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Abstract Extreme learning machine (ELM) as a new

learning algorithm has been proposed for single-hidden

layer feed-forward neural networks, ELM can overcome

many drawbacks in the traditional gradient-based learning

algorithm such as local minimal, improper learning rate,

and low learning speed by randomly selecting input

weights and hidden layer bias. However, ELM suffers from

instability and over-fitting, especially on large datasets. In

this paper, a dynamic ensemble extreme learning machine

based on sample entropy is proposed, which can alleviate

to some extent the problems of instability and over-fitting,

and increase the prediction accuracy. The experimental

results show that the proposed approach is robust and

efficient.

Keywords Extreme learning machine � Dynamic

ensemble � AdaBoost � Bagging � Sample entropy

1 Introduction

Extreme learning machine (ELM) was recently proposed

by Huang et al. (2006, 2011) for single-hidden layer

feed-forward neural networks (SLFNNs). In ELM the

input weights and the hidden layer biases can be chosen

randomly, the output weights can be analytically deter-

mined with Moore–Penrose generalized inverse H* of the

hidden layer output matrix H. Unlike other gradient des-

cent-based learning algorithms [such as back-propagation

algorithm (BP)] for feed-forward networks, the ELM does

not require iterative techniques to adjust input weights

and hidden layer biases during training process, so it

becomes a simple learning method with extremely fast

learning speed (Feng et al. 2009; Liang et al. 2006;

Huang et al. 2010; Wu et al. 2011; Wang et al. 2011).

Although the ELM has simplified the learning approach

for SLFNNs avoiding iterative and descent steps, the

following issues still remain in ELM, especially dealing

with large datasets.

1. Predictive instability caused by randomly selecting the

input weights and the hidden layer biases;

2. Over-fitting problem caused by the complexity of

distribution of input instances and much more hidden

nodes on large datasets;

3. The order of matrix H is N 9 M, where N is the

number of samples, and M is the number of hidden

layer nodes. For large datasets, the order of H is very

high. Large memory is required to calculate the

Moore–Penrose generalized inverse H*.

Ensemble learning (EL) or combining classifiers (CC)

could solve the problems mentioned above (Hansen and

Salamon 1990; Zhou et al. 2002; Kittler et al. 1998; Rog-

ova 1994; Pal and Pal 2001; Zhang et al. 2011; Biggio et al.

2010). EL is a learning paradigm where a collection of a

finite number of base classifiers such as neural network or

decision tree is trained for the same task (Kittler et al.

1998; Pal and Pal 2001), and can significantly improve the
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generalization ability of classification system (Hansen and

Salamon 1990; Kittler et al. 1998).

In general, an ensemble of classifiers is generated in two

steps:

1. Training a number of the base classifiers;

2. Combining the predictions of classifiers.

The most prevailing approaches of training base clas-

sifiers are Bagging and AdaBoost (Breiman 1996; Freund

and Schapire 1997). Bagging generates diverse classifiers

by randomly selecting subsets of samples to train classi-

fiers (Kuncheva and Whitaker 2003; Brown et al. 2005;

Mao et al. 2011). Intuitively, we would expect classifiers

trained by different sample subsets to exhibit different

behaviors. AdaBoost (Freund and Schapire 1997; Wu

et al. 2008) also uses parts of samples to train classifiers,

but not randomly, it maintains a set of weights over the

original training set and adjusts these weights after each

classifier is learned. The adjustments increase the weight

of examples that are misclassified and decrease the weight

of examples that are correctly classified. Liu and Wang

(2010) proposed an approach of ensemble-based extreme

learning machine (EN-ELM) to enhance the generalization

ability (Wang and Dong 2009; Wang et al. 2008, 2011).

EN-ELM uses the cross validation scheme to create an

ensemble of ELM classifiers for classification. EN-ELM

uses static ensemble strategy (Woods et al. 1997) to

classify a test sample, all base classifiers are considered

equally important. Actually, for different test samples the

base classifiers have different degrees of confidence due to

the diversity, and then their importance is different. Wang

and Li (2010) proposed the dynamic AdaBoost ensemble

extreme learning machine, which regards the extreme

learning machine as weak learning machine, dynamic

AdaBoost ensemble algorithm is used to integrate the

outputs of weak learning machines, and makes use of

fuzzy activation function as activation function of extreme

learning machine. In this paper, different from the works

in Liu and Wang (2010) and Wang and Li (2010), we

propose a method of dynamic ensemble (Ko et al. 2008)

ELM classifier based on sample entropy, which can alle-

viate the problems of instability and over-fitting, and

increase the prediction accuracy.

In our method, we use AdaBoost to generate N training

subsets from training set, and then train one ELM classifier

for each of training subsets, hence N classifiers can be

obtained in all; finally, based on the strategy of dynamic

ensemble with sample entropy, an unseen instance can be

classified.

The remaining of this paper is organized as follows.

Section 2 will briefly present the ELM algorithm and the

AdaBoost algorithm. In Sect. 3, we described the proposed

method of dynamic ensemble ELM classifiers based on

sample entropy. Performance evaluation is presented in

Sect. 4. Section 5 gives conclusion.

2 Brief reviews of extreme learning machine

and AdaBoost algorithm

In this section, we briefly review the extreme learning

machine and the AdaBoost algorithm.

2.1 Extreme learning machine

Extreme learning machine proposed by Huang et al. (2006)

is an efficient and practical learning mechanism for the

SLFNNs, see Fig. 1. According to Theorem 2.1 of refer-

ence (Huang et al. 2006), the input weights and biases do

not need to be adjusted. It is possible to analytically

determine the output weights by finding the least-square

solution. The neural network is obtained after very few

steps with very low computational cost. Since Huang’s

seminal work (Huang et al. 2006), many researchers have

paid their attention to ELM recently, such as Wang et al.

(2011) studied the effectiveness of extreme learning

machine. José et al. (2011) studied the regularized extreme

learning machine for regression problems. Mohammed

et al. (2011) applied ELM to face recognition. Chacko et al.

(2011) successfully apply ELM to handwritten character

recognition field. Emilio et al. proposed a Bayesian

approach to ELM, which allows the introduction of a priori

knowledge, and presents high generalization capabilities

(Emilio et al. 2011). As pointed out in Emilio et al. (2011),

ELM represents a suitable approach to obtain models from

databases, especially from huge databases within a rea-

sonable time. An excellent survey papers on ELM can be

found in Huang et al. (2011).

Given a training dataset, L ¼ ðxi; tiÞjxi 2 Rn; ti 2 Rm;f
i ¼ 1; 2; . . .; Ng, where xi ¼ xi1; xi2; . . .; xinð ÞT and ti ¼
ti1; ti2; . . .; timð ÞT . A SLFNN with M hidden nodes is for-

mulated as

( )xti1

( )xti2

( )xtim

1ix

2ix

inx

w

bx t

Fig. 1 The SLFNN trained with ELM algorithm
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XM

j¼1

bjg wj � xi þ b
j

� �
¼ ti i ¼ 1; 2; . . .; Nð Þ ð1Þ

where wj ¼ wj1;wj2; . . .; wjn

� �T
is the weight vector

connecting the jth hidden node with the input nodes. bj ¼
bj1; bj2. . .; bjm

� �T
is the weight vector connecting the jth

hidden node with the output nodes, and bj is the threshold

of the jth hidden node. Equation (1) can be written in a

more compact format as

Hb ¼ T ð2Þ

where

H ¼
gðw1 � x1 þ b1Þ � � � gðwM � x1 þ bMÞ

..

.
� � � ..

.

gðw1 � xN þ b1Þ � � � gðwM � xN þ bMÞ

2

64

3

75

N�M

ð3Þ

b ¼
bT

1

..

.

bT
M

2
64

3
75

M�m

and T ¼
tT
1

..

.

tT
N

2
64

3
75

N�m

ð4Þ

H is the hidden layer output matrix of the network, where

the jth column of H is the jth hidden node’s output vector

with respect to inputs xi, and the ith row of H is the output

vector of the hidden layer with respect to input xi. If the

number of hidden nodes is equal to the number of distinct

training samples, the matrix H is square, and SLFNNs can

approximate these training samples with zero error. But

generally, the number of hidden nodes is much less than

the number of training samples. Therefore, H is a non-

square matrix and we can not expect an exact solution of

the system (2). Fortunately, it has been proved in Huang

et al. (2006) and Huang and Chen (2007) that SLFNNs

with random hidden nodes have the universal

approximation capability; the hidden nodes could be

randomly generated. According to the definition of the

Moore–penrose generalized inverse, the smallest norm

least-squares solution of (2) is given in Huang et al. (2006):

b̂ ¼ H�T ð5Þ

where H� is the Moore–penrose generalized inverse of

matrix H (Serre 2002). In the following, the ELM algo-

rithm (Huang et al. 2006) is introduced.

ELM algorithm

Input: A training dataset xi; tið Þjxi 2 Rn; ti 2 Rm; i ¼f
1; 2; . . .; Ng an activation function g, and the number of

hidden nodes M

Output: A weights matrix

1. Randomly assign input weights wj and biases bj, j = 1,

…, M.

2. Calculate the hidden layer output matrix H;

3. Calculate output weights matrix b̂ ¼ H�T .

In this paper, we will focus on the classification prob-

lem. Let Y ¼ x1; x2; . . .; xKf g be a set of class labels of

samples, and let L ¼ xi; yið Þjxi 2 Rn; yi 2 Y; i ¼ 1;f
2; . . .; Ng, we will use the ELM algorithm with little

change as the base classifiers, see Fig. 2, i.e. the output

nodes with sigmoid active function. The output of the

SLFNN becomes

pi xð Þ ¼ g
XM

j¼1

bjg wj � xi þ bj

� �
 !

ð6Þ

where pi xð Þ ¼ pi1 xð Þ; pi2 xð Þ; . . .; piK xð Þð Þ; pik xð Þ denotes

the probability (or membership degree) of sample

x belongs to class k, 1� pik xð Þ� 1; k ¼ 1; 2; . . .; K.

2.2 The AdaBoost algorithm

The boosting algorithm was originally proposed by Scha-

pire (1990), AdaBoost is an improved version of boosting

algorithm (Freund and Schapire 1997). In this paper, we

use AdaBoost algorithm to generate the subsets of sample

set used for training the base ELM classifiers. For conve-

nience, we list this algorithm in the following.

AdaBoost algorithm

Input: L ¼ xi; yið Þjxi 2 Rn; yi 2 Y ; i ¼ 1; 2; . . .; Nf g; J,

the number of iterations, BaseLearner, a base learning

algorithm

Output: The final hypothesis

Steps of the algorithm

Step 1: Initialize distribution of weights on all samples

xi; 1� i�Nð Þ; D1 xið Þ ¼ 1
N

( )xpi1

( )xpi2

( )xpiK

1ix

2ix

inx

w

bx p

Fig. 2 The SLFNN trained with ELM with little change in output

layer
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Step 2: For j = 1 to J

Step 3: Train BaseLearner with Dj Cj ¼ BaseLearner

L;Dj

� �

Step 4: Calculate the error of Cj; ej ¼
P

Cj xið Þ6¼yi
Dj xið Þ

Step 5: If ej [ 1
2
, then set J = j - 1 and abort loop

Step 6: Set bj ¼
ej

1�ej

Step 7: Update weights,

Djþ1 xið Þ ¼
Dj xið Þ � bj if Cj xið Þ 6¼ yi

� �

Dj xið Þ otherwise

�

Step 8: Normalize weights, Djþ1 xið Þ ¼ Djþ1 xið ÞPN

i¼1
Djþ1 xið Þ

Step 9: Output C0 xð Þ ¼ arg maxy2Y

P
j:Cj xð Þ¼y log 1

bj

3 Dynamic ensembles extreme learning machine based

on sample entropy

In this section, we will present our method of dynamic

ensemble ELM classifier based on sample entropy. We first

give the basic concepts used in this paper.

Definition 1 Given L ¼ xi; yið Þjxi 2 Rn; yi 2 Y; i ¼ 1;f
2; . . .; Ng; Y ¼ x1;x2; . . .; xKf g be a set of class labels of

samples, the entropy of L is defined as follows.

E Lð Þ ¼ �
XK

i¼1

pi log2 pi ð7Þ

where pi is the proportion of examples in

xi i ¼ 1; 2; . . .; Kð Þ.

Definition 2 Given L ¼ xi; yið Þjxi 2 Rn; yi 2 Y ; i ¼ 1;f
2; . . .; Ng; Y ¼ x1;x2; . . .; xKf g be a set of class labels of

samples, the entropy of sample xi is defined as follows.

Entropy xið Þ ¼ �
XK

k¼1

pk xið Þ log2pk xið Þ ð8Þ

where pk xið Þ is the probability (or the membership degree)

of instance x belongs to class k k ¼ 1; 2; . . .; Kð Þ.

Definition 3 Given L ¼ xi; yið Þjxi 2 Rn; yi 2 Y; i ¼ 1; 2;f
. . .; Ng; Y ¼ x1;x2; . . .; xKf g be a set of class labels

of samples, C ¼ C1;C2; . . .; CJf g be J classifiers. The

entropy of sample xi with respect to classifier Cj j ¼ð
1; 2; . . .; JÞ is defined as follows.

Entropyj xið Þ ¼ �
XK

k¼1

pjk xið Þ log2pjk xið Þ ð9Þ

Definition 4 Given L ¼ xi; yið Þjxi 2 Rn; yi 2 Y; if ¼
1; 2; . . .; Ng; Y ¼ x1;x2; . . .; xKf g be a set of class

labels of samples, C ¼ C1;C2; . . .; CJf g be J classifiers.

The normalized entropy of sample xi with respect to

classifier Cj j ¼ 1; 2; . . .; Jð Þ is defined as follows.

NEntropyj xið Þ ¼
Entropyj xið ÞPJ
j¼1 Entropyj xið Þ

ð10Þ

Definition 5 Given a test sample x, C ¼ C1;C2; . . .; CJf g
be J basic classifiers. The threshold of entropy of sample x

is defined as follows.

c ¼ 1

2
arg max

1� j� J
Entropyj xð Þ
� �

� arg min
1� j� J

Entropyj xð Þ
� �� �

ð11Þ

Let C ¼ C1;C2; . . .; CJf g be the trained-ELM

classifiers, D ¼ D1;D2; . . .; DJð Þ be the distribution of

weights on samples of L. The proposed algorithm is

described as follows.

DE-ELM algorithm

Train a base learner ELMj using Lj, the output of the

ELMj is a probability distribution (pj1(x), pj2(x), …, pjK(x))

where pjk(x) (1 B j B J; 1 B k B K) denotes the mem-

bership degree of instance x belong to class k based on

classifier ELMj;
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4 Experimental results and analysis

The effectiveness of our proposed method is demonstrated

through numerical experiments in the environment of

Matlab 7.0 on a Pentium 4 PC. Totally our experiments

select 8 UCI datasets which are Statlog (Shuttle) (DB1),

letter recognition (DB2), pen-based recognition of hand-

written digits (DB3), mushroom (DB4), landsat satellite

image (DB5), optical recognition of handwritten digits

(DB6), waveform (DB7), and car evaluation (DB8). The

basic information of the eight datasets is listed in Table 1.

From Table 1, we can see that among the eight UCI

datasets there are three large datasets, four medium data-

sets, and one small dataset. In our experiments, 50%

samples chosen randomly are used as training set, and the

other 50% samples are used for testing set. We set

k ¼ 0:60, and J = 10, i.e. there are ten sub-classifiers

(SLFNNs trained with ELM) are generated with AdaBoost

algorithm. For each sub-classifier, the number of hidden

nodes is determined using the method proposed in Feng

et al. (2009). The performance of proposed method DE-

ELM is compared with original ELM in three aspects,

which are the influence of construction of sub-classifiers on

ensemble system, average testing accuracy, stability.

Experiment 1 The influence of construction of ELM

base classifiers (i.e. SLFNNs trained with ELM) on

ensemble system.

There are two commonly used methods (i.e. Bagging

and AdaBoost) to generate the base classifiers with diver-

sity. We compare the two ensemble methods of con-

structing ELM-base classifier with dataset landsat satellite

image (DB5). In the experiment, we increase the number of

hidden nodes of SLFNNs from 20 to 100, the experimental

results shown in Fig. 3 illustrate the relationship between

the testing accuracy and the number of hidden nodes. In

addition, in this experiment, we also experiment on dataset

landsat satellite image (DB5) with ELM. In the view of

testing accuracy, the performance of ELM is superior to

Bagging when the number of hidden nodes is greater than

73. For other datasets, the experimental results are similar.

Based on the experimental results, we conclude that in the

framework of ensemble SLFNNs trained with ELM Ada-

Boost is superior to Bagging, so in our method we prefer to

select AdaBoost rather than Bagging.

Experiment 2 Comparison with original ELM in average

testing accuracy

In this experiment, we compare DE-ELM with the ori-

ginal ELM in average testing accuracy on eight datasets.

Table 1 The basic information of the eight datasets used in our

experiments

Name Number of

instances

Number of

attributes

Number of

classes

DB1 58,000 9 7

DB2 20,000 16 26

DB3 10,992 16 10

DB4 8,124 22 2

DB5 6,435 36 7

DB6 5,620 64 10

DB7 5,000 21 3

DB8 1,728 6 4

DE-ELM based on sample entropy 1497
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Table 2 shows the comparison results. For each dataset, we

run the experiment 10 times. The experimental results are

the average of the ten outputs. It can be seen from Table 2

that the average testing accuracies of DE-ELM are con-

sistently higher than the ones of ELM no matter how small

or big is the dataset. For example, for large dataset Statlog

(shuttle) (DB1), we run the experiments ten times using

original ELM and DE-ELM, the ten experimental results

are shown in Fig. 4. Similarly, for medium dataset landsat

satellite image (DB5), and optical recognition of hand-

written digits (DB6), the ten experimental results are

shown in Figs. 5 and 6, respectively. For small dataset car

evaluation (DB8), the ten experimental results are shown in

Fig. 7.

Experiment 3 Comparison with original ELM in

stability

In this experiment, we compare DE-ELM with the ori-

ginal ELM in stability on three datasets, which are large

dataset letter recognition (DB2), medium dataset landsat

satellite image (DB5), and small dataset car evaluation

(DB8), respectively. For each dataset, we run the experi-

ments ten times using original ELM and DE-ELM, the

Fig. 3 The influence of construction of ELM sub-classifiers on

ensemble system

Table 2 Comparison between DE-ELM and ELM

DBs Average testing accuracy Number of

hidden nodes
ELM DE-ELM

DB1 0.9298 0.9561 50

DB2 0.4880 0.5528 100

DB3 0.4303 0.4432 20

DB4 0.9139 0.9809 10

DB5 0.8260 0.8813 100

DB6 0.8320 0.8920 20

DB7 0.8452 0.8760 100

DB8 0.8391 0.8808 30

Fig. 4 The experimental results in average testing accuracy on large

dataset Statlog (Shuttle) (DB1)

Fig. 5 The experimental results in average testing accuracy on

medium dataset landsat satellite image (DB5)

Fig. 6 The experimental results in average testing accuracy on

medium dataset optical recognition of handwritten digits (DB6)

1498 J. Zhai et al.
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number of hidden nodes are set to be 30, 40, 50, and 60.

Figures 8 and 9 are the experimental results on large

dataset letter recognition (DB2) with original ELM and

DE-ELM. The curves that the testing accuracies change

with different number nodes are given in six figures (from

Figs. 8 to 13). From the fluctuating curves, we have

observed following

1. In all datasets, the testing accuracies of the two methods

become higher and higher with the hidden nodes

increasing from 30 to 60, and the accuracies of our

method are always higher than that of original ELM.

2. In large dataset, our proposed method (Fig. 9) has more

stable than original ELM (Fig. 8) when the number of

hidden nodes is 50 or 60, which indicates that our

proposed method has more stability than the original

ELM with improvement of the testing accuracy.

3. In medium size of dataset, our proposed method has

more stable than the original ELM in all four

conditions (see Figs. 10, 11). For small dataset, it is

same as medium size of dataset (see Figs. 12, 13).

So, we conclude that our proposed method has more

stablity than original ELM

In order to further verify the effectiveness of our pro-

posed method, we statistically analyze the experimental

results using Wilcoxon test and paired t test (Demsar

2006). First, for each dataset, we run original ELM and our

method 10, 30, and 50 times and then obtain six statistics,

which are denoted with Xi 1� i� 3ð Þ and X0i 1� i� 3ð Þ,

Fig. 7 The experimental results in average testing accuracy on small

dataset car evaluation dataset

Fig. 8 The experimental results in stability on large dataset letter

recognition (DB2) with original ELM

Fig. 9 The experimental results in stability on large dataset letter

recognition (DB2) with DE-ELM

Fig. 10 The experimental results in stability on medium dataset

landsat satellite image (DB5) with original ELM

Fig. 11 The experimental results in stability on medium dataset

landsat satellite image (DB5) with DE-ELM

DE-ELM based on sample entropy 1499
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respectively, where Xi 1� i� 3ð Þ is corresponding to ori-

ginal ELM, X0i 1� i� 3ð Þ is corresponding to our proposed

method. X1 and X01 are both 10-dimensional vectors, X2 and

X02 are both 30-dimensional vectors, X3 and X03 are both

50-dimensional vectors. Next, we apply Wilcoxon test to

the experimental results by computing the values of

MATLAB function ranksum X1;X
0
1

� �
; ranksum X2;X

0
2

� �
;

and ranksum X3; X03
� �

. Similarly, applying paired t test to

the experimental results by computing the values of

MATLAB function t test2 X1; X01
� �

; t test2 X2; X02
� �

and

t test2 X3; X03
� �

. The p values and h values of Wilcoxon test

are listed in Table 3. The p values of paired t test are listed

in Table 4.

The small p values cast doubt on the validity of the null

hypothesis. Statistically, the p values of Wilcoxon test and

paired t test (shown in Tables 3, 4) verified the effective-

ness of our proposed method, and the h values of Wilcoxon

test further certify that our method outperform original

ELM.

Moreover, we statistically analyze the stability of our

method with coefficient of variation (CV) of test accuracy.

In our experiments, the numbers of hidden nodes are 30,

40, 50, and 60, respectively. The coefficient of variation is

calculated with the following formula.

CV ¼ r
l

where r ¼ ð 1
n�1

PN
i¼1 ðxi � lÞ2Þ

1
2 and l ¼ 1

n

Pn
i¼1 xi. The

results are listed in Table 5, where CV value 1 and CV

value 2 are corresponding to our method and original ELM.

The smaller CV value is the better stability the method has.

The results listed in Table 5 certify that out method is

superior to original ELM in stability to some extent.

5 Conclusions

In this paper, based on sample entropy the DE-ELM is

proposed, which use AdaBoost to train N SLFNNs trained

with ELM as N base classifiers and classify a new sample

by strategy of dynamic ensemble. The DE-ELM not only

can overcome many shortages in the traditional gradient-

based learning algorithm such as local minimal, improper

learning rate, and low learning speed but also can alleviate

the problems of instability and over-fitting in original ELN,

and increase the prediction accuracy. The experimental

results show that the proposed approach is robust and

efficient.

Fig. 12 The experimental results in stability on small dataset car

evaluation (DB8) with original ELM

Fig. 13 The experimental results in stability on small dataset car

evaluation (DB8) with original ELM

Table 3 p values and h values

of Wilcoxon test
DB# 10 times 30 times 50 times

p value 1 h values 1 p value 2 h values 2 p value 3 h values 3

DB1 3.30E-04 1 1.10E-03 1 3.67E-06 1

DB2 8.00E-05 1 3.01E-11 1 2.11E-06 1

DB3 7.20E-03 1 1.12E-01 0 3.55E-02 1

DB4 1.30E-03 1 1.25E-07 1 5.83E-13 1

DB5 1.83E-04 1 2.97E-11 1 6.92E-18 1

DB6 1.82E-04 1 1.01E-10 1 7.01E-18 1

DB7 1.79E-04 1 2.96E-11 1 3.11E-17 1

DB8 1.70E-03 1 3.70E-10 1 1.23E-15 1
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