnetic vector potential in the inner air-gap can be written
as

(18)

where is a positive integer, and are
defined by (2) and (3). The coefficients , , and
are determined using a Fourier series expansions of
and over the air-gap interval

(19)

(20)

(21)

(22)

The expressions for the coefficients , , , and
are given in the Appendix.
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The Neumann problem (14), (15) and (16) can have a solution
only if [15]

(23)

The treatment of (23) yields to the following relations be-
tween the coefficient defined in (10) and (11)

(24)

The flux density distribution in the inner air-gap can be de-
duced from the magnetic vector potential by

(25)

(26)

The radial and the tangential components of the magnetic flux
in the inner air-gap are then

(27)

(28)

2) Outer Air-Gap Subdomain (Region III): The outer air-gap
subdomain and the associated boundary conditions are shown in
Fig. 5. The problem to solve is

(29)

The boundary condition for the outer air-gap domain at
is

(30)

The boundary condition at the radius can be written
as

(31)

Fig. 5. Outer air-gap subdomain (region III) with its boundary conditions.

with

elsewhere
(32)

By taking into account the boundary conditions (30) and (31),
the general solution of the magnetic vector potential in the outer
air-gap subdomain can be written as

(33)

where is a positive integer, and are
defined by (2) and (3). The coefficients , ,
and are determined using a Fourier series expansions of

and over the air-gap interval

(34)

(35)

(36)

(37)

The expressions for the coefficients , , , and
are given in the Appendix.
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Fig. 6. Inner PMs subdomain (region I) with its boundary conditions.

Fig. 7. Magnetization distribution along �-direction (inner PMs).

C. General Solution of Poisson’s Equation in the PMs
Subdomains (Regions I and IV)

1) Inner Rotor PMs Subdomain (Region I): The inner rotor
PMs subdomain and the associated boundary conditions are
shown in Fig. 6. The problem to solve is

(38)
where is the permeability of the vacuum and is the radial
magnetization of the magnets.

The boundary conditions at and are,
respectively

(39)

(40)

The radial magnetization distribution is plotted in Fig. 7,
where is the remanence of the magnets and is the initial
phase angle of the inner rotor. The radial magnetization can be
expressed in Fourier’s series and replaced in (38).

According to the superposition law, the general solution of
(38) is the sum of the general solution of the corresponding
Laplace’s equation and a particular solution [15]. Taking into

account the boundary conditions (39) and (40), the general so-
lution of the magnetic vector potential in the inner PMs subdo-
main can be written as

(41)
where

(42)

and

otherwise
(43)

where is a positive integer, is the number of pole-pairs of
the inner rotor and is defined by (2).

The coefficients and are determined using a Fourier
series expansion of over the interval

(44)

(45)

The expressions for the coefficients and are given in
the Appendix.

2) Outer PMs Subdomain (Region IV): The outer PMs sub-
domain and the associated boundary conditions are shown in
Fig. 8. The problem to solve is

(46)

The boundary conditions at and are,
respectively

(47)

(48)

By taking into account the boundary conditions (47) and (48),
the general solution of the magnetic vector potential in the outer
PMs subdomain can be written as

(49)
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Fig. 8. Outer PMs subdomain (region IV) with its boundary conditions.

where

(50)

and

otherwise
(51)

where is a positive integer, is the number of pole-pairs of
the outer rotor, is the initial phase angle of the outer rotor
and is defined by (2). The coefficients and
are determined using a Fourier series expansion of
over the interval

(52)

(53)

The expressions for the coefficients and are given
in the Appendix.

D. Electromagnetic Torque

The electromagnetic torque is obtained using the Maxwell
stress tensor. A circle of radius in the inner air-gap sub-
domain is taken as the integration path so the electromagnetic
torque is expressed as follows:

(54)

where is the axial length of the magnetic gear. According to
(27) and (28), the analytical expression for the electromagnetic
torque becomes

TABLE I
PARAMETERS OF THE MODEL

(55)

where

(56)

A similar expression can be obtained for the electromagnetic
torque computation in the outer air-gap.

IV. APPLICATION EXAMPLE 1

In order to validate the proposed model, the analytical re-
sults have been compared with 2-D finite element simulations
obtained using FEMM software [16]. In the finite-element anal-
ysis, the surfaces of the inner and outer rotors yokes as well as
those of the ferromagnetic pole-pieces have been modeled by
homogeneous Neumann boundary conditions as in the analyt-
ical study. The mesh in the air-gap and in the slot regions has
been refined until convergent results are obtained.

The geometrical parameters given in Table I are considered
in the simulation studies. The analytical solutions in the air-gap,
in the PMs and in the slots domains have been computed with
a finite number of harmonic terms and as indicated in
Table I.

A. Flux Density Distribution

Fig. 9 shows the magnetic flux lines for the magnetic gear
excited by both permanent magnet rotors. The phase angles
and of the rotors PMs are fixed to zero. The corresponding
flux density distributions (radial and tangential components) in
the middle of the inner air-gap and in the middle
of the outer air-gap are plotted, respectively, in
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Fig. 9. Magnetic flux line distribution for the studied magnetic gear excited by
both PMs rotors (� � � , � � � and � � � ).

Fig. 10. Flux density distribution in the middle of the inner air-gap �� �
��� ���: (a) radial component and (b) tangential component.

Fig. 10 and Fig. 11. One can observe a very good agreement
between the analytical and finite element predictions for both
radial and tangential components.

B. Torque

Fig. 12 shows the variation of the torque which is exerted on
the inner rotor while keeping the pole-pieces ring and the outer
rotor fixed. The inner rotor rotates with a phase angle varying
from 0 to 90 . The analytical results are in good agreement

Fig. 11. Flux density distribution in the middle of the outer air-gap �� �
	�
 ���: (a) radial component and (b) tangential component.

Fig. 12. Torque exerted on the inner rotor with the pole-pieces ring and the
outer rotor fixed (� � � and � � �).

with those obtained by the FEM. Fig. 12 shows that a maximum
torque of 75 Nm is obtained for a value of around 51 .

Fig. 13(a) and (b) shows the variation of the electromagnetic
torque which is exerted, respectively, on the inner and outer ro-
tors. The pole-pieces ring is fixed while the inner and outer ro-
tors PMs rotate in opposite direction as

(57)

The starting point for the phase angle of the inner rotor PMs is
fixed at that corresponds to a torque value exerted on
the inner rotor of 61 Nm (see Fig. 12). From Fig. 13(a) and (b),
one can observe as expected that the magnetic gear amplifies the
mean torque value by the gear ratio of 3/2.

As shown in Figs. 13, the torque ripples are important in the
studied example. Indeed, the low order harmonics are present in
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Fig. 13. Electromagnetic torque exerted on the inner rotor (a) and on the outer
rotor (b).

the flux density waveform of both air-gaps. This results in a low
filtering of the air-gaps which leads to high pulsating torques.
This effect can obviously be avoided by properly choosing
and for a given gear ratio [1]. Once again, very good agree-
ment is obtained between numerical and analytical results.

V. APPLICATION EXAMPLE 2

Another example is considered in this section. The same ge-
ometrical parameters as in Table I are used except for the pole-
pair numbers which are now , , which
leads to a gear ratio equal to 4.33.

The magnetic flux lines distribution for this configuration are
shown in Fig. 14 (the slot opening is fixed to ).
The radial and tangential flux densities on a circle of the inner
and outer air gaps are given in Fig. 15 and Fig. 16. A good
agreement is noticed between the analytical and the numerical
computations.

Fig. 17 shows the static torque versus position of the inner
rotor. Compared to the configuration given in the first design ex-
ample, the maximum torque is lower. However, the transmitted
torque on the outer rotor is more important for the second ex-
ample. Indeed, the gear ratio is more important for this config-
uration (4.33 instead of 1.5).

Furthermore, the torque ripples are practically inexistent for
example 2 as it can be observed in Fig. 18. This confirms the
influence of the pole-pairs combination on the torque pulsations
[1].

To show the influence of the slot opening, Fig. 19 gives the
variation of the electromagnetic torque exerted on the inner rotor
against the “slot opening to tooth pitch” ratio. One can observe
that the maximum torque is obtained for a ratio of 0.5.

Fig. 14. Magnetic flux line distribution for the magnetic gear excited by both
PMs rotors (� � � , � � � and � � � ).

Fig. 15. Flux density distribution in the middle of the inner air-gap �� �
��� ���: (a) radial component and (b) tangential component.

Again, we notice a close agreement between the analytical
and numerical simulations.

VI. CONCLUSION

In this paper, an exact 2-D analytical method for predicting
the magnetic field distribution in a magnetic gear has been pre-
sented. The Laplace’s and Poisson’s equations in polar coordi-
nates have been solved by the technique of separation of vari-
ables in the slots, air-gap and PMs subdomains. The solutions
have been obtained using boundary and continuity conditions
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Fig. 16. Flux density distribution in the middle of the outer air-gap �� �
��� ���: (a) radial component and (b) tangential component.

Fig. 17. Torque exerted on the inner rotor with the pole-pieces ring and the
outer rotor fixed (� � � and � � �).

between the subdomains. Flux density and torque computations
are in close agreement with these of FE predictions. The pro-
posed analytical model presents lower computational time than
FEM. Hence, it will be used in future work as a tool for design
optimization of a magnetic gear.

APPENDIX

For the determination of the integration coefficients, we have
to calculate integrals of the form

(A.1)

(A.2)

Fig. 18. Electromagnetic torque exerted on the inner rotor (a) and on the outer
rotor (b).

Fig. 19. Maximal torque on the inner rotor versus “slot opening to tooth pitch”
ratio.

(A.3)

(A.4)

The development of (A.1) and (A.2) gives the following func-
tions that will be used in the expressions of the integration co-
efficients

— for

(A.5)

(A.6)



2620 IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 7, JULY 2010

— for

(A.7)

(A.8)

The development of (A.3) and (A.4) gives the following
functions:

(A.9)

(A.10)

• Expressions of the coefficients , , , and for
the inner air-gap subdomain.

The development of (19) and (21) gives

(A.11)

(A.12)

The coefficient and defined in (20) and (22) can be
written as

(A.13)

(A.14)

where Q is the number of rotor slots. The development of (A.13)
and (A.14) gives

(A.15)

(A.16)

• Expressions of the coefficients , , and
for the outer air-gap subdomain.

The development of (35) and (37) gives

(A.17)

(A.18)

The coefficient and defined in (34) and (35) can
be written as

(A.19)

(A.20)

where Q is the number of rotor slots. The development of (A.19)
and (A.20) gives

(A.21)

(A.22)

• Expressions of the coefficients and , for the inner
PMs subdomain (44) and (45)

(A.23)

(A.24)

• Expressions of the coefficients and , for the outer
PMs subdomain (52) and (53)

(A.25)

(A.26)

• Expression of the coefficients , , , and for the
th slot subdomain.
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The treatment of (12) and (13) yields to the following linear
relations:

(A.27)

(A.28)

The treatment of (10) and (11) yields to the following linear
relations:

(A.29)

(A.30)

We have to solve a system of linear equations with the same
number of unknowns. By rewriting the above equations in ma-
trix and vectors form, a numerical solution can be found by
using mathematical software (Matlab or Maple).
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