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In this study, the closed-form solution for the buckling of an inhomogeneous simply supported column thatwasun-
covered by the noted British engineer Duncan in 1937, is first derived in a straightforward manner. It deals with
buckling of a centrally compressed inhomogeneous column. It is also found that there are several other columns
with variable axial functionally graded material (FGM) that share the same qualities as Duncan's column. It is
then shown that themode postulated byW.J. Duncan (1894–1970), FRS and the newly foundmodes, have a greater
validity, namely the freely vibrating beam, albeit with different flexural rigidity than the centrally compressed one,
may possess the samebucklingmode. It is demonstrated also that there exists an inhomogeneous beamunder axial
compression whose vibration mode coincides with the buckling modes in the previous cases.

© 2016 The Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Duncan [3] devoted his study to efficacy of the Bubnov-Galerkin
method. Inter alia, he communicated, without derivation, closed-form
solution for buckling of inhomogeneous columns. As is known, the closed
form solutions for inhomogeneous structures are extremely rare.
Therefore, it is interesting to know how Duncan obtained his solution.
Moreover, a pertinent question arises if there are other columns or
beams for which Duncan's mode shape is valid, or if there are other
similar examples.

This study addresses above issues. It shows how one can derive
Duncan's classic solution, and constructs analogous solutions for the vi-
bration problems. Remarkably, it turns out, that there exists a vibrating
column whose vibration mode coincides with Duncan's bucklingmode.
Note thatmonograph by Elishakoff [5] contains analysis for other candi-
date mode shapes of beams in vibratory or buckling conditions. The
present study is apparently the first one that addresses Duncan's
mode shape directly.

Duncan [3] proposed that the shape of the mode be taken as

W ξð Þ ¼ 7ξ−10ξ3 þ 3ξ5 ð1Þ

and this shape satisfies the simple support conditions at the two ends.
Later on, Elishakoff [5] suggested another mode

W ξð Þ ¼ ξ−2ξ3 þ ξ4 ð2Þ
er).

. Published by Elsevier Ltd. All rights
which has similar properties. These two case can be realized with spatial
distribution of material properties that will be given below. The question
that one may ask is if there exist other simple shapes that have similar
properties. These new caseswill yield different buckling loads and spatial
distribution of the material properties. In the next section a general deri-
vation is presented for the problem. Other recent studies of inhomoge-
neous beams and columns include those of Akulenko and Nesterov [1],
Caruntu [2], Ece, Ayadoğlu and Taskin [4], Sina and Navazi [10], Gilat,
Caliò and Elishakoff [6], Huang and Li [7], Huang and Luo [8], Zarrinzadeh,
Attarnejad and Shahba [11], and Maròti [9], among others.

2. Derivation of Duncan's solution and other new solutions

Consider the governing differential equation for the buckling of
centrally compressed inhomogeneous column simply supported at its
two ends:

D ξð Þ d
2W

dξ2
þ PcrL

2W ¼ 0: ð3Þ

One can show that the function in Eq. (1), postulated by Duncan [3]
satisfies the boundary conditions of the simple supports

W 0ð Þ ¼ D ξð ÞW″ 0ð Þ ¼ W 1ð Þ ¼ D ξð ÞW″ 1ð Þ ¼ 0 ð4Þ

where the prime denotes the differentiation with respect to ξ. We pose
the following question: Is there an inhomogeneous column that has
expression in Eq. (1) as its buckling mode? To answer this question, we
observe that the second term in Eq. (1), namely, PcrL2w represents a
reserved.
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fifth order polynomial. The second derivative of the bucklingmode in the
first term is a third order polynomial. Therefore, in order for the first term
D(ξ)w″ to be also a fifth order polynomial, it is sufficient thatD(ξ) is a sec-
ond order polynomial. Hence, we seek D(ξ)in the following form

D ξð Þ ¼ d0 þ d1ξþ d2ξ
2
: ð5Þ

Now we look for other possible fifth order polynomials that can be
the mode shape for buckling of a simply supported beam. Then we
shall try the following mode

W ξð Þ ¼ w0 þw1ξþw2ξ
2 þw3ξ

3 þw4ξ
4 þw5ξ

5
: ð6Þ

Since we have a simple support at ξ=0wemust havew0=w2=0.
Then we substitute Eqs. (5) and (6) into Eq. (3) and collect terms with
the same power of ξ and obtain the following five equations:

6w3 þ PL2w1 ¼ 0 ð7Þ

12w4 þ 6w3d1 ¼ 0 ð8Þ

6w3d2 þ 12w4d1 þ 20w5 þ PL2w3 ¼ 0 ð9Þ

20w5d1 þ 12w4d2 þ PL2w4 ¼ 0 ð10Þ

20w5d2 þ PL2w5 ¼ 0 ð11Þ

and twomore equations are obtained from the requirement of zero de-
flection and moment at ξ = 1 as

w1 þw3 þw4 þw5 ¼ 0; ð12Þ

6w3 þ 12w4 þ 20w5 ¼ 0: ð13Þ

Eqs. ((7)–(13)) represent a set of 7 nonlinear equations with seven
unknownsw1 ,w3 ,w4 ,w5 ,d1 ,d2 , and P. We obtain four solutions (and
one trivial solution where all the unknowns are zero).

a. First solution—Duncan's [3] mode shape

W ξð Þ ¼ 7ξ−10ξ3 þ 3ξ5; D ξð Þ ¼ d0 1−
3
7
ξ2

� �
; Pcr ¼ 60d0

7L2
: ð14Þ

b. Second solution—Elishakoff's [5] mode shape

W ξð Þ ¼ ξ−2ξ3 þ ξ4; D ξð Þ ¼ d0 1þ ξ−ξ2
� �

; Pcr ¼ 12d0
L2

: ð15Þ

c. Third solution—First new mode shape

W ξð Þ ¼ 8
15

ξ−
4
3
ξ3 þ ξ4−

1
5
ξ5; D ξð Þ ¼ d0 1þ 3

2
ξ−

3
4
ξ2

� �
; Pcr ¼ 15d0

L2
:

ð16Þ

d. Fourth solution—Second new mode shape

W ξð Þ ¼ 1
15

ξ−
2
3
ξ3 þ ξ4−

2
5
ξ5; D ξð Þ ¼ d0 1þ 3ξ−3ξ2

� �
; Pcr ¼ 60d0

L2
:

ð17Þ

These four solutions are listed in Table 1with themodes and the cor-
responding stiffness distribution along the beam. It is evident that
solution (d) above is the second buckling mode as can be also seen
from the value of the buckling load that is much higher than the value
of the three other solutions. Additionally, the associated mode shape
possesses an internal node, serving as an indication that one deals
with the second mode-shape.

3. Comparison with uniform column

Let us compare the derived buckling loadwith that of the associated
uniform column. We can introduce the latter columns as that with
average flexural rigidity, defined as

Dave ¼
Z1
0

D ξð Þdξ: ð18Þ

In the Duncan's [3] example, the average flexural rigidity, in view of
Eq. (14) is

Dave ¼ 6
7
d0: ð19Þ

Thus, d0=7/6Dave. The buckling load is from Eq. (14)

Pcr ¼ 10Dave

L2
ð20Þ

which is extremely close, from above, to the Euler buckling load of the
uniform column with flexural rigidity Dave:

Pcr ¼ π2Dave

L2
: ð21Þ

For the second case (Elishakoff's shape) we have

Dave ¼ 7
6
d0: ð22Þ

The buckling load is from Eq. (15)

Pcr ¼ 72Dave

7L2
ð23Þ

which is 4.2% higher than the uniform column.
For the third case (the first new solution) we have

Dave ¼ 3
2
d0: ð24Þ

The buckling load is from Eq. (16)

Pcr ¼ 10Dave

L2
ð25Þ

exactly as for the Duncan case.
For the fourth case (second new solution) we have again

Dave ¼ 3
2
d0: ð26Þ

The buckling load is from Eq. (17)

Pcr ¼ 40Dave

L2
ð27Þ

which is the same as the Duncan solution but this time for the second
mode. Summarizing these results we see that the Elishakoff mode is
the best (by a very slight margin).



Table 1
Buckling solutions.

# Mode
name

Mode shape function Stiffness distribution Normalized
buckling
load

Mode shape Stiffness variation

1 Duncan W(ξ)=7ξ−10ξ3+3ξ5 DðξÞ ¼ d0ð1− 3
7 ξ

2Þ Pcr ¼ 60d0
7L2

2 Elishakoff W(ξ)=ξ−2ξ3+ξ4 D(ξ)=d0(1+ξ−ξ2) Pcr ¼ 12d0
L2

3 New (I) WðξÞ ¼ 8
15 ξ−

4
3 ξ

3 þ ξ4− 1
5 ξ

5 DðξÞ ¼ d0ð1þ 3
2 ξ−

3
4 ξ

2Þ Pcr ¼ 15d0
L2

4 New (II) WðξÞ ¼ 1
15 ξ−

2
3 ξ

3 þ ξ4− 2
5 ξ

5 D(ξ)=d0(1+3ξ−3ξ2) Pcr ¼ 60d0
L2
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The natural question arises if the centrally compressed column is the
only problem which possesses, as its mode shape, an expression
given in Eq. (2). In the next section we consider the vibrations of a
simply-supported beam.

4. Vibration of inhomogeneous beams

The vibration of an inhomogeneous beam is governed by the follow-
ing differential equation

d2

dξ2
D ξð Þd

2W

dξ2

" #
−VW ¼ 0 ð28Þ

V ¼ ρAω2L4: ð29Þ

Here we pose the following question: Is there a simply-supported
inhomogeneous beam that possesses the vibration mode as given in
Eqs. ((14)–(17)), i.e. which coincides with the buckling mode of the
previously considered cases?

To explore this possibility, we observe that in Eq. (28) the second
term is the fifth order polynomial (at the most) for ρA = const.
Hence, in order for the first term to also constitute the same order poly-
nomial, it is sufficient that D(ξ) is the fourth order polynomial

D ξð Þ ¼ d0 þ d1ξþ d2ξ
2 þ d3ξ

3 þ d4ξ
4
: ð30Þ

(a) Duncan's mode

In this case we obtain the set of five equations as follows:

360d0−360d2−7V ¼ 0 ð31Þ

d1−d3 ¼ 0 ð32Þ

120d2−120d4 þ V ¼ 0 ð33Þ

d3 ¼ 0 ð34Þ

840d4−V ¼ 0 ð35Þ
and the solution is

D ξð Þ ¼ d0 1−
18
31

ξ2 þ 3
31

ξ4
� �

ð36Þ

ω2 ¼ 2520
31

d0
ρAL4

: ð37Þ

(b) Elishakoff's mode

In this case we obtain the set of four equations as follows:

72d1−72d2−V ¼ 0 ð38Þ

d2−d3 ¼ 0 ð39Þ

120d3−120d4 þ V ¼ 0 ð40Þ

360d4−V ¼ 0 ð41Þ

and the solution is

D ξð Þ ¼ d0 1þ ξ−
2
3
ξ2−

2
3
ξ3 þ 1

3
ξ4

� �
ð42Þ

ω2 ¼ 120
d4

ρAL4
: ð43Þ

(c) First new mode

In this case we obtain the set of five equations as follows:

−24d0 þ 72d1−48d2−
8
15

V ¼ 0 ð44Þ

d1−3d2 þ 2d3 ¼ 0 ð45Þ

60d2−180d3 þ 120d4−V ¼ 0 ð46Þ
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120d3−360d4 þ V ¼ 0 ð47Þ

840d4−V ¼ 0 ð48Þ

and the solution is

D ξð Þ ¼ d0 1þ 3
2
ξ−

3
4
ξ3 þ 3

16
ξ4

� �
ð49Þ

ω2 ¼ 315
2

d0
ρAL4

: ð50Þ

(d) Second new mode

In this case we obtain the set of five equations as follows:

48d0−72d1 þ 24d2 þ 1
15

V ¼ 0 ð51Þ

2d1−3d2 þ d3 ¼ 0 ð52Þ

240d2−360d3 þ 120d4−V ¼ 0 ð53Þ

240d3−360d4 þ V ¼ 0 ð54Þ

840d4−V ¼ 0 ð55Þ

and the solution is

D ξð Þ ¼ d0 1þ 3ξ−6ξ3 þ 3ξ4
� �

ð56Þ

ω2 ¼ 2520
d0

ρAL4
: ð57Þ

These four solutions are listed in Table 2 with the modes and the
stiffness distribution along the beam.
Table 2
Vibration solutions.

Mode
name

Mode shape function Stiffness distrib

1 Duncan W(ξ)=7ξ−10ξ3+3ξ5 DðξÞ ¼ d0ð1

2 Elishakoff W(ξ)=ξ−2ξ3+ξ4 DðξÞ ¼ d0ð1þ ξ

3 New (I) WðξÞ ¼ 8
15 ξ−

4
3 ξ

3 þ ξ4− 1
5 ξ

5 DðξÞ ¼ d0ð1þ

4 New (II) WðξÞ ¼ 1
15 ξ−

2
3 ξ

3 þ ξ4− 2
5 ξ

5 D(ξ)=d0(1+
5. Vibration in the presence of axial force

Consider now the vibration of the beam in the presence of the axial
force P. The governing differential equation reads:

d2

dξ2
D ξð Þd

2W

dξ2

" #
þ PL2

d2W

dξ2
−VW ¼ 0: ð58Þ

We again look for the possibility that the four buckling mode, as de-
rived earlier, will serve as the vibration mode of the beam. The flexural
rigidity will be taken in the form as given in Eqs. ((14)–(17)).

(a) —Duncan's mode

In this case we obtain the set of five equations as follows:

360d0−360d2−7V−60P ¼ 0 ð59Þ

d1−d3 ¼ 0 ð60Þ

120d2−120d4 þ V þ 6P ¼ 0 ð61Þ

d3 ¼ 0 ð62Þ

840d4−V ¼ 0 ð63Þ

and the solution is

D ξð Þ ¼ 7
60

P þ 31
3

d4− 6d4 þ P
20

� �
ξ2 þ d4ξ

4 ð64Þ

ω2 ¼ 840
d4

ρAL4
: ð65Þ

(b) —Elishakoff's mode

In this case we obtain the set of four equations as follows:

72d1−72d2−V−12P ¼ 0 ð66Þ

12d2−12d3 þ P ¼ 0 ð67Þ

120d3−120d4 þ V ¼ 0 ð68Þ
ution
Normalized
frequency

Stiffness variation

− 18
31 ξ

2 þ 3
31 ξ

4Þ V ¼ 2520
31 d0

− 2
3 ξ

2− 2
3 ξ

3 þ 1
3 ξ

4Þ V=120d4

3
2 ξ−

3
4 ξ

3 þ 3
16 ξ

4Þ V ¼ 315
2 d0

3ξ−6ξ3+3ξ4) V=2520d0



Table 3
Vibration solutions in the presence of axial loading.

Mode
name

Mode shape function Stiffness distribution Normalized
frequency

1 Duncan W(ξ)=7ξ−10ξ3+3ξ5 DðξÞ ¼ 7
60 P þ 31

3 d4−ð6d4 þ P
20Þξ

2 þ d4ξ
4 V=840d4

2 Elishakoff W(ξ)=ξ−2ξ3+ξ4 DðξÞ ¼ P
12 þ 3d4 þ ð P

12 þ 3d4Þξ−ð P
12 þ 2d4Þξ2−2d4ξ

3 þ d4ξ
4Þ V=360d4

3 New (I) WðξÞ ¼ 8
15 ξ−

4
3 ξ

3 þ ξ4− 1
5 ξ

5 DðξÞ ¼ P
15 þ 16

3 d4 þ ð P
10 þ 8d4Þ4ξ− P

20 ξ
2−4d4ξ

3 þ d4ξ
4Þ V=840d4

4 New (II) WðξÞ ¼ 1
15 ξ−

2
3 ξ

3 þ ξ4− 2
5 ξ

5 DðξÞ ¼ d0 þ 3d0ξ− P
20 ξ

2−ð6d0− P
10Þξ

3 þ ð3d0− P
20Þξ

4Þ V=2520d0−42P
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360d4−V ¼ 0 ð69Þ

and the solution is

D ξð Þ ¼ P
12

þ 3d4 þ P
12

þ 3d4

� �
ξ−

P
12

þ 2d4

� �
ξ2−2d4ξ

3 þ d4ξ
4Þ ð70Þ

ω2 ¼ 360
d4

ρAL4
: ð71Þ

(c) —First new mode

In this case we obtain the set of five equations as follows:

−24d0 þ 72d1−48d2−
8
15

V−8P ¼ 0 ð72Þ

4d1−12d2 þ 8d3−P ¼ 0 ð73Þ

60d2−180d3 þ 120d4−V þ 3P ¼ 0 ð74Þ

120d3−360d4 þ V ¼ 0 ð75Þ

840d4−V ¼ 0 ð76Þ

and the solution is

D ξð Þ ¼ P
15

þ 16
3

d4 þ P
10

þ 8d4Þ4ξ−
P
20

ξ2−4d4ξ
3 þ d4ξ

4Þ
�

ð77Þ

ω2 ¼ 840
d4

ρAL4
: ð78Þ

(d) —Second new mode

In this case we obtain the set of five equations as follows:

48d0−72d1 þ 24d2 þ 1
15

V þ 4P ¼ 0 ð79Þ

8d1−12d2 þ 4d3−P ¼ 0 ð80Þ

240d2−360d3 þ 120d4−V þ 12P ¼ 0 ð81Þ

240d3−360d4 þ V ¼ 0 ð82Þ

840d4−V ¼ 0 ð83Þ

and the solution is

D ξð Þ ¼ d0 þ 3d0ξ−
P
20

ξ2− 6d0−
P
10

� �
ξ3 þ 3d0−

P
20

� �
ξ4 ð84Þ
ω2 ¼ 2520d0−42P

ρAL4
: ð85Þ

These four solutions are listed in Table 3.

6. Summary

In this paper Duncan's [3] classic solutionwas derived systematically
from the basic buckling equation of a member with axial FGM proper-
ties. Then, three other cases are derived using the same methodology:
the first in known as Elishakoff's [5] shape another new first buckling
mode, and a fourth one which is a second mode buckling case. Then
the same method was extended to two other similar problems: vibra-
tions and vibrations in the presence of axial loading, for the same four
mode shapes. All three problems, although associated with different
flexural rigidities of the corresponding beams share the same mode
shapes. Explicit variation of the FGM properties for all the above cases
was found analytically. The improvement in themagnitude of the buck-
ling load can be utilized in all cases as compared to simply supported
columns with constant properties. The improvement is small (less
than 5% increase) and will be justified only in special cases where per-
formance is the major consideration.

It is remarkable that in all three problems, although associated with
different flexural rigidities of the corresponding beams, they all share
the same eigenfunction.
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