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Having artificial agents to autonomously produce human-like behaviour is one of the most ambitious ori-
ginal goals of Artificial Intelligence (AI) and remains an open problem nowadays. The imitation game
originally proposed by Turing constitute a very effective method to prove the indistinguishability of an
artificial agent. The behaviour of an agent is said to be indistinguishable from that of a human when
observers (the so-called judges in the Turing test) cannot tell apart humans and non-human agents.
Different environments, testing protocols, scopes and problem domains can be established to develop
limited versions or variants of the original Turing test. In this paper we use a specific version of the Turing
test, based on the international BotPrize competition, built in a First-Person Shooter video game, where
both human players and non-player characters interact in complex virtual environments. Based on our
past experience both in the BotPrize competition and other robotics and computer game AI applications
we have developed three new more advanced controllers for believable agents: two based on a combina-
tion of the CERA–CRANIUM and SOAR cognitive architectures and other based on ADANN, a system for
the automatic evolution and adaptation of artificial neural networks. These two new agents have been
put to the test jointly with CCBot3, the winner of BotPrize 2010 competition (Arrabales et al., 2012),
and have showed a significant improvement in the humanness ratio. Additionally, we have confronted
all these bots to both First-person believability assessment (BotPrize original judging protocol) and
Third-person believability assessment, demonstrating that the active involvement of the judge has a
great impact in the recognition of human-like behaviour.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The design and implementation of believable artificial agents,
truly indistinguishable from humans, remains an open problem.
This challenge has been typically addressed from two interrelated
perspectives within cognitive science. On one hand, psychological
models of human cognition try to explain how human behaviour
is produced. On the other hand, computational models imple-
mented in artificial agents try to replicate to some extent
human-like behaviour. In this work, we focus exclusively in the
sensorimotor behavioural dimension, setting aside any concerns
related to the physical appearance of the artificial agents or their
verbal report capabilities.

The imitation game proposed by Turing is the paradigmatic test
for believability. However, current state of the art in cognitive and
computer sciences has not reached the degree of development in
which this test could be considered truly achievable. Therefore, a
number of different variations of the original Turing test have been
proposed, usually limited Turing tests with relaxed constraints and
more specific problem domains. In this paper, we focus in a specific
limited version of the Turing test designed for virtual characters
and based in a First-Person Shooter (FPS) video game.

From the point of view of the scientific research on human cog-
nition, video game characters are an interesting case of artificial
agents because they are easy to implement using the video game
industry state of the art tools and their virtual environments can
become quite complex, simulating a great variety of contexts and
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ambient conditions. Furthermore, interaction with real world and
with human players is also seamlessly integrated in real-time, as
video games are designed to facilitate the prompt interaction
between human players and non-player characters (NPC).

While old game character implementations (for instance,
Pac-Man ghosts or Space Invaders alien spacecrafts) were based
on really simple pre-programmed and scripted behaviours,
modern AAA video games are developed to simulate real complex
environments and they require engaging, realistic and believable
human-like behaviour for their NPCs. Although scripted behav-
iours might still be acceptable for some specific scenarios, AAA
game consumers expect to find synthetic characters at the same
level of behavioural realism and unpredictability as evoked by
the visual experience of the game.

Generally, human-like behaviour is difficult to both define and
test. In fact, the Turing test paradigm stills apply to this problem
because no better alternatives have been found to characterise
human behaviour. In the realm of computer games, this elusive
characterisation might, in principle, be seen easier to define. For
instance, human players usually consider disappointing the behav-
iour of artificial characters for two main reasons (Nareyek, 2004):
they are either too intelligent, rational and accurate to be human,
or on the contrary, they are too silly. Therefore, the challenge is
to find that blurred medium level that characterises human player
behaviour.

From the point of view of cognitive science, human-level intel-
ligence and human-like behaviour can be considered as produced
by several interrelated psychological processes, ranging from basic
activation processes like primary motivations to complex high
level cognitive processes such as set shifting and imitation learn-
ing. The current knowledge we have about these processes can
be used to inspire the design of artificial cognitive architectures.
In this paper, we present three different approaches to this sort
of inspiration and put them to the test in an adapted version of
the Turing test based in a video game (Hingston, 2009). Addition-
ally, we assess the believability (or ‘‘humanness’’) of these bots
using two different assessing methods: First-person and Third-per-
son judges.

The remainder of this paper is structured as follows. In the next
section we discuss the problems of assessing believability and
describe the testing protocols we have used in this research. In
Section 3 we present the different approaches to the design of
believable agents, followed in Section 4 by a description of the
implementations that we have developed for the believability
experiments. Finally, experimental results are presented in
Section 5 and discussed in Section 7.
2. Testing for believability in video games

Testing for human-like behaviour is not straightforward as dif-
ferent observers usually pay attention to different aspects
(Arrabales et al., 2012). Therefore the task of judging the believabil-
ity of a video game character can be approached from the perspec-
tive of inter-subjective assessment. In this context there is a key
factor to take into account: the possible differences between
First-person and Third-person observation. Togelius et al. (2012)
argue that believability is better assessed from a Third-person per-
spective rather than a First-person perspective, i.e. where the
assessor is not a participant in the game. As described below, the
BotPrize testing protocol forces all human judges to take active
part in the game and perform the assessing task as First-person
observers. One of the main contributions of this work is to compare
the believability results of the same bots both using the First-
person perspective of the BotPrize environment and the
Third-person perspective using recorded video from the very same
testing sessions. In other words, believability for each bot is
assessed using two different methods but using the same game
play data.
2.1. The BotPrize testing protocol

The first method that we have used in order to assess the believ-
ability of our bots is the international BotPrize competition testing
environment (Hingston, 2009). The BotPrize challenge (held yearly
since 2008) was originally conceived as a Turing test for First-
Person video game bots (NPCs). In the classical Turing test accurate
verbal report and conversational skills are the key factors, however
in the domain of FPS bots these aspects are neglected, focusing the
assessment completely in observed non-verbal sensory-motor
skills.

BotPrize environment is based in the video game ‘‘Unreal Tour-
nament 2004’’ by Epic Games, a First-Person Shooter set in a fic-
tional future with futuristic weapons. The objective of the game
(deathmatch mode) is to kill as many opponents as possible with-
out being killed by the other players. Both artificial bots and
human players connect to the game server by means of a local area
network or over the Internet.

Different judging schemes were used in early editions of the
BotPrize competition. In this work, we use the latest scheme
adopted in 2010 (Hingston et al., 2010). In this scheme a judging
gun (the ‘‘Link Gun’’) is included in the game. All players, humans
and NPCs spawn with a Link Gun with infinite ammo. Although the
primary and alternate fire modes of the judging gun look and
sound the same to all observers, they have completely different
meanings and effects: the primary firing mode is meant to issue
a vote for a bot (artificial player or NPC) and the alternate firing
mode is meant to issue a vote for a human player.

If a human player shoots a bot or another human using the pri-
mary firing mode of the Link Gun, then the bot or the other human
player obtains a bot vote. Analogously, If a human player shoots a
bot or another human using the alternate firing mode of the Link
Gun, the other player (bot or human) obtains a human vote. At
the end the humanity percentage will be the human votes divided
by the total number of votes received.

During our tests we allow the players to judge any other players
as many times as desired. Using the judging gun the game play is
transformed from a pure deathmatch game into a hybrid game in
which both judging and killing/surviving aspects have to be taking
into account simultaneously. It is important to remark that all
players (humans and artificial) have access to the judging gun.
Therefore, the designer of a bot also has to take decisions on how
and when the bot will use the Link Gun, as this usage will also
be part of the observed behaviour.

Apart from the judging gun, the rest of the weapons function as
usual. However, the damaged produced by these weapons is
reduced by a 60%, thus giving human players more chances to
observe the other players before being riddled under enemy fire.

In order to obtain a significant amount of judging data and
reduce the bias that a given map would introduce, different testing
sessions in different maps are organised using a centralised game
server that runs the BotPrize mod. Each session lasts for 15 min
and different maps and scenarios are used each time. Anonymity
of players is guaranteed using random player names and random
player skins (clothes and body appearance) that changes from
one session to the next.

The number of human players and bots is balanced, having a
similar number of human judges and artificial characters. All
human players are meant to be judges, but they also compete for
the highest score (that they obtain both from judging and from
killing and not being killed).
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The BotPrize testing protocol is a First-person observation
approach, as judges are not allowed to use the spectator mode of
the game, and they are also subject of attacks and votes (Link
Gun shoots) from other players. As a Third-person test we have
used the method described in the following section.
2.2. The Third-person observer testing protocol

As Third-person believability assessment we use the same game
data recorded by the game video server during the sessions of the
First-person experimentation. However, we generate independent
video footage for each player from a virtual Third-person high-
angle ‘‘chasing camera’’. In other words, for each player in the
game (bots and humans) a Third-person camera keeps a high-angle
view of the action and the corresponding video is stored.

Video recordings obtained using the former method can be later
used for offline observation. In this case, the judging protocol can
be based on non-player human observers who watch the videos
and try to tell apart humans and bots. Specific video sequences
are selected for judging purposes out of the total available video
files. This selection is performed based on the content presented
in the film. Basically, scenes just containing a single character mov-
ing from one place to another are discarded, and we have decided
to focus and select those situations in which two or more charac-
ters are engaged in some kind of interaction.

This testing method is in principle much more demanding, and
humanness ratios are expected to be much lower, as human
observers can pay all their attention to the action in the video,
not needing to worry about being killed or achieving a high score
in the game. While the judge in the First-person approach have
to divide attention in two different tasks (play and judge), the
judge in the Third-person approach only needs to focus on judging.
Similarly, motivational aspects also differ in the two approaches.
3. Different approaches to the design of believable characters

A number of different approaches can be used to address the
problem of believable behaviour generation. We can distinguish
between two main types of approaches in the design of artificial
agent controllers. In one hand, controllers can be built and trained
based on data obtained by logs of human behavioural data. On the
other hand, controllers can be designed based on models of human
cognition. While the former exploit the statistical structure of
actions in typical human behaviour, the latter focus on psycholog-
ical models of the human being. In this work, we take a more cog-
nitive stance, considering the problem of behaviour generation as a
S–O–R (Stimulus–Organism–Response) problem (Ertmer and
Newby, 1993), as we consider that classical behaviourist S–R mod-
els cannot cope with the complexity of believable behaviour. How-
ever, S–R models cannot be neglected in specific problem domain
scenarios, like computer video game characters, as controllers
based in the replay of human trace data have shown good results
(Schrum et al., 2011).

Although replaying human trace data can provide good results,
this approach is not applicable to environments where no previous
human data is available, for instance in new maps of a video game,
or in games where the content is generated real time (Yannakakis
and Togelius, 2011). S–O–R models are neither free of theoretical
and practical problems. In the experimental settings for believabil-
ity tests stimuli and responses can be well defined and their scope
limited. However, the organism component, i.e., the very design of
the agent controller, can be addressed in different ways. The prob-
lem of modelling O in a S–O–R framework can be considered as the
problem of choosing a model of the mind that allows the agent to
show perception and action capabilities. This model could be either
implicit (subsymbolic) or explicit (symbolic). In other words, stim-
uli can be associated to actions using implicit rules (as in artificial
neural networks) or using explicit rules (as in cognitive architec-
tures). In the following subsections we discuss the details of these
approaches and how they can be combined into hybrid models.
Exploring the differences between these approaches is interesting
to understand the role of the symbol grounding problem in the
domain of agent believability (Anderson, 2003).
3.1. The cognitive approach

The cognitive modelling approach is based on the imitation of
the human psychological processes that are considered the cause
of the human observable behaviour. From this point of view, in
order to generate human-like behaviour in a machine, the AI engi-
neer tries to simulate information processing models inspired by
psychological models of human cognition. These models usually
offer plausible explanations about how different aspect of cogni-
tion work in humans and how they interact with each other and
with the environment.

Artificial cognitive systems aim at integrating both activation
processes, like emotion and motivation, and several cognitive pro-
cesses, like attention, memory, learning, and even language pro-
duction and understanding. Ultimately, cognitive systems are
expected to become effective and adaptive control systems for a
situated agent. Although a number of popular models exist in the
field of cognitive psychology for each cognitive process, the real
challenge is to integrate them all into a functional control system
able to develop human-level intelligence and human-like
behaviour.

Classical AI techniques and models are usually based on very
specific and partial explanations of human cognition. For instance,
reinforcement learning algorithms focus on the self-adaptation of a
system to achieve one or more goals (Szepesvri, 2010), however
when we deal with the problem of human-like behaviour we need
to take a more global approach, where the actual definition of the
goals of the system might be the real challenge.

In this work, we describe two bots, codenamed CCBot and
CCBotSOAR, both based on artificial cognitive architectures. As
explained below, these control systems deal with the problem of
integrating and coordinating multiple cognitive processes in order
to generate human-like behaviour.
3.2. The subsymbolic approach

Typically, cognitive systems basically deal with symbolic repre-
sentations of the world. However, at a lower level, taking the inspi-
ration not from the psychological processes but from their
neurobiological substrate, the artificial neural networks (ANN)
approach Schrum et al. (2012) focuses on imitating the adaptive
and pattern recognition capabilities of the nervous system. The
human body uses automatic processes purely based on sensory-
motor skills for prototypical reactions that need to be executed
promptly without losing any time to deeply process the informa-
tion. For example, when we touch something hot and we burn
our hand, the reaction is a quick withdrawal. If this kind of human
behaviour is transported to the game, we can make bots have reac-
tions according to each sensation that comes from the environ-
ment. Although the reaction can be pre-programmed, there are
so many different combination of input information coming to
the individual that taking all them into account and all the possible
combinations is too difficult. ANN can be taught to act when sen-
sory (input) information is received, for that task, first it has to
be defined in detail which sensory information we want to process
(inputs) and which actions the bot can perform (outputs).
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3.3. Hybrid approaches

Humans cope both with symbolic and subsymbolic representa-
tions. While language and conscious thought are the paradigmatic
examples of explicit and symbolic information processing, we can
easily reckon that a great part of human behaviour is also gener-
ated by implicit and automatic processes purely based on sen-
sory-motor skills. Therefore, we think hybrid approaches that can
successfully integrate symbolic and subsymbolic approaches are
a promising research line towards the generation of human-like
behaviour. However, in this deathmatch-mode video game envi-
ronment where judging is based on short-term assessments both
cognitive approaches and pure ANN approaches are expected to
reach similar believability ratios. In more complex Turing test envi-
ronments, where both verbal report and sensory-motor skills are
expected to be integrated, hybrid approached are required in order
to generate believable behaviours.

In the next section we describe the implementations we have
designed and built, indicating how we aim at integrating implicit
and explicit information processing.
4. NPC controller implementations

In this section we describe the three different NPC controllers
that we have designed, built and confronted to each other for
experimentation.
Fig. 1. CERA–CRANIUM Architecture.
4.1. CCBot

The Conscious-Robots bot, also known as CCBot2, has been
designed and implemented based on the cognitive architecture
CERA–CRANIUM, which takes inspiration from several cognitive
theories of cognition and human consciousness (Arrabales et al.,
2012). CCBot2 is essentially a control architecture that implements
some key aspects from the field of Machine Consciousness (MC)
research. Basically, the cognitive approach to MC addresses the
integration of different cognitive processes into an integrated
thread of conscious experience. As described below, in the case
of CCBot2 we focus on the integration of basic cognitive processes
such as attention and short-term memory. Additionally, activation
processes like motivation and emotion are modelled to a lesser
extend in this implementation.

While classical agent control architectures generally focus in
next action selection, CERA–CRANIUM also take decisions about
what should be the content of agents conscious perception.

There exist a number of cognitive architectures that can be
potentially used for the control of video game characters
(Samsonovich, 2010) for a review of main cognitive architectures
used in robotics, intelligent software agents and other related
applications. For instance, SOAR (Laird et al., 1987) and ACT-R
(Anderson, 1993) are well-known cognitive architectures that can
be used in this domain. In fact, we have also used a combination
of CERA–CRANIUM and SOAR in the bot CCBotSOAR (see
Section 4.2).

Pursuing the goal of human-like behaviour is directly related
with the design of cognitive architectures because human higher
cognitive processes themselves are believed to be the origin of
the behavioural patterns that characterise humans. In this work
we propose and demonstrate the use of new trends within the field
of cognitive modelling. In the case of CERA–CRANIUM we use con-
sciousness as the main inspiration towards the design for more
human-like cognitive systems.

In this section we describe the particular way in which CCBot
processes the sensory-motor information and generates sequences
of adaptive human-like actions. We also argue that having a
mechanism to select the conscious contents of the agent’s simu-
lated mind is required in order to successfully generate human-like
behaviour.

Action selection in CERA–CRANIUM is based on a competitive
selection process that establishes, at any given time, a limited set
of percepts considered the conscious content of the agent. The
architecture CERA–CRANIUM consists of two main components:
CERA and CRANIUM. The former is a control architecture of four
layers (see Fig. 1) and the latter is a platform able to run and man-
age a large amount of parallel specialized processors.

CERA’s top layers manage more abstract meaning while lower
layers deal with raw sensory data from the simulated sensors. In
CCBot we have used an implementation with the following layers:
sensory-motor services layer, physical layer, mission-specific layer,
and core layer.

CRANIUM is an implementation of a blackboard system (Nii,
1994). On one hand, CRANIUM is in charge of managing and dis-
patching the execution of specialized processors; on the other
hand, it has a shared working memory space ‘‘the CRANIUM work-
space’’ where the processors can interchange information. Each of
the processors is designed to perform a specific function on certain
types of data.

There are two instances of CRANIUM located in the physical and
mission-specific layers. These two CRANIUM instances simulate
the working-memory mechanism of the bot. Contents in working
memory are iteratively elaborated by specialized processors (see
Fig. 2).

CERA’s sensory-motor services layer is an interface between the
architecture and the sensors and actuators of the bot. This layer
includes the required services to retrieve sensory data readings
and to send motor commands to the actuators. In the case of CCBot
series, this layer is an adaptation of the Pogamut functions to the
CERA–CRANIUM architecture (all the bots described in this paper
use Pogamut 3 library functions (Gemrot et al., 2009) to interface
with Unreal Tournament 2004 video game).

In the physical layer we manage low-level representations of
the sensory data and effectors commands. Typically, this layer
includes processors that create more abstract representations out
of the sensory information and processors that decompose high-
level commands into atomic actions, which can be sent directly
to the sensory-motor services layer.

Mission-specific layer produces and manages elaborated sen-
sory-motor content related to bot’s assigned missions. The infor-
mation from the physical layer is combined into more
meaningful contents related to the goals of the agent and pro-
cessed to execute the corresponding mission behaviours.

The top layer is the so-called core layer, where the mechanisms
associated with the cognitive functions are regulated. The cogni-
tive control modules enclosed in this layer are in charge of regulat-
ing the way the lower layers work, that is, how the processors
interact with each other and what it is the most relevant content
to be processed at any given time. In particular, CCBot2 included
in this layer only an attentional mechanism, that prioritizes those
contents closer to the current active sensory-motor context of the
bot.
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CRANIUM includes a mechanism to select which processors are
assigned more priority for execution. Although in principle all pro-
cessors are treated as equals and all of them are supposed to run
asynchronously and concurrently, limitations on computational
resources have to be taken into account. Consequently, there is
an implicit competition for activation amongst all the processors.
The level of priority attained by a processor does not only affect
its available execution time, but the specific information it might
generate and submit to the workspace. This mechanism can be
seen as a winner-takes-all algorithm, where the most activated sig-
nals are the ones most likely processed. From this point of view,
CRANIUM is a particular implementation of a ‘‘pandemonium’’,
where daemons ‘‘or specialized processors’’ compete with each
other for activation (Dennett, 1993). The activation of each proces-
sor is calculated based on a heuristic estimation of how much it
can contribute to information processing in current active sen-
sory-motor context. The concrete parameters used for this estima-
tion are established by the CERA core layer. As a general rule,
CRANIUM workspace operation is constantly modulated by com-
mands sent from the CERA core layer.

The two workspaces we use (see Fig. 3) are connected with each
other through CERA sensory-motor information flows and share
selected contents generated by the processors, specifically those
with the highest activation level. So the outcome of the workspaces
can be seen as a filter where only the signals that contribute more
to the global solution pass from one layer to the other. The work-
space in the physical layer contains all the processors in charge of
processing all data coming from the sensor services and also all
processors which decompose the actions into basic commands,
atomic actions, for the effectors. The workspace located in the mis-
sion layer is populated with higher-level specialized processors,
which process the most activated information generated in the
physical layer and the signals produced in the workspace itself.
All this processed information generated by the specialized proces-
sors are integrated into data packages called single percepts, com-
plex percepts, and mission percepts, depending on the sort of
information they contain. The single percepts are those which
include atomic information, usually sensory signals, while complex
CERA 
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Service

Sensor 
Service
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Fig. 3. CERA–CRANIUM bottom-up flow.
percepts include more elaborated and multimodal information.
Finally, mission percepts contain information related with goals
(and they are only produced in the mission layer).

There are two flows of information in CERA–CRANIUM. One is
the bottom-up flow, where the information from the sensors, the
percepts, are processed and combined in order to obtain abstract
representations of the environment and the state of the agent.
The bottom-up flow can be referred as to the perception flow.
The top-down information flow is concerned with the generation
of adaptive behaviours oriented to achieve the agent’s goals.

The whole set of specialized processors used in the workspaces
cannot be described here due to space constraints. CCBot imple-
mentation is described in detail in Arrabales et al. (2012).

A relatively simple task like shooting an enemy might involve
the interaction of seven different specialized processors
(Arrabales et al., 2012). For instance, there is a ‘‘Player Novelty
Detector’’ in the physical layer that detects when a new enemy
appears in the field of view and submit that specific information
to the working memory. We have also implemented another pro-
cessor called ‘‘Select Enemy To Shoot’’ that operates in the mission
layer and selects an enemy amongst all players within the field of
view.

4.2. CCBotSOAR

The CCBotSOAR controller is based on the CERA–CRANIUM
architecture which has been improved with two additional mech-
anisms that allow: (i) the self-assessment of performance in the
achievement of targets (‘‘longtime memory’’), (ii) the monitoring
of the effects on behaviour of the emotional state of the bot (‘‘feel-
ings’’), (iii) the adjustment of the pursued objectives to the context
(‘‘situatedness’’) and (iv) the focus level as a measure of the game
progresses. In Vernon et al. (2007) a comparative assessment of the
most relevant cognitive architectures is made from which it can be
noticed that the only characteristic that the Global Workspace
architecture (Baars, 1997) -on which CERA–CRANIUM has its foun-
dations- is missing is adaptation. Driven by this fact, we have inte-
grated a new module in CERA–CRANIUM that enables the addition
of this attribute. By means of a SOAR module (Laird et al., 1987)
integrated in CERA–CRANIUM, the system can deploy a learning
and memory based decision-making mechanism based on the bot’s
experiences that are implemented as ‘‘artificial emotions’’. In the
following paragraphs, we show an explanation of each of the
new features of CCBotSOAR.

4.2.1. Long-time memory
SOAR includes a reinforcement learning system that alters the

selection of operators with a reward system. Through several
cycles, the bot selects and executes actions while calculating in
each of the steps which is the best action according to a reinforce-
ment function. In our implementation, the reinforcement function
is grounded on the idea of emotional ‘‘appraisal’’ (based on the the-
ories of Arnold (1960) and Schachter and Singer (1962)) and its
positive (action attraction) and negative variation (action repulsion).
A more detailed explanation about the emotional model is shown
below. Given the emotional appraisal in certain state, the way in
which the learning operates is following the learning algorithm
SARSA (Laird et al., 1987), which is more appropriate than other
more common ones -such as Q-learning algorithm- for very
dynamic environments like the one in the Unreal Tournament.
The learning mechanism (i.e. selection of operators) is completely
provided by the architecture SOAR.

4.2.2. Emotional state
According to the classical theories (Arnold, 1960 and Schachter

and Singer, 1962), we could assume the emotions to be an entity
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product of two aspects: (1) a generic response of the autonomous
system (‘‘arraisal’’) and (2) the cognitive evolution of this distur-
bance (‘‘appraisal’’). From these ideas, we consider bots as having
an emotional module comprising the following components:

� Internal state: The agent’s internal state will be composed of
motivations connected with the drives (‘‘essential needs’’) of
the bot that will drive it to act in a certain way. In our model
we have implemented:
– Motivations: Aggressiveness (tendency to kill enemies), Ill-

ness (need for improved health) and Inability (need for
ammunition).

– Basic drives: The initial and ideal value of all drives is zero. In
this initial setting we will consider drives as satisfied since
there is not an associated need. We model two types: health
pursuit (high >100, low <40, medium, between both limits)
and ammunition search (high >100, low <50, between both
limits).

– Actions (aiming to satisfy the drive): collect first-aid kit, kill
enemy, collect ammunition, etc.

� External state: It is a binary state (yes/no) recording proximity of
certain elements of the Unreal Tournament environment that
can interact with the bot, more specifically, if the bot finds (i)
first-aid kit, (ii) enemies or (ii) ammunition. The global intensity
of the drive (attribute around which the bot action choice
revolves) is calculated as the sum of two terms: the own inten-
sity of the related drive and the value of the closest related
external stimulus (i.e., if the bot is close to a first-aid kit, the
drive relating to health will be increased). It is conventionally
assumed that while all the drives values are inferior to a given
threshold, the bot will not have a dominating motivation, and it
will be in a state in which all its needs are satisfied.
� Bot’s mood and appraisal function: We define the bot‘s mood as

the ‘‘degree of satisfaction of its needs’’ in such a way that the
mood will reach its maximum when all the bot‘ drives are sat-
isfied. The mood is modelled as a function of (1) the agent’s
drives Di and (2) the pondered importance of each drive (apply-
ing weights wi) with respect to a reference ideal mood (Mid)
which intends to reflect the bot’s personality.
Mood ¼ Mid �
X

wi � Di
As the drive’s values increase/decrease, the agent mood changes. If
the variation in the mood (4Mood) exceeds a threshold, the corre-
sponding ‘‘appraisal’’ will be triggered. The behaviour between two
thresholds (denoted by Lh and Ls) is defined as follows: (1) Positive
appraisal (If 4Mood > Lh) and Negative appraisal (If 4Mood < Ls)
that set the start of certain behaviour.
Fig. 4. CCBotSOAR bottom-up flow.
4.2.3. Situatedness
Frequently, videogamers recognise the so-called ‘‘hot points’’ of

a multiplayer game, i.e., they will know in which areas of the envi-
ronment they are more likely to be killed (e.g., because it is a fre-
quent path for many players, because it does not have many
places where to hide, because there is a specific condition of the
scenery such as quicksand, etc.). As a new modification, a map of
the environment is included in CCBotSoar where the hazard of nav-
igation points (NavPoints in the Unreal Tournament maps) close to
conflict situations is portrayed. Through a classification in five lev-
els of danger (null, low, medium, high, fatal) according to the num-
ber of deaths caused, CCBotSOAR will have available this ‘‘hazard
mental map’’, analogously to the one players as a consequence of
their experience in the game or their terrain knowledge.
4.2.4. Focus level
We have included a new modification in the architecture

related to the lost of focus level accordingly to the results in the
game. This aspect is related to situations when the enemies seem
unbeatable (apathy) or when players think they are (euphoria).
In both situations, the bot’s behaviour is programmed to be more
erratic and less focus on the game. In order to model this effect,
we introduce a weighting factor which is a function of the differ-
ence in targets up to the end of the game. This parameter -a focus
tempering coefficient- moderates the values of the emotions
shown through the game.

4.2.5. Integration of new features developed
In the original behaviour of CERA–CRANIUM, the execution

cycle is approximately four cycles per second and the architecture
would select an action of each type amongst those proposed by the
workspace in the physical layer, which would then be all per-
formed. In the CCBotSOAR architecture, this pattern is modified
in such a way that every time a cycle is executed, a SOAR operator
is assigned to each of the proposed actions, and only one is selected
by means of the rules engine. The global action selected in the fig-
ure results from: (1) SOAR‘s decision system and its reinforcement
learning, and (2) a global factor that gathers elements of emotional
character which have been previously described. In order to be
clearer, Fig. 4 shows how the information flow is modified by the
additional module.

When trying to set the parameters in each of the sections (per-
sistence of long-term memory in the learning process, ideal and
threshold mood values, map of situatedness, focus tempering coef-
ficient, etc.) real values obtained from games with expert players
have been used.

4.3. ADANN bot

When working with ANN, finding an adequate ANN model is a
key issue. Different studies have dealt with the design of an ANN
from two different points of view.

� Topology: number of hidden layers, hidden nodes in each layer,
etc.; and
� Connection weights: values for each connection in an ANN.

In this specific domain the topology is given by the problem.
After a detailed study of the inputs (current health, armour, dam-
age, weapons, etc.) and outputs (movement, rotate, dodge, jump,
crouch, etc.) from the game that should be used, carried us to the
final decision of using the same architecture for each ANN. Related
to the estimation of the connection weights, it is well known that
learning algorithms like backpropagation usually got stuck in a
local minimum Riedmiller et al. (1993). Moreover, it was not pos-
sible to obtain learning patterns from the game to train the ANN
models because of the restrictions derived from working with real
time computer games. Whitley and Hanson (1989) proposed the
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use of evolutionary computation to search for appropriate connec-
tion weights and avoiding the local minimum problem by means of
a global search Rocha et al. (2007). The process of obtaining a can-
didate model will be split into two steps. First, several random ini-
tialized individuals (ANN) of a first generation are obtained. We
make them combat using the input information that comes from
the game and let them apply actions (outputs), while we measure
how good they are (fitness value). This fitness value is measured as
the number of deaths caused by the bot divided by the number of
times it has died. Every six minutes we apply genetic operators
(i.e., gaussian mutation) to obtain a new generation. The whole
process (shown in Fig. 5) is repeated until a maximum number
of generations (i.e., 100) is reached.

At the end of the training process we will have a good NPC
which will be introduced into the game (test) with other human
and non-human players as it will be explained below in detail.

5. Experimental results

In the following we summarise the results we have obtained
confronting our bot controllers to both the First-person and
Third-person believability assessments.

5.1. Structure of the ‘‘user study’’

User studies cover a wide range of activities designed to obtain
information on the interactions between users and specific prod-
ucts. We next summarise the basic principles of the user study that
we have used to measure the differences confronting our bot’s con-
trollers to both the First-person and Third-person believability
assessments. User tests involve analysing carefully the users
behaviour as they interact with a product or system in some
stages:

Objective:
Our tests try to find out which of the developed controllers is‘‘more
human’’.

Methodology:
The methods and techniques we use in order to obtain this infor-
mation were first-person (participants votes) and Third-person
(votes on the recorded videos) interactions.

Design of the tasks and settings:
Details of the First-person and Third-person tasks are provided
below:
Fig. 5. ADANN schema.
� First-person approach: (i) 20 matches (4 maps of 15 min
each) during 5 sessions (5 different days) and (ii) 6 judges
(three human players and three NPCs). Different human
judges participated in different matches.

� Third-person approach: (i) 10 video clips (1 min each) where
all the bots and human players are included (they are not all
present in all the videos, a weighted selection has been con-
sidered), (ii) the 10 video clips were purposefully selected to
comply with the experiment requirements (i.e., must include
actions with two or more players interacting) from a total of
35 h of recorded video, and (iii) 12 subjects were selected for
the evaluation who had no prior knowledge in videogames
and had not participated in the First-person experiment.

A vote is considered positive when they guess correctly and nega-
tive when they fail or do not know what to answer.

Test environment:
The BotPrize competition environment http://human-machine.
unizar.es/ and recorded videos of the games.

Results and Analysis:
The differences in believability assessment will be measured using
a First-person approach and Third-person approach. These mea-
surements will be expressed in terms of percentage of success vs.
votes.

We follow by explaining in detail the stages of the experiment.

5.2. First-person assessment

As described above, we used the BotPrize competition environ-
ment and testing protocol as First-person observer method for
assessing believability. We ran a total of 20 matches conducted
during 5 sessions of 1 h each. Matches last for 15 min and 4 differ-
ent maps have been used per session, counterbalancing level maps
across the sessions. Therefore, human players (judges) were asked
to play (and judge) for 1 h (4 maps of 15 min each) in 5 different
days, with a period of one week between consecutive sessions.
The whole testing procedure took place during 5 weeks and the
selected human players were always the same. There were the
same number of NPC and human players, three human and three
NPC.

Human judges agreed voluntarily to participate in this study.
They neither had previous experience in the design or program-
ming of a NPC, nor any expertise in Artificial Intelligence. However,
they were selected because they have intermediate experience
with FPS video games (none of the judges was a novice or advanced
player).

As it can be observed in Table 1, after the five judging sessions
(session 1 to 5) of the three different approaches presented in this
paper against human players, ADANN system outperforms the
other approaches followed very near by CCBotSOAR.

In order to have another measure of believability we have also
used a Third-person observer method based on recorded data from
the BotPrize sessions described in the former section.

The 20 matches from the First-person assessment experiment
were recorded in the central video game server. These deathmatch
Table 1
First-person humanity assessment results (in percentage).

Bots S1 S2 S3 S4 S5 Average

CCBot 19.59 19.84 16.81 20.14 28.70 21.02
ADANN 17.34 37.04 31.73 30.26 47.23 32.72
CCBotSOAR 21.18 27.06 35.80 38.82 40.61 32.69



Fig. 6. Snapshot of the Knowxel mobile application used un the Third-person
judging process.
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game recordings were used to generate 35 h of video that included
a Third-person view of each player (20 matches, 15 min per match,
3 bots and 4 human players per match).

A set of 10 video clips with a duration of 1 min each were
selected as a representative sample of the whole visual data col-
lected from the video game server. These clips were extracted
based on the following criteria: they include a sequence of actions
in which two or more players are interacting (most of video foot-
age time corresponds to periods in which the player observed is
just moving from one place in the map to another, or not interact-
ing with any other player), all bots and human players are included
in the clips, and clips correspond to different maps or different
parts of the maps.

This representative sample of 10 video clips were made avail-
able to a set of human judges using a mobile application called
Knowxel.1 Knowxel is a multipurpose crowdsourcing platform ori-
ented to mobile devices (see Amato et al., 2013, 2014). This platform
was specifically developed for mobile devices in order to exploit the
strengths of such devices; namely: (i) massivity, (ii) ubiquity and (iii)
embedded sensors. The combined use of mobile platforms and the
crowdsourcing model allows to tackle from the simplest to the most
complex tasks. Knowxel allows to conduct a video-based poll exper-
iment where the users vote a the end of each video clip. Possible
votes were: (a) I think the player is a human, (b) I think the player
is a bot, (c) I cannot tell whether it is a human or a bot. Fig. 6 shows
an example of the interface of the Android app that we have used in
order to present the videos to the Third-person human judges.

In this Third-person assessment process we asked for voluntary
participation to university students with no former experience in
video game NPC development or Artificial Intelligence. However,
all of them had previous experience playing FPS video games,
and of course none of them participated in the First-person assess-
ment experiment.

Table 2 represents the difference between the believability
assessment using the First-person approach (BotPrize) and Third-
person approach (video observation).

Comparing the results of the two different assessment methods
we can see that the Third-person assessment is much more
demanding. Using the Third-person assessment average human-
ness ratio for humans and bots are 68,67 and 22,83 respectively
(see Fig. 7) (see next section for a detailed discussion).
Table 2
Comparison of First-person and Third-person results.

Bots 3rd Person 1st Person Average

CCBot 17.39 21.02 19.20
6. Discussion

As we have shown, three different approaches were designed
and compared using two different measurements methods. We
can observe that although ANN approach obtains better results in
First-person experimentation, in general, cognitive approach
CCBotSOAR is the best option. In Fig. 8 we compare the results of
the two assessment methods for the three bots. Consistently the
First-person method offers a higher humanness ratio for all bots.
Applying the Student’s T-test for the paired samples corresponding
to the two assessment methods we obtain a P = 0,038 < 0,05, thus
confirming that we cannot consider the First-person and Third-
person methods as equivalent.

While the bot solely based in the CERA–CRANIUM architecture
lacks any learning or long-term adaptation mechanism, the two
bots with better results implement different mechanism of adapta-
tion. We believe the reason why these two bots have similar per-
formance in terms of believability lies in the learning/adaptation
mechanisms.

CCBotSOAR implements a reinforcement learning mechanism
as described in Section 4.2. (see ‘‘long time memory’’ subsection),
1 www.knowxel.com
which makes it more adaptable to the dynamics of the interaction
with other players. Similarly, ADANN also adapts well to the
dynamics of the interaction with other players, however, in this
case the mechanism used is not an explicit learning algorithm,
but a genetic algorithm optimisation. It can be argued that the fit-
ness function in the genetic algorithm in ADANNBot is equivalent
in terms of adaptation results to the reinforcement learning algo-
rithm implemented in CCBotSOAR.

The believability assessment methods applied in this work are
indeed fully behavioural tests, as they are inspired by the Turing
test. Pure behavioural approaches are pragmatic as they do not
take into account the internal states or mechanisms of the agents.
In other words, Stimulus–Response (S–R) models are the refer-
ences to understand and evaluate the subjects being tested. When
we confront artificial agents to a full Turing test this should not be
a problem, as we assume human-like internal processes exists
(even though we do not study them directly) and the resulting
behaviour is the result of the interaction between the stimuli and
these internal psychological processes. However, when we are
dealing with limited versions of the Turing test, where some
behaviours might well be pre-programmed, we might want to also
inspect the inner workings of the agents. By inspecting and analys-
ing the inner processes of the agents we are adopting a Stimulus–
Organism–Response (S–O–R) stance. Additionally, by ‘‘looking
inside’’ the agents we are making sure no deceiving strategies have
been implemented in order to fool the judges.

Human judges are usually influenced by the personification
effect (Arrabales et al., 2012) and they tend to assign psychological
states, personality and intentions to simple behaviours that may be
just simple pre-programmed routines. Although this issue is not a
main concern in the present work, as we exclusively focus on the
perceived humanness, more comprehensive S–O–R oriented tests
might be developed based on Machine Consciousness testing
ADANN 25.00 32.72 28.86
CCBotSOAR 26.09 32.69 29.39

http://www.knowxel.com


Fig. 7. Third person humanity assessment results (in percentage).

Fig. 8. First Person versus Third Person humanity assessment results (in
percentage).

J.M. Llargues Asensio et al. / Expert Systems with Applications 41 (2014) 7281–7290 7289
approaches like the ConsScale cognitive development measure
(Arrabales et al., 2012).
7. Conclusions

As introduced in this paper, the automatic generation of
human-like behaviour is an enormous challenge, even when
addressed in the constrained domain of a video game without ver-
bal interaction. We have explored the application of different con-
trol architectures and also new ways to address the problem of
assessment. The results obtained clearly indicate that the Third-
person approach to assessment is much more demanding in this
context. Therefore, we plan to perform more extensive testing
using this approach. As explained in the paper, when we design
cognitive architectures we model different cognitive processes
and try to integrate them effectively so the resulting synergies
translate into a more human-like behaviour. We believe that the
results obtained in the experimentation are consistent with the
implementation and integration of the cognitive processes we have
focused on: attention, memory and the activation processes like
emotion.

Although good results have been obtained, for example, by
ADANN, still the training and testing process are still separated.
Due to this, although a good NPC is obtained during the training
process, once this bot is taken from the training sandbox to the
testing one, it will not learn more while it is playing. Then, a pos-
sible future work would be to make use of non-supervised learning
process and ANN so there would be only one sandbox, being it used
for training and testing at the same time. On the other hand, every
time the bot is taken to a new game, it would be able to keep on
learning from new players.

In order to achieve better humanness results we plan to inte-
grate higher level cognitive processes, mainly learning mecha-
nisms such as reinforcement learning. In fact, as we have seen,
CCBotSOAR clearly surpasses CCBot thanks to this feature.
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