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a b s t r a c t 

Event detection is an important task required in various applications of wireless sensor network (WSN). 

The existing approaches consider the spatial and temporal correlation of sensor data separately or not 

in a cohesive way. In this paper an event detection scheme with WSN is introduced, which adopts a 

hierarchical structure to efficiently integrate the spatial and temporal correlation of sensor data. Here a 

fusion algorithm considering both the weight of the sensors and spatial information is applied to Markov 

random field to properly fuse the decisions of the neighboring nodes. Markov chain is also adopted to 

effectively extract the temporal correlation after the spatial correlation is decided. The simulation results 

demonstrate that the proposed scheme can effectively increase the detection accuracy and reduce com- 

munication cost, in comparison with the existing schemes. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Consisting of spatially distributed sensor nodes, wireless sensor

network (WSN) can remotely monitor the target area for temper-

ature, sound, pressure, etc. Here the nodes cooperatively transfer

the sensed data to the main server through the wireless network

[1] . The number of sensor nodes in a WSN varies from a few to

several hundreds or even thousands, each of which is connected to

one or more sensor nodes. Each sensor node typically comprises

several components: radio transceiver with internal antenna; elec-

tronic circuit and microcontroller interfacing with the sensors; en-

ergy source which is usually a battery or an embedded form of

energy harvesting. The topology of WSN can vary from a simple

star network to a complicated multi-hop wireless mesh network.

If a complicated topology is employed, the data propagation path

needs to be carefully decided considering several factors. 

Event detection is one of the key applications of WSN. An event

is a significant occurrence which is irregular compared to the nor-

mal patterns of the behavior of the target system. It could be a nat-

ural phenomenon or produced as a specific outcome in response

to user interaction. In real world abnormal event occurs in rare oc-

casions, and it is usually very harmful. Such events thus need in-

stantaneous detection and reaction. For efficient event detection,

WSN is deployed over a region which needs to be monitored.
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ig. 1 shows the clustered organization of WSN employed for event

etection. When an event occurs, each node in its vicinity sends its

eading (the sensed data) to the cluster-head which performs data

ggregation and forwards the data to the base station. For instance,

ensor nodes could be deployed in the forest to detect fire by sens-

ng the temperature or smoke of the fire. Early detection of fire is

rucial to minimize the damage, and WSN allows quick identifica-

ion of the starting position and the path of the spread of the fire. 

In reality, the sensors near the place where an event occurs are

ikely to have similar readings since they are usually deployed with

igh density, which represents the spatial relationship. The sen-

or readings also have temporal relationship as the data are col-

ected over a period of time [2] . Both the spatial relationship and

emporal relationship are very critical for accurate event detection

ince the spatio-temporal correlation between the sensor readings

an effectively deal with the inherent uncertainty of sensor data.

ig. 2 shows an example of spatial and temporal correlation of

ensor readings, where three sensor nodes are used to monitor

he temperature of a region during a period of time. Observe from

he figure that the spatial correlation of the temperature value of

ode_ A and node_ B is quite high since they are close to each other.

n addition, the temperatures collected by node_ A show high tem-

oral correlation during the time period from 9 to 19 as the val-

es are stable in this period. The same observation is made with

ode_ B . Most existing works on event detection with WSN make

n inference based on only either spatial or temporal relation-

hip. Note, however, that the changes in sensor readings caused by

n event usually exhibit strong spatio-temporal correlation, while

http://dx.doi.org/10.1016/j.comnet.2016.07.004
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Fig. 1. Event detection with WSN. 

Fig. 2. An example of sensor reading. 
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fficiently integrating the spatial and temporal relationship is still

 big challenge. 

A learning-based approach [3,4] was applied for the task of

vent detection with WSN, where Markov random field (MRF) was

mployed. In addition, various event detection approaches have

een proposed either based on the threshold [5–8] with or with-

ut fuzzy logic and pattern matching technique [9–14] . In the ex-

sting approaches, however, the spatial and temporal correlation of

ensor data are not treated in a cohesive way. As a result, the ef-

ectiveness and accuracy of event detection cannot be maximized.

n this paper, thus, we introduce a novel event detection scheme

dopting a hierarchical structure to efficiently integrate the spatial

nd temporal correlation. Moreover, a new fusion algorithm is em-

loyed with the MRF to properly fuse the readings of neighboring

ensors considering the weight of the sensors and spatial informa-

ion. Markov chain is also adopted to effectively extract the tem-

oral correlation after the spatial correlation is decided. The sim-

lation results demonstrate that the proposed scheme effectively

ncreases the detection accuracy and reduces the communication

ost in comparison with the existing schemes. The novelty of the

roposed scheme is with the new approach of MRF applied to one

op neighbor nodes and mitigation of the influence of malfunc-

ioning sensor and noise in the temporal process. 

The rest of the paper is organized as follows. Section 2 de-

cribes the related work. The hierarchical structure effectively

ntegrating the spatial and temporal model and the fusion op-

ration employed in the proposed scheme are presented in
ection 3 . Section 4 presents the results of the performance eval-

ation of the proposed scheme including the comparison with the

xisting schemes, followed by the conclusion in Section 5 . 

. Related work 

Event detection is one of the most important tasks of WSN.

herefore, a variety of techniques have been proposed for effi-

ient event detection which can be classified as threshold-based,

attern-based, and learning-based. 

Threshold-based approach. This is the most basic one where the

vents are detected based on the preset threshold value. In gen-

ral, the threshold value is defined by domain expert, and the oc-

urrence of an event is notified when the sensed value is above

r below the threshold value. Simplicity is the main advantage of

his approach since raw data can be directly handled inside the

ensor node. A data-centric service middleware (DSWare) [5] uses

 database-like abstraction to tailor the sensor network for event

etection. It uses SQL-like statements for the registration and can-

ellation of an event. DSWare defines a compound event specifi-

ation, which consists of maximum detection range, time interval,

nd confidence function. The confidence function describes how

he different measurements collected by the sensor nodes in the

onitored area are weighted and how the composition of the data

s achieved. If the final value exceeds a certain threshold, a signif-

cant event is assumed to happen and then reported to the base

tation. The SQL-like implementation provides the flexibility and

xpressiveness in covering a large number of possible event speci-

cations. 

Fuzzy logic has also been used to improve the decision-making

rocess with WSN, reducing resource consumption and increasing

erformance [6–8] . Note that using only crisp values cannot ade-

uately handle imprecise sensor readings occurring often. Differ-

nt from the event description based on precise value, Kapitanova

t al. [8] proposed a variant event detection approach using fuzzy

alues instead of crisp values, which significantly improves the ac-

uracy of event detection. This approach is useful in modeling the

ate of incorrect reading of the sensors and aggregating local deci-

ions of multiple sensors measuring the same type of data. How-

ver, it requires a considerable amount of memory for storing the

ules, which is not feasible with resource constrained WSN. 

Pattern-based approach. In most event detection schemes with

SN raw data are transmitted to an external entity for evaluation,

ausing either high communication overhead or low event detec-

ion accuracy, especially for complex events. The event detection

pproach based on pattern matching has been explored recently

o address this issue [9–14] . [11] integrated the pattern-based
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a  
approach with an in-network sensor query processing framework.

Different from the existing threshold-based event detection ap-

proach, it abstracts the events into patterns in sensory data and

converts the problem of event detection into a pattern matching

problem. [12] used contour map as a mathematical tool to model

the patterns of events. The approach includes in-network contour

mapping and server-side contour map matching. 

Wittenburg et al. [13] presented a system for distributed event

detection, which particularly suits the specific characteristics of

WSN. It employs distributed sampling of sensor nodes to maximize

the accuracy of the event detection process. Different algorithms

for distributing, classifying, and fusing “fingerprints” of raw data

sampled by each sensor were also proposed and quantitatively

evaluated in a small-scale experiment. In addition, the approach

in [14] handles event and outlier detection together which are

usually dealt separately in the traditional schemes. By considering

the events as some sorts of outliers, the approach investigates the

applicability and suitability of the techniques of pattern-matching

for outlier detection. 

Learning-based approach . Various machine learning techniques

have also been used to decide whether an event has occurred or

not. [15] proposed an ensemble distributed machine learning ap-

proach for event detection in two phases, base phase and meta

phase. It detects events in a distributed manner using Support

Vector Machine (SVM) classification with polynomial kernel. Since

sensor nodes are deployed usually in high density, the nearby sen-

sors are likely to have similar readings. Recently, MRF has been

adopted to model the spatial relationship of neighboring nodes

and perform inference about the events. In [16] a learning-based

approach was proposed which uses MRF to model spatial context

and stochastic interaction among observable quantities. The effec-

tiveness of the approach was demonstrated with various practi-

cal problems, including the analysis and interpretation of medi-

cal images and remotely sensed images. The approach, however,

relies on some assumptions on the observations in order to en-

sure computational tractability. In contrast, the conditional random

field (CRF), one notable variant of MRF, relaxes the assumptions

by directly modeling the conditional distribution over the hidden

states given the observations. [17] presented a unified framework

to capture the spatio-temporal dependencies among the observa-

tions and events using CRF. 

Most existing schemes on event detection employ the infer-

ence in the spatial or temporal dimension separately. However,

the changes in sensor readings caused by an event usually exhibit

strong spatio-temporal correlation [18] . The spatial and temporal

relationship are critical factors of accurate event detection. An ef-

fective event detection approach is proposed in this paper, which

models the spatio-temporal behavior of dynamic field in an inte-

grated way. 

3. The proposed scheme 

The hierarchical WSN employed in the proposed scheme is

composed of spatial layer, temporal layer, and sink layer as shown

in Fig. 3 . In the spatial layer, a fusion function is employed to ag-

gregate the readings of neighboring sensor nodes. The hierarchical

structure allows dual layer summaries of sensor readings such as

spatial summarization and temporal summarization. 

3.1. Hierarchical spatio-temporal model 

Fig. 3 illustrates the overall structure of spatio-temporal model

employed in the proposed scheme. With such hierarchical struc-

ture, it is effective to integrate the relationship of spatial and tem-

poral attribute. 
.1.1. Spatial layer 

A synchronized WSN consisting of n sensor nodes is assumed

o be able to observe the condition of the environment at nearly

qual time duration. It is denoted by a set, S = { s 1 , s 2 ,…, s n }, where

 i is i -th sensor. The spatial layer is the lowest layer, which is re-

ponsible for spatial event detection using the sensors based on

RF. It models the spatial relationship and performs inference on

he event in the spatial dimension. In this layer each node com-

unicates with its immediate neighboring nodes. The radius of the

ommunication range of each node is defined as ρ . If an event is

etected by a node, marked as S _ node , a fusion function is used to

use the readings of all the neighboring nodes, and the information

n the event is passed to the temporal layer. 

.1.2. Temporal layer 

The temporal layer is the middle layer between the spatial

nd sink layer, which is in charge of the processing of temporal

vent detection in time dimension by employing Markov chain.

arkov chain is used to model the temporal relationship of the

ensor readings and predict the values of sensor reading. Here only

he S _ nodes identified from the spatial layer are included in the

arkov chain process. The node in the temporal layer is marked

s ST _ node if it detects a temporal event and reports it to the sink

ode. Other nodes in this layer do not send any data. In summary ,

he proposed spatio-temporal detection process involves two steps:

Step 1: MRF is adopted to model the relationship of the sensor

eadings and perform inference on the event in the spatial layer. 

Step 2: Markov chain is used to model the relationship of the

eadings of S _ nodes and perform inference based on the temporal

vidences in the temporal layer. 

.2. Operation of event detection 

There are two main operations handled in the proposed

cheme: the spatial summarization and temporal summarization.

he sensor readings are modeled by MRF in the spatial layer, and

 spatial event is decided considering the readings of neighbor-

ood nodes. It is then reported to the nodes of temporal layer by

 _ nodes . Markov chain is applied to the S _ nodes reporting spatial

vent for the inference of temporal event. 

.2.1. Spatial summarization 

Let S denote a finite set of sensor nodes in the field, which

eans that S includes all nodes in the monitored area. For node_ i

 i ∈ S ), a finite set of nodes are assumed to lie inside the area of

he communication range ( ρ) of node_ i . The nodes in S are related

o each other via a neighborhood system, N , which is defined as 

 = { N i | ∀ i ∈ S } (1)

here N i is the set of neighbor nodes of node_ i . There are two

ain properties for the neighbor relationship: a node is not a

eighbor to itself, that is, i �∈ N i ; and the neighbor relationship is

utual, that is, i ∈ N j ( ⇔ ) j ∈ N i . 

For a randomly deployed S , the set of neighbors of node_ i is

efined as the set of nodes within a radius of ρ from node_ i . 

 i = { j ∈ S| Dist ( node _ j, node _ i ) ≤ ρ, j � = i } (2)

here Dist is the Euclidean distance between any two nodes. The

ocal conditional distribution can then be given as follows: 

 

(
X i = x i | X j = x j , j � = i, j ∈ S 

)
= P 

(
X i = x i | X j = x j , j ∈ N i 

)
(3)

here X i is random variable denoting node_ i and x i is a particular

ealization of X i . Thereby, the random vector X = { X i } i ∈ S is a random

eld on the monitored area covered by S . 

The sensor observation of the field S, O , is defined as Eq. (4) ,

nd the noise model added to the observation of sensor_ i, o , is
i 



X. Chen et al. / Computer Networks 108 (2016) 108–119 111 

Fig. 3. The proposed hierarchical model. 
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iven by Eq. (5) . Note that the sensor observation O is the realiza-

ion of the aforementioned random field X , and o i is actually the

ealization of the random variable X i , that is x i . O and o i are used

or the rest of the paper if not causing ambiguity. 

 = { o i } i ∈ S (4) 

 i = ψ i + G i , f or all i ∈ S (5)

here ψ 

i 
is the signal strength at sensor node_ i and G i is its mea-

ured noise, assumed to be a Gaussian random variable. 

The reading of nearby sensor nodes may present high spatial

orrelation due to the proximity. Each sensor node is designed to

istinguish the false hypothesis, F , corresponding to no event and

he alternative hypothesis, T , corresponding to event occurrence at

ts location. The a priori probability of both the hypotheses are de-

oted by P F and P T , respectively. Let H be the random field of the

ypothesis for the field S , and H = { h i } i ∈ S be a hypothesis configu-

ation of H , where h i ∈ { F,T }. 

The hypothesis configuration H is fixed during the binary de-

ision making process since the considered events of the sensor

eld S are assumed to be static. Each node in S observes its own

ypothesis phenomenon which could be different from those ob-

erved by other nodes. Let φ = { φi } i ∈ S represent the decisions of all

ensor nodes in S , where the decision made by node_ i is denoted

y Eq. (6) . The binary decisions are exchanged between neighbor-

ng nodes, which are assumed to be independent. 

i = 

{
1 , i f F is re jected 

0 , otherwise 
(6) 

The spatial layer is to determine the most likely events of

he sensor field, i.e. the hypothesis configuration with the highest

robability. By Bayes’ theorem, the probability of a hypothesis con-

guration given the observation can be obtained by Eq. (7) , where

 ( O ) is a constant observed by the local decisions, P ( O | H ) is the

ikelihood probability, and P ( H ) is the prior probability. 

 ( H| O ) = 

P ( O | H ) P ( H ) 

P ( O ) 
∝ P ( O | H ) P ( H ) (7)

As stated previously, observation O is assumed to be a Gaus-

ian random variable, with noise added. Assume o is conditionally
i 
ndependent of all H i , i.e., 

 ( o i | H ) = 

∏ 

P ( o i | h i ) (8) 

nd also assume that o i is conditionally independent of each other,

.e., 

 ( O | H ) = 

∏ 

P ( o i | H ) (9) 

Therefore, P ( O | H ) can be obtained by Eq. (10) , where P( O i | H i ) is

epresented by a Gaussian distribution with mean, μH , calculated

y Eq. (11) , and variance, δ2 
H , calculated by Eq. (12) . 

 ( O | H ) = 

∏ 

P ( o i | h i ) 

= 

∏ 1 √ 

2 πσ 2 
h i 

exp 

( 

−
(
o i − μh i 

)2 

2 σ 2 
h i 

) 

(10) 

h i 
= 

1 ∣∣S h i ∣∣
∑ 

S h i 

o i (11) 

2 
h i 

= 

1 ∣∣S h i ∣∣
∑ 

S h i 

(
o i − μh i 

)2 
(12) 

The MRF model is used to decide P ( H ) by processing the spatial

ummarization. An MRF is a conditional probability distribution

sed for analyzing the spatial dependencies of physical phenom-

na [19] . The MRF model is based on a set of cliques . A clique C is

efined as a subset of nodes of S , where each node is a neighbor of

ll other nodes in C . For the first-order neighborhood system, C can

e of a single node clique which is denoted as C 1 , pair-node clique

enoted as C 2 , and triple-node clique denoted as C 3 , etc. Then the

ollection of all the cliques for the k th-order neighborhood system

n S is 

 = C 1 ∪ C 2 ∪ C 3 ∪ · · · ∪ C k (13)

Fig. 4 shows an example of a randomly deployed WSN and the

eighborhood of a node and its cliques. The neighborhood area of

ode_ i is marked by shaded circle. 

The spatial summarization layer uses the MRF model to identify

he hypothesis configuration H given the sensor observations O . For

n MRF, the probability of the field configuration H can be given by
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Fig. 4. An example of neighborhood system and its cliques in WSN. 
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a Gibbs distribution [20] shown as Eq. (14) . 

P ( H = h ) = Z −1 e −E ( h ) (14)

where the partition function Z , defined as Eq. (15) , is a normaliza-

tion constant involving the summation over all possible configura-

tions of H , and E ( h ) is the energy function on h defined as Eq. (16) .

The energy associated with different orders of cliques are exam-

ined and summed up to yield the energy function. 

Z = 

∑ 

h ∈ H 
e −E ( h ) (15)

E ( h ) = 

∑ 

{ i } ∈ C 
αh i 

−
∑ 

{ i } ∈ C 
βζ ( h i ) −

∑ 

{ i, j } ∈ C 
δξ

(
h j , h i 

)
(16)

The parameter αh is a cost parameter for hypothesis h ∈ { F,T },

which is usually set to zero for every node if the a priori informa-

tion about the relative size of the various hypotheses is unknown

[3] . Here αh is set to 0. β is a coefficient determining the granu-

larity of energy for single-node cliques and δ can be viewed as the

spatial coefficient in the field S. β and δ are set to 1 in the evalua-

tion. Data constraint ζ ( h i ) shown as Eq. (17) determines the influ-

ence to the energy function exerted by the singleton clique, while

smoothness constraint ξ ( h j ,h i ) obtained by Eq. (18) represents the

influence of the neighbor nodes. ζ ( h i ) reflects the observation of

each node and ξ ( h j ,h i ) reflects the spatial consistency (the nodes

close to each other are most likely have similar events). 

ζ ( h i ) = log ( P ( o i | h i ) ) (17)

ξ
(
h j , h i 

)
= 

{−1 , if h j = h i 

1 , if h j � = h i 

(18)

Due to the randomness of sensor noise and channel jitter, the

binary decisions received by a node from its neighbors could vary,

whereby the energy model of Eq. (16) taking all neighbors into ac-

count is not appropriate. The proposed scheme thus uses a prob-

ability function to measure the reliability of the decision of the

neighbors of each node. The energy function used in the proposed

scheme is then defined as Eq. (19) , where e ji is the reliability of

the decision made by neighbor node_ j of node_ i , evolved from the

fusion rule in [21] . 

E ( h ) = 

∑ 

{ i } ∈ C 
αh i 

−
∑ 

{ i } ∈ C 
βζ ( h i ) −

∑ 

{ i, j } ∈ C 
δe ji ξ

(
h j , h i 

)
(19)

The fusion function considers both the spatial readings and bi-

nary decisions of the neighbor nodes residing inside the area of

communication range of a node. The fusion function involves a
wo-step process. Firstly, each sensor individually performs a like-

ihood ratio test without communicating with each other. In the

econd step, each sensor performs the fusion process iteratively.

hrough the fusion rule, node_ i produces an updated decision, e ji ,

onsidering its observation, o i , and the received binary decisions

 φji } j ∈ Ns , where φji is the binary decision received by node_ i from

eighbor node_ j . The fusion rule can be expressed by Eq. (20) . 

 ji = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 , 
P ( h i = T | o i , { φ ji } j∈ N i ) 
P ( h i = F | o i , { φ ji } j∈ N i ) 

≥ 1 

0 , 
P ( h i = T | o i , { φ ji } j∈ N i ) 
P ( h i = F | o i , { φ ji } j∈ N i ) 

< 1 

(20)

By Bayes’ theorem, Eq. (20) can be rewritten in the form of a

ikelihood ratio test as Eq. (21) . 

 ji = 

⎧ ⎨ 

⎩ 

1 , �
(

o i , 
{
φ ji 

}
j∈ N i 

)
≥ η

0 , �
(

o i , 
{
φ ji 

}
j∈ N i 

)
< η

(21)

(
o i , 

{
φ ji 

}
j∈ N i 

)
= 

P 

(
o i , 

{
φ ji 

}
j∈ N i 

| h i = T 

)
P 

(
o i , 

{
φ ji 

}
j∈ N i 

| h i = F 

) (22)

here η = P F / P T . The fusion rule, e ji , is used to successively update

he decision of the sensor node by taking the new observation and

inary decisions received from the neighboring nodes into account.

t determines how the neighbors influence the energy of the field

hown in Eq. (19) . 

.2.2. Example of spatial summarization 

An example of sensor field with four nodes is used to explain

he proposed scheme of spatial summarization. As shown in Fig.

 , assume the observations of {80, 77, 57, 67} in the nodes with

he threshold of 70. Therefore, the hypothesis phenomena of the

eld are { T, T, F, F }. The spatial layer is to determine the hypoth-

sis configuration H with the highest probability given the sensor

bservations O . The following steps show the procedure for getting

he probability P ( H | O ), assuming H = {1, 0, 0, 1}. 

First, P ( O | H ) is Obtained. 

 = { 1 , 0 , 0 , 1 } ; O = { 80 , 77 , 57 , 67 } 
H=0 = 

1 

| S H=0 | 
∑ 

i ∈ S H=0 

o i = 

1 

2 

( 77 + 57 ) = 67 ;μH=1 = 73 . 5 

2 
H=0 = 

1 

| S H=0 | 
∑ 

i ∈ S H=0 

( o i − μH=0 ) 
2 = 100 ;σ 2 

H=1 = 42 . 25 
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Fig. 5. A case study of spatial summarization. 
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Table 1 

P ( H | O ) for all hypothesis configurations. 

h 1 h 2 h 3 h 4 P ( O | H ) E ( H ) P ( H ) P ( H | O ) 

0 0 0 0 2 .80489E −5 0 .552084 0 .087704 2 .46002E −6 

0 0 0 1 1 .06651E −4 5 .972036 0 .0 0 0388 4 .14125E −8 

0 0 1 0 6 .61610E −4 5 .179398 0 .0 0 0857 5 .67555E −7 

0 0 1 1 3 .33005E −3 6 .477549 0 .0 0 0234 7 .79969E −7 

0 1 0 0 1 .35852E −4 1 .866933 0 .023550 3 .19932E −6 

0 1 0 1 5 .66636E −5 8 .246696 0 .0 0 0 039 2 .26256E −9 

0 1 1 0 4 .43417E −5 4 .353187 0 .001959 8 .69037E −8 

0 1 1 1 2 .08552E −4 5 .680786 0 .0 0 0519 1 .08360E −7 

1 0 0 0 2 .08552E −4 1 .680786 0 .028368 5 .91627E −6 

1 0 0 1 4 .43417E −5 4 .353187 0 .001959 8 .69037E −8 

1 0 1 0 5 .66636E −5 8 .246696 0 .0 0 0 039 2 .26256E −9 

1 0 1 1 1 .35852E −4 5 .866933 0 .0 0 0431 5 .85975E −8 

1 1 0 0 3 .33005E −3 -1 .52245 0 .698204 2 .32505E −3 

1 1 0 1 6 .61610E −4 1 .179398 0 .046836 3 .09875E −5 

1 1 1 0 1 .06651E −4 1 .972036 0 .021200 2 .26105E −6 

1 1 1 1 2 .80489E −5 0 .552084 0 .087704 2 .46002E −6 

Fig. 6. The two-state Markov process representing a sensor node. 
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 ( o 1 = 80 | h 1 = 1 ) = 

1 √ 

2 πσ 2 
H=1 

exp 

(
− ( o 1 − μH=1 ) 

2 

2 σ 2 
H=1 

)

 

1 √ 

2 π ∗42 . 25 

exp 

(
− ( 80 − 73 . 5 ) 

2 

2 

∗42 . 25 

)
= 0 . 1012 

 ( o 2 = 77 | h 2 = 0 ) = 0 . 0658 

 ( o 3 = 57 | h 3 = 0 ) = 0 . 0658 

 ( o 4 = 67 | h 4 = 1 ) = 0 . 1012 

Therefore, 

 ( O | H ) = 

∏ 

P ( o i | h i ) = 4 . 43417 

−5 

P ( H ) is decided next. The influence to the energy function ex-

rted by the singleton clique is obtained using Eq. (17) . ζ ( h i ) re-

ects the observation of each node. 

 ( h 1 ) = log ( P ( o 1 | h 1 ) ) = −0 . 99482 

 ( h 2 ) = −1 . 18177 ;ς ( h 3 ) = −1 . 18177 ;ς ( h 4 ) = −0 . 99482 

The influence to the energy function exerted by the neighbor

odes is obtained using Eq. (18) . ξ ( h j ,h i ) reflects the spatial con-

istency of the field. ξ ( h j ,h i ) has a positive influence to the energy

unction when h j and h i are same, on the other hand, it has a neg-

tive influence when h j and h i are different. Therefore, 

( h 2 , h 1 ) = −1 ; ξ ( h 4 , h 1 ) = 1 ; ξ ( h 1 , h 2 ) = −1 ; ξ ( h 3 , h 2 ) = 1 ;
( h 2 , h 3 ) = 1 ; ξ ( h 4 , h 3 ) = −1 ; ξ ( h 1 , h 4 ) = 1 ; ξ ( h 3 , h 4 ) = −1 ;
 ji reflects the reliability of local decision made by a neighbor node,

ode_ j , of node_ i . Given a hypothesis configuration, the local deci-

ion of node_ j of node_ i is likely equal to the hypothesis of node_ i

ince the nodes close to each other are most likely to have the

ame event. The reliability of local decision between node_2 and

ode_1, e 21 , is true since the local decision of node_2 ( φ2 = 1) is

ame as the hypothesis of node_1 ( h 1 = 1). Similarly, the reliabili-

ies of other neighbors are obtained. 

e 21 = 1 ; e 41 = 0 ; e 12 = 0 ; e 32 = 1 ;
 23 = 0 ; e 43 = 1 ; e 14 = 1 ; e 34 = 0 ;

The energy function for hypothesis configuration H = {1, 0, 0, 1}

s then obtained as: 

 ( H ) = 

∑ 

{ i } ∈ C 
αh i 

−
∑ 

{ i } ∈ C 
βζ ( h i ) −

∑ 

{ i, j } ∈ C 
δe ji ξ

(
h j , h i 

)
= 0 − { −0 . 99482 − 1 . 18177 − 1 . 18177 − 0 . 99482 } 

−
{

1 

∗( −1 ) + 0 

∗1 + 0 

∗( −1 ) + 1 

∗1 + 0 

∗1 

+ 1 

∗( −1 ) + 1 

∗1 + 0 

∗( −1 ) 
}

= 4 . 35318 p  
The partition function, Z , can be obtained when summing up

he energy functions, and P ( H ) for H = {1, 0, 0, 1} is then calcu-

ated. 

Z = 

∑ 

h ∈ H 
e −E ( h ) 

= e −0 . 552084 + e −5 . 972036 + . . . + e −0 . 552084 = 6 . 564619 

 ( H = h ) = Z −1 e −E ( h ) = 

e −4 . 353187 

6 . 564619 

= 0 . 001959 

As shown in Table 1 , the energy functions for all cases of hy-

othesis assumption can be obtained using the procedure shown

bove. With P ( O | H ) and P ( H ), P ( H | O ) is obtained by Eq. (7) . 

Finally, the hypothesis configuration H = {1, 1, 0, 0} of the high-

st P ( H | O ) is selected among all the cases as the event occurred.

his matches the original observation of the four nodes. 

.2.3. Temporal summarization 

The sensor readings collected by a node may present high tem-

oral correlation if the values of its neighbor nodes remain con-

tant or change little. In the process of temporal modeling, Markov

hain [22] is employed at the temporal layer to monitor the nodes

t spatial layer and detect temporal event. The first-order Markov

hain assumes a finite sequence of events over discrete points of

ime, where the future behavior of the process is based solely on

he current state. 

A discrete-time Markov chain is a stochastic process which

pecifies how a random variable changes at discrete points in time.

et ω t denote a random variable representing the state of a system

t time t , where t = 1, 2, � with the Markovian property, namely,

iven the present state, the future states are independent of it. Let

 ij denote the transition probability that the system is in state-

 at time ( t + 1) given the system is in state- i at time t , that is

 ij = P ( S t + 1 = ω j | S t = ω i ). 

As illustrated in Fig. 6 , a two-state Markov model is used to

redict the future state of a node, where state_1 represents the
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Fig. 7. The process of making a temporal event decision. 
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detection of an event and state_0 no. Markov model is effective to

deal with the problem of modeling of uncertainty and complexity

of real world. Here the transition probability between the states

can be obtained from the expert views or through a learning pro-

cess with the training of data. In this paper the transition probabil-

ities are obtained by counting how many times a transition has oc-

curred between any two states normalized by all state transitions

in training the data. During the training process described in the

next section, measurement noise and channel jitter are injected to

the baseline data with Gaussian random variable. Note that a node

in state_1 due to the baseline data has a high probability for hav-

ing a transition to state_1, and the same for the node in state_0. 

Deviation from normal behavior for a sensor in time domain

is interpreted as temporal event or noise (malfunction of sensor).

Noting that noise occurs intermittently, consecutive deviations can

be regarded as temporal events. Fig. 7 shows how a node makes

an event decision. After identifying the hypothesis configuration, H ,

with the use of MRF on the observations of the sensors during the

spatial summarization process, the nodes make binary decision. If

its decision is 1, the node is marked as S _ node , n sp . A Markov pro-

cess is individually applied to n sp for a certain amount of time, γ .

Let � τ be the reporting interval. A temporal event is decided when

the predicted state of n sp through the Markov chain process, ϖ( n sp ,

t + � τ ), is in accordance with the measured state, ω( n sp , t + � τ ), and

both of them are of state_1. The measured state of a node is ob-

tained by comparing its obserbvation value with the user-specified

threshold, e.g., the measured state for node _ i at time t in Fig. 7 is

state_1 as its observation is 80 and the threshold is 70. In other

words, a node detecting an event occurrence at time t through the

spatial layer identifies a temporal event only when both the pre-

dicted state and measured state indicate an event. The probability

of state ϖ( sp, t + � τ ) can be computed by Eq. (23) . 

P ( � t , ..., � t+�τ ) = q � t 

t+�τ∏ 

γ = t 
P � γ � γ +1 

(23)

Assume that a temporal event is detected at t . However, it may

be a false detection caused by errors in the sensors or communica-

tion link, or incorrect detection. A spatial event detected by a node
ay be erroneous due to the noises during communication such

s node _ i at time ( t + 2 � τ ) in Fig. 7 . Even though a spatial event

s correctly detected with the consideration of the neighbors’ deci-

ions, a node itself might be malfunctioning. To deal with such er-

oneous situation, as shown in Fig. 7 , an event is deemed to actu-

lly occur only when the number of detections of temporal events

s larger than that of no detection during a fixed interval, γ . This

pproach allows to mitigate the influence of malfunctioning sen-

or or noise in event detection. Note that only the node detecting

emporal event (after spatial event detection) reports the event to

he base station. 

. Performance evaluation 

In this section computer simulation is conducted to evaluate

he performance of the proposed scheme, and its performance is

ompared with the existing schemes. 

.1. Simulation environment 

The simulation is conducted with a network consisting of

 = {40 0, 90 0, 160 0, 250 0} nodes placed in a square area. The

aseline data are generated with a specific distribution of event oc-

urrence. With each sensor reading of baseline data, a positive or

egative measurement noise is added. The measurement noise is a

aussian random variable with the mean of one tenth of the mean

alue of baseline data, and same variance as the baseline data. Sig-

al jitter is also assumed to occur during data transmission such

hat the value of the transmitted signal of 1 is switched to 0 and

ice versa. The probability of signal jitter is also settable for differ-

nt simulation runs. The signal strength is assumed to be 0 if fault

ypothesis F is true or 1 if the alternative hypothesis T is true. 

The performance metrics adopted in the simulation include

he Precision, Recall, F1 - score, Garbage rate , and Communication

ost . We define the number of sensor nodes reporting event when

ctually an event occurs as true positives ( tp ), the number of

odes reporting event when no event actually occurs as false

ositives ( fp ), and the number of nodes missing actually occurring
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Fig. 8. The event detection with 50 ×50 sensor nodes. 

Fig. 9. The comparison of the values of Precision. 
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Fig. 10. The comparison of the Recall rates. 

o  

s  

N
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vent as false negatives ( fn ). Precision , obtained by Eq. (24) , is the

robability to correctly detect an event. Recall , defined as Eq. (25) ,

epresents the proportion of correctly detected events out of all

vents occurred. F 1 _score of Eq. (26) is a measure obtained by

he harmonic mean of precision and recall. False positives and

alse negatives deteriorate the performance of an event detection

ystem. Garbage rate, Grate , defined as Eq. (27) , is the portion of

alse detection out of entire decisions, used to show the inaccuracy
f detection. Eq. (28) represents the communication cost as a log

cale in the difference of the number between reported events,

 rep , and actually simulated events, N act . 

 recision = 

t p 

t p + f p 
(24) 

ecall = 

t p 

t p + f n 

(25) 
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Fig. 11. The comparison of the F1-Score measures. 

Fig. 12. The comparison of the garbage rates. 
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Fig. 13. The comparison of the communication cost. 
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F 1 _ score = 

2 × P recision × Recall 

P rec ision + Recall 
(26)

Grate = 

f p + f n 

t p + f p + f n 

(27)

 ommC ost = log N act 
( N rep − N act ) (28)

The performance of the proposed approach is compared with

the threshold-based scheme which is employed for event detection

with typical WSN. It has lowest computational overhead among

the existing event detection approaches. The decision is made by

comparing the sensor reading with a fixed threshold such that a

higher sensor reading than the threshold is considered as the pres-

ence of an event. In addition, the learning-based approach is com-

pared, where the MRF is employed without temporal summariza-

tion. 

4.2. Simulation results 

In the first simulation, the failure probabily of each sensor node

is set to 0.02. In other words, the measurement noise is added to

the sensed data of each node with the probability of 0.02. Based

on the sensed data, the decision of each sensor node is 1 if the

positive hypothesis T is true, or 0 if the alternative hypothesis F is

true. Channel error is also assumed to occur during the transmis-

sion of sensor data. The channel randomly encounters signal jitter

with the probability of 0.02. 

Fig. 8 (a) shows an example of event occurrence with 50 ×50

nodes. When the positive hypothesis is true at a node, it is rep-

resented by a dot. Otherwise, the node is not shown in the figure.

Different scenarios of simulated events at different time stamps are

generated by adding sensor noise and channel jitter. Fig. 8 (b)–(d)

illustrate the result of event detection with the threshold-based

scheme, MRF scheme, and the proposed scheme, respectively. It

can be observed that the result of the proposed scheme of Fig. 8 (d)

is much more close to the original data of Fig. 8 (a) than the other

schemes. 

Fig. 9 compares the precision of event detection of the schemes

for different node densities. It can be observed that the precision
f the proposed scheme is consistently better than the others. Also,

otice that it grows as the network density increases since S _ node

s decided after all the neighbors in the same clique are considered

sing the fusion function. In contrast, the simple threshold scheme

eports an event without taking the decision of neighor nodes into

ccount. Similarly, missing the consideration of the temporal cor-

elation between the sensor reading of the nodes, the MRF-based

pproach shows lower precision than the proposed approach since

t lacks the filtering of bursty error readings. The simulation results

erify that considering both spatial and temporal in an integrated

ay substantially improves the detection precision. 

Fig. 10 shows the comparison of Recall rates of the schemes.

ote that the proposed scheme decides S_node considering the

ata of neighboring nodes and uses Markov model to predict if an

vent has been detected in the S_node or not in a period of time.

n contrast, the threshold approach reports an event just based on

he currently sensed data, and thus event detection is made by the

ondition of individual nodes independently. 

In order to comprehensively investigate the performances of

he schemes, a weighted measure, F1_Score, is considered which

ntegrates the precision and recall rate. Fig. 11 demonstrates the

erit of the proposed scheme compared with the other schemes

n terms of the F1_Score measure. Obviously, the proposed scheme

utperforms the others, and the measure increases as the network

ensity becomes higher since the spatial correlation between the

bservations is higher. It is deemed that the proposed scheme can

etect events with a higher accuracy and efficiency using WSN. 

Fig. 12 shows the comparison of the garbage rates, indicating

ow false positive and false negative events degrade the perfor-

ance of the schemes. Observe from the figure that the garbage

ate of the proposed scheme is consistantly lower than the other

wo schemes. 

The communication cost is measured by the log scale of the

ifference in the number of reported events and actually simulated

vents. As can be seen from Fig. 13 , the proposed scheme always

equires lower communication cost than the others. 

In the second simulation the performance of the schemes are

valuated by varying both the sensor noise probability and channel

itter probability from 0.02 to 0.2 to check the influence of them to

he performance. A new performance criterion called Efficiency is

dopted here, which is F1 _ Score / Grate . Observe from Fig. 14 that

he Efficiency decreases as the sensor failure and channel error

robability increase. Observe that the proposed scheme shows the

est Efficiency among the three schemes for the given sensor fail-

re probability and channel error probability, as much as 2.4 and

.5 times larger than the threshold and MRF-based scheme, respec-

ively. Also, notice that the channel jitter imposes larger impact to

he performance than sensor noise. This is because sensor noise

an be compensated by spatial summarization but channel jitter
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Fig. 14. The comparison of Efficiency . 
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an switch a true positive hypothesis to a false positive hypothesis

r vice versa. 

. Conclusion 

In this paper we have presented a novel event detection ap-

roach considering the properties of both spatial and temporal re-

ationship in wireless sensor network. In order to increase the de-

ection accuracy, the proposed scheme integrates spatial event de-

ection and temporal event detection using a hierarchical structure

f sensor nodes. In addition, a fusion rule considering the weight

f the sensor and spatial information was employed with MRF

o fuse the decisions of the sensor nodes along with the Markov

hain model for temporal analysis. Computer simulation revealed

hat the proposed scheme significantly improves the detection ac-

uracy and communication overhead compared with the threshold

pproach and MRF-based event detection approach. 

Energy consumption is a crucial issue for WSN since the de-

loyed sensor nodes have limited battery power. Continuous sens-

ng and data transmission will consume large energy, which short-

ns the lifetime of the nodes. The proposed scheme will be im-

roved by controlling the node operation based on the sleep-and-

akeup mechanism for energy efficiency. In addition, the mech-

nism for systematically determining the operation parameters re-

uired in the proposed event detection scheme will be investigated

n the future. The event detection scheme with insufficient num-

er of nodes in the target area is also important. The correlation
etween the spatial and temporal data needs to be handled in an

ntegrated way. A new approach will also be researched to com-

are the effectiveness of different ways of integration of them. 
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