
Experimenting with Multipath TCP

Sébastien Barré, Olivier Bonaventure
Université catholique de Louvain

B-1348 Louvain-la-Neuve
firstname.lastname@uclouvain.be

Costin Raiciu, Mark Handley
University College of London

{c.raiciu,m.handley}@cs.ucl.ac.uk

ABSTRACT

It is becoming the norm for small mobile devices to have access

to multiple technologies for connecting to the Internet. This gives

researchers an increasing interest for solutions allowing to use effi-

ciently several communication mediums. We propose a demonstra-

tion of our Multipath TCP implementation for Linux, that allows

spreading a single TCP flow across multiple Internet paths, with-

out requiring any change to applications. The demonstration will

involve a real Internet communication with MPTCP, with simulta-

neous use of several paths, as well as a demonstration of MPTCP

failover capability.

Categories and Subject Descriptors

C.2.2 [Computer Systems Organization]: Computer-communication

networks—Networks Protocols

General Terms

Experimentation

1. INTRODUCTION
Today, most smartphones support at least 3G and 802.11, and

so do tablet PCs like Apple’s iPad. This has increased interest in

using several access mediums in the same connection, so that it

becomes possible to transparently change from one medium to an-

other in case of failure. Further, using several paths simultaneously

can improve end-to-end throughput.

The transport layer is the best place to implement multipath func-

tionality because of the high amount of information it collects about

each of the paths (delay/bandwidth estimation), and its knowledge

of the application byte stream. The network may know path proper-

ties, but simply scattering packets of a single transport connection

over multiple physical paths will typically reorder many packets,

confusing the transport protocol and leading to very poor through-

put. The apps could implement multipath, but such changes are not

easy to get right. If we simply switched from TCP to multipath

TCP while maintaing the reliable byte stream semantics, unmodi-

fied apps could benefit immediately.

The desire to use multiple paths at the transport layer is not new,

and has been already the subject of several research papers, some

based on TCP [7, 4, 9, 10], others based on modifications to the

SCTP protocol [5, 1, 6]. However, to the best of our knowledge,

none of these research efforts have produced a real-world imple-

mentation despite the importance of such an implementation for

Copyright is held by the author/owner(s).
SIGCOMM’10, August 30–September 3, 2010, New Delhi, India.
ACM 978-1-4503-0201-2/10/08.

verifying how a multipath transport solution behaves in real usage

scenarios. In particular the current research literature lacks evalu-

ations of simultaneous use of real communications mediums, like

3G and Wifi. It also does not consider the impact of using an in-

kernel implementation of the multipath protocol, compared to what

is obtained through simulations.

There is currently fresh interest in making multipath TCP real,

as the IETF has created a multipath working group.

We believe an in-kernel implementation of multipath can serve

many purposes, chief among which is experimentation in the Inter-

net. It helps show the benefits and drawbacks of using multipath

TCP for real applications; it offers a better understanding of how

multipath TCP competes with TCP in the Internet; it can highlight

errors and gaps in protocol design; it helps test deployability and

find unexpected middlebox behaviour. Finally it allows running

realistic experiments (e.g. with link speeds of 1 Gbps and up).

Our contribution is to fill this gap by providing a functional im-

plementation of MPTCP, the IETF multipath solution [3]1. We

propose to concretely demonstrate the potential of that solution by

showing a media transfer (e.g. video streaming) over multipath

TCP between a remote server and a Nokia N900 device.

In section 2, we outline the design of the multipath protocol we

are implementing. Then we briefly describe the architecture of our

implementation, and conclude with a description of the ongoing

work.

2. MPTCP PROTOCOL
The single most important choice when designing a multipath

protocol is the choice of the sequence numbering. In [7, 9, 5],

one single sequence number space is used, with the consequence

of huge reordering of sequence numbers at the receiver. Since re-

ordering is normally mistaken as a packet drop indication, specific

algorithms are needed to distinguish between normal multipath re-

ordering and failures. Further, a single sequence number space

makes it very difficult to tell which path(s) delivered a segment

if the segment was sent redundantly (on more than one path).

To fix these problems, the MPTCP proposal uses a dual sequence

number space, where each subflow has its own sequence space that

identifies bytes within a subflow as if it were running alone. There

is also a data (or connection level) sequence space [3], which allows

reordering at the aggregate connection level. Each segment carries

both subflow and data sequence numbers.

Another important design choice is the way to deal with shared

bottlenecks. There is a fairness problem if several multipath flows

share a bottleneck. [10] solves that problem by trying to avoid

establishing several subflows across the same bottleneck, thanks to

1
http://inl.info.ucl.ac.be/mptcp

443



Figure 1: MPTCP architecture

an external tool. Other approaches simply ignore the problem. In

MPTCP, congestion control is coupled across paths, so as to ensure

fairness without needing to detect shared bottlenecks [8]. MPTCP

performs flow control in aggregate (not on individual suflows).

A main goal of the MPTCP approach to multipath transport is

that it must be deployable in the current Internet, without changing

routers, middleboxes, or even NATs. For that reason each subflow

looks to the network as a normal TCP flow, with the only differ-

ence that it carries new TCP options. Options are used to declare

MPTCP support, exchange alternate addresses and other control

messages. The overall MPTCP architecture and design choices are

detailed in [2], and the protocol is specified in [3].

MPTCP works on the current Internet, as we will show in our

demonstration. Only middleboxes that strip unknown options pre-

vent the MPTCP negotiation; in this case MPTCP falls back to TCP.

3. MPTCP IMPLEMENTATION
The architecture of our implementation is depicted in figure 1.

All legacy TCP applications directly benefit from the added mul-

tipath capability. When a new TCP flow is started multipath TCP

adds the multipath capable option to the SYN packet. If the end-

point replies with a SYN/ACK containing the multipath capable

option, this connection is multipath from now on.

Connection-specific information is held in a new structure at the

connection-level, called meta-socket. This structure keeps multi-

path identifiers for the connection, the list of subflows associated to

this connection, and connection-level reordering queues.

Initially there is a single TCP socket opened (the master socket),

corresponding to the first subflow in the connection. When addi-

tional subflows are opened, new socket structures are created and

associated to the meta-socket. The master socket is a special socket

as it is the only connection to the application. Application writes

to this socket are redirected to the meta-socket which segments

the bytestream and decides which subflow should send each seg-

ment. Application reads from this socket are serviced from the

meta-socket’s receive buffer.

Data arriving on the subflows is serviced by the master and slave

sockets (checking for in-order, in window sequence numbers, etc.),

and passed to the meta-socket once it is in order at subflow level.

Here the data is reordered according to the connection sequence

number, which is carried in each TCP segment as an option. Re-

transmissions are driven only by the subflow sequence number;

hence MPTCP avoids problems due to connection level reordering

of packets.

Additional subflows are only opened after the initial handshake

succeeds. The stack checks to see if it has multiple addresses that

have routes to the destination; if so it will try to open subflows us-

ing currently unused addresses (in the picture this could be address

A2). To get around NATs, addresses are also signalled explicitly to

the remote end using TCP options.

Subflows are created with the usual three way handshake with

SYN packets carrying a “Join” option and a connection identifier.

SYN demultiplexing is done using this connection identifier, and

not the destination port as in regular TCP.

The implementation allows opening subflows between different

address pairs, or between the same address pairs but different ports.

The latter can be used to leverage existing in-network multipath

solutions such as Equal Cost Multipath (ECMP), allowing them to

load balance at subflow granularity. Finally, our implementation

is modular and it is easy to add support for new path management

techniques that may become available.

Conclusion.
While simulations are useful to evaluate large scale behaviours

of a protocol, a fundamental change like MPTCP requires careful

evaluations of its behaviour in real world situations. An implemen-

tation can shed light on protocol behaviours and corner cases that

cannot be observed with simulators. While several previous works

have produced code that take benefit of multiple paths, this imple-

mentation is, to the best of our knowledge, the first one that works

across the Internet (as opposed to local networks), and that allows

unmodified applications to benefit. Our current work uses this im-

plementation to analyse the behaviour of MPTCP in a number of

real-life scenarios, including datacenters, mobile communications

and multi-homed networks.

Acknowledgements.
The research results presented herein have received support from

the Trilogy (http://www.trilogy-project.eu) research project (ICT-

216372), partially funded by the European Community under its

Seventh Framework Programme. The views expressed here are

those of the author(s) only. The European Commission is not liable

for any use that may be made of the information in this document.

4. REFERENCES
[1] A. A. E. Al, T. N. Saadawi, and M. J. Lee. LS-SCTP: a bandwidth aggregation

technique for stream control transmission protocol. Computer

Communications, 27(10):1012–1024, 2004.

[2] A. Ford, C. Raiciu, S. Barré, and J. Iyengar. Architectural Guidelines for

Multipath TCP Development. Internet draft,

draft-ietf-mptcp-architecture-00.txt, Work in progress, February 2010.

[3] A. Ford, C. Raiciu, and M. Handley. TCP Extensions for Multipath Operation

with Multiple Addresses. Internet draft,

draft-ford-mptcp-multiaddressed-03.txt, Work in progress, March 2010.

[4] H.-Y. Hsieh and R. Sivakumar. pTCP: An End-to-End Transport Layer

Protocol for Striped Connections. In ICNP, pages 24–33. IEEE Computer

Society, 2002.

[5] J. R. Iyengar, P. D. Amer, and R. R. Stewart. Concurrent multipath transfer

using SCTP multihoming over independent end-to-end paths. IEEE/ACM

Trans. Netw., 14(5):951–964, 2006.

[6] J. Liao, J. Wang, and X. Zhu. cmpSCTP: An extension of SCTP to support

concurrent multi-path transfer. Communications, 2008.

[7] L. Magalhaes and R. Kravets. Transport Level Mechanisms for Bandwidth

Aggregation on Mobile Hosts. In ICNP, pages 165–171. IEEE Computer

Society, 2001.

[8] C. Raiciu and D. Wischik. Coupled Multipath-Aware Congestion Control.

Internet draft, draft-raiciu-mptcp-congestion-01.txt, Work in progress, March

2010.

[9] K. Rojviboonchai, T. Osuga, and H. Aida. R-M/TCP: Protocol for Reliable

Multi-Path Transport over the Internet. In AINA, pages 801–806. IEEE

Computer Society, 2005.

[10] M. Zhang, J. Lai, and A. Krishnamurthy. A transport layer approach for

improving end-to-end performance and robustness using redundant paths. In

USENIX 2004, pages 99–112, 2004.

444


