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1. Introduction

There is additional bending moment in the member of lattice shell
structure as it bears axial force as well as lateral force. So second order
analysis is necessary, and the mechanical equilibrium equation should
be constituted based on the deformed configuration of the member.
Meek [1] and Chan [2] derived a geometrical stiffness matrix as the ad-
ditional item of the stiffness matrix of the first-order Hermite element.
This is a commonly used method to take the second order effect into ac-
count, but it is not so accurate by this method when one member is
modeled by a single element (So and Chan [3]). Kondoh and Atluri [4]
proposed a mixed beam element by which one member can be modeled
by a single element, but the higher order terms of the displacement in-
terpolation function are omitted. Chan and Zhou [5] proposed the
pointwise equilibrating polynomial (PEP) element for nonlinear analy-
sis of structure. It is a complex element model with a number of coeffi-
cients in the stiffness matrix compression, and the computational error
gets larger in the case that the element carries quite big axial force when
this model is used. Oran [6,7] element model is derived based on the de-
formed configuration of the member, and the element stiffness matrix is
expressed by stability integration functions (Livesley and Chandler [8]).
Though this model is applicable to the nonlinear analysis, it is not so
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accurate due to the omission of the shear effect and some coupling
terms in the displacement interpolation functions of 3D element.
Ekhande [9], Liew [10] and Zheng [11] proposed a refined spatial ele-
ment model which is expressed by stability integration functions
(SIFs) with the consideration of biaxial bending moment coupling ef-
fect. This is the analytical solution with a high accuracy. However, the
displacement interpolation functions of the compression element are
different from those of the tension element, and the calculation is rela-
tively complicated. Chen [12], Goto [13] and Liew [14] used Taylor series
to simplify the displacement interpolation functions of the spatial
beam-column element, but the calculation result is markedly different
in the case that the element carries quite small axial force. Li [15] pro-
posed element stiffness matrix considering the effects of geometric non-
linearity, material nonlinearity and shear deformation. He also studied
the influence of shear deformation on the beam element [16] and pro-
posed a systemic analysis and design method of the steel frames [17].
Mohri et al. [18] developed a non-linear model that is performed in
large torsion context according to a new kinematics that accounts for
large torsion, flexural-torsional coupling and the presence of tapering
terms in bending and torsion. Asgarian B et al. [19] investigated a nu-
merical model based on the power series method for the lateral buck-
ling stability of tapered thin-walled beams with arbitrary cross-
sections and boundary conditions. Dourakopoulos et al. [20] developed
a model for beams of arbitrary cross section considering the post-
buckling effect and the moderate large displacements, large angles of
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twist and adopting second order approximations for the deflection-
curvature relations. Couturier et al. [21] presented a method for analysis
of the properties of general cross-sections with arbitrary geometry and
material distribution. By this method the full six by six cross-section
stiffness matrix is evaluated from a single element thickness slice repre-
sented by 3D solid elements with lengthwise Hermitian interpolation
with six independent imposed deformation modes corresponding to
extension, torsion, bending and shear. Hogsberg et al. [22] developed
an element model for moderately thin-walled cross-sections. By this
model the cubic interpolation is used to represent the quadratic shear
stress variations along cross-section walls. Liu et al. [23,24] proposed a
new and curved beam-column element with arbitrarily-located plastic
hinge for second-order inelastic or direct analysis of steel frames. Li
et al. [25] proposed a direct analysis method (DAM) for design of
high-strength steel members and frames allowing explicit modeling of
residual stresses. All the members of lattice shell structure bear the spa-
tial external forces among which the axial force is markedly bigger in
amount than the bending moment and shear force. So it is necessary
to propose a refined element model for the lattice shell structure that
is suitable to develop the computer program.

In this paper, the displacement interpolation functions of the spatial
beam-column element under axial tension and axial compression are
derived respectively based on the differential equilibrium equations of
the deformed member with the consideration of the coupling effect of
axial force, bending moment and shear force. The different displace-
ment interpolation functions of the tension and compression elements
are unified by replacing the stability integration functions with the
Maclaurin series, and the unified functions are completely equivalent
to those expressed by stability integration functions. The second-order
element tangent stiffness matrix considering the effect of axial deforma-
tion, shear deformation, biaxial bending and torsion is derived. The
number of Maclaurin series expansion terms in unified displacement in-
terpolation functions is determined from aspects of calculation accuracy
and positive definiteness of the structural general stiffness matrixes. For
lattice shell structure the axial force, shear force and the bending mo-
ment are applied at the node. It is the end cross section of the structural
member bears the maximum force. Under heavy load the end section of
the structural member is considered to yield most likely, and the other
sections maintain in linear. So the plastic hinge is arranged at the end
section of the member, and the other segment is modeled by elastic el-
ement model which is proposed in this paper. The numerical analyses of
the sample structures are then carried out to testify the precision and ef-
ficiency of the element.

2. Element displacement interpolation functions

The deformed planar beam-column element which bears compres-
sion axial force, bending moment and shear force is shown in Fig. 1.
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Fig. 1. Deformed planar beam-column element.

The axial force, bending moment and shear force are applied at the
end section of the element. Based on the basic theory of material me-
chanics, the rotation of the element axis is assumed to be the shear
strain at the element neutral axis. Based on Timoshenko theory about
the element shear deformation, the rotation of the element cross section
is independent with the lateral displacement. The curve of the element
axis referable to the bending moment is calculated based on the plane
cross-section assumption. The concentrate loads applied at the node
do not turn with the rotation of the end section of the element.

The lateral deformation y at any cross section of a planar beam-
column element consists of yy caused by bending moment and yq
caused by shear force. This is given by Eq. (1).

Y=Ym+Yo (1)

Based on the plane cross-section assumption, the curve of the ele-
ment axis referable to the bending moment is given by:

Y= @)

where E is the elasticity modulus; I is the moment of inertia; M is the
bending moment at any section of the element.

The mechanical equilibrium equation based on the deformed ele-
ment which is shown in Fig. 1 is given by:

M = M;—Qx + Ny (3)

where N is the axial force of the planar beam-column element; M; and
Q; are the bending moment and shear force at the element end j; x
and y are shown in Fig. 1.

Based on the basic theory of material mechanics, the rotation of the
element axis is assumed to be the shear strain at the element neutral
axis. So the rotation of the element axis at any cross section referable
to the shear force is given by:

, _MQ_p dM
Yo~ GATCA dx @

where G is the shear modulus; A is the cross section area; ptis the shape
factor of the cross section.
Eq. (5) is constituted by substituting Eq. (3) in Eq. (4).

, _MQ_p dM
Yo=GATCA dx ®)

Eq. (6) is derived by the derivation operation of Eq. (5).

Yo =ty ®

Eq. (5) is constituted by substituting Eq. (2) and Eq. (6) in the
secondary derivative of Eq. (1).
M puN "__Mj_ij‘i’Ny_l_w

Y=—fteaY

B GAY ~ El caY (7)

Let1)=1—puN/(GA) and @? = N/(nEl). Eq. (8) is then constituted by
substituting these two parameters in Eq. (7).

Mj—QjX

| ®)

Yy +wly=—
The general solution of Eq. (8) is given by Eq. (9).
Mj—Q]'X
N

Yy = @7 COS TX + Ay Sin WX —

where a; and a, are the undetermined coefficients.
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The boundary conditions of the planar beam-column element
shown in Fig.1 are given as follows: y = 0 and y'=y'w—y' =
0;+u(—Qi+Ny')/GA when x = 0; y=06,—6 and y'=0,—
u(—Q;+ Ny')/GA when x =1 where [ is the length of the element; &;
and & are the lateral displacements of the end j and end k; 6, is the ro-
tation of the end k.

The derivation above is based on the mechanical equilibrium
equation of the deformed configuration of the planar beam-column
element, so the second-order effect is taken into consideration.
Substitute the boundary conditions in Eq. (9), and the lateral transla-
tional displacement interpolation function of the compression
planar beam-column element can be acquired as the solution of this
equation.

y= L [ cos wax(1— cos wl)— sin wl sin X + Nwox sin wl—1 + cos wl]6;+
C

1 [ sin w3l sin waXx— cos wX(1— cos wl) —1wx sin wXx— cos @l + 1]+
C

[sin @wX(1— cos wl + M@l sin wl) + M@l cos wl— sin wwl+nwx-
MW,

(1— coswl) + cos wx( sin wl—mwl cos wl)]h; + ﬁ [sin wl—mwl+
sin wx( cos wl—1) + cos wx(nwl— sin wl) + nwx(1 < cos wl)]6
(10)

where @, =2 — 2 coswl —nwlsinwl.
The shear force at the end j of the compression planar beam-column
element can be acquired based on Eq. (10).
2
Q :EI”T‘” [ sin @l (8;—6;) + (1— cos Tal) (6, + 6] (11)

c

The shear force in the cross section with a distance of x away from
the element end j is given by:

Emw?

C

Q=-Q;=— [ sin @l (6;—6;) + (1—cos wl)(0; + 6,)] (12)

Based on the Timoshenko [26] theory about the element shear de-
formation, the rotation of the element cross section is independent
with the lateral displacement. So the rotation 6 of the cross section
with a distance of x away from the element end j is given by:

_dy_m_dy
dx GA dx neo?
| M [ sin @l (6;—8;) + (1— cos wl) (6; + ;)]
GAQ,

(13)

The rotational displacement interpolation function of the compres-
sion planar beam-column element can be acquired by substituting
Eq. (10) in Eq. (13).

0= g [ sin ol — sin wl cos wx—(1— cos wl) sin wx|&; + g [ sin w3l cos Tx+
C C

sin wx(1— cos wl)—1% sin wl]6y + 77%0 [ cos Tx(1— cos wl + nwl sin wl)+
C

1 (1— cos wl) — sin wx( sin wl—nal cos al)]6; + % [1?(1— cos @)+
cos wX( cos wl—1)— sin wx(nwl— sin wl)|6y ¢

(14)

Similarly, based on the differential equilibrium equations of the de-
formed member with tension axial force the lateral translational dis-
placement interpolation function of the tension planar beam-column

element with the consideration of the second-order effect can be de-
rived as follows:

y= (% [sh wlsh wox—mwxsh wl + ch @wx(1—chwl) 4+ ch wl—1]6; + % [nwoxsh wl—
t t

shwlsh @wx + ch wx(ch wl—1)—chwl + 1]6, + ﬁ mwlch ol —sh @l + nwx-
t
(1—chwml) + shwx(1—chwl + nwlsh al)ch wx(sh wl—mwlch w@l)]6; + % .
[(chwl—1)(sh @wx—nwm) + sh wl—nwl + ch wx (1wl —sh wl)]6; '
(15)

where @ =2 — 2chwl 4 nwlshwl.

Similarly, based on the Timoshenko [26] theory about the element
shear deformation, the rotation of the element cross section is indepen-
dent with the lateral displacement. The rotational displacement inter-
polation function of the tension planar beam-column element with
the consideration of the second-order effect is given by:

0= g [sh wx(1—chwl) + sh @wlch Tx—mn?sh wl] 6 +g [1?sh ol —
t t

sh wlch wx—sh wx(1—ch wl)|6; + % [sh wx(sh wl—mwlch wl)+
t

[ (1—chwl) + ch wx(1—ch wl + nwlsh wl)]6; + T’L(Pt [(chwl—1)-

(ch wx—17?) + sh wx(nwal —sh @l) 6,
(16)

According to Eq. (10), Eq. (14), Eq. (15) and Eq. (16), it is known that
the expressions of the displacement interpolation functions of the com-
pression element and the tension element are different. What shear
with each other is that they are all constituted by stability integration
functions such as sine, cosine, hyperbolic sine and hyperbolic cosine.
The stability integration functions do not consist of variables by finite-
time math operations such as addition, subtraction, multiplication,
division, involution or evolution. Based on differential equilibrium equa-
tions of the deformed element the displacement interpolation functions
with different expressions corresponding to the compression element
and tension element are constituted by trigonometric function and hyper-
bolic function which are stability integration functions both. If the SIF
formed displacement interpolation functions are used in the numerical
calculation, the axial force needs to be checked at the beginning of each
increment step. Moreover, in the numerical calculation the integration
speed of stability integration functions is much slower than that of the
polynomials. So it is less efficient when the SIF formed displacement inter-
polation functions are used in the numerical nonlinear calculation. In this
paper, Maclaurin series are used to replace the stability integration func-
tions, and the number of the expansion terms is determined from the as-
pects of calculation accuracy and positive definiteness of the structural
general stiffness matrixes. Then the displacement interpolation functions
are transformed into the polynomial form of a unified expression. The sta-
bility integration functions can be replaced by Maclaurin series as follows:

sinwlml{l +nz;(2(n_l)1)![(ml)2r} (17)

coswl =1+ i (-1 [(ml)zr (18)
=2 )

shwl—ml{l +;ﬁ[(ml)2]”} (19)

chwl =1+ n; (2:1)! [(mlﬂ" (20)

where 1 is the number of the series expansion terms.
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The unified lateral translational displacement interpolation function
and rotational translational displacement interpolation function of the
compression element and tension element can be acquired by substitut-

ing Eqs. (17)-(20) in Egs. (14)-(16).

¥ = B16; + By + B35y + Bady (21)
6(X) = Bs6; + Bg0; + B76y + Bgdy (22)
where

By = —%xo -%+%p§[l s [1un] = Joe 1+ 2 (23a)
By = — hp" o 1(1 +xj) =00+ )| = s [ (14 23]

( +¢J) %o (23b)
33:%)(0‘1’0_(’109%(14‘)(1‘)‘<1+‘l’j) T]g§< +)(J) (23¢)
By — ’T‘]”@{ (1+;(j)]+ ( +¢J) oo (23d)
Bo= =g (14) + 2 (14 10) O+ (142) 230
Bs = —% [(1+2;) =11+ x0)] - (1+5)

b [0 (14 23) = 0] - (1 o)=L 1 (23f)
By = ?f) Ko(10y) =5 (14 2) - (L) + ‘”’2( 1+z) (239
Bo=— 8 (1) - (140) + ool = Lo @30)
where p=|N|2/nEl; po = NI?/nEl; y, = nép”/(Zn)!;)(J = nép"/ (2n
DN P = Z ()" /2n)! ; :é(Pﬁz)n/(2n+1)! ;p=2—

2(1 +;(o)+pn(l + i) §=x/L.

The linear displacement interpolation function is used for the axial
displacement of the beam-column element. Extending the dis-
placement interpolation functions of the planar element to three-
dimensional analysis, the displacement interpolation function matrix
of the spatial beam-column element for the second-order calculation
is given by:

1€ 0 0 0 0 0 €0 0 0 0 0 Bux
0 B O O 0 B 0B 0 0 0 B Buy
|0 0 B 0O —B 00O B, 0 —B 0| _ |Bu

ue=Buo=| o o 5 1Z¢ 0 000 0 € 0 o0|"|By|"
0 0 —Bs O Bs 0 0 0 —B, 0 Ng 0 Byy
O Bs 0 O O Bg 0B 0 0 0 B By,

(24)

where 1o = {Uyjo Uyjo Uzjo Oxjo Byjo Ozjo Uxko Uyko Uzko Oxiko Oyko Ozk0} Which
is the centroid displacement of the end cross section of the element;
U= {Uyc Uyc Uz Oxc Oy 0} which is the centroid displacement of any
cross section of the element.

3. Element tangent stiffness matrix

The tangent stiffness matrix of the spatial beam-column is derived
based on the virtual work principle. The mechanical equilibrium

equation of the beam-column element at the given moment t + At in
the virtual work form is shown in Eq. (25):

/ §+AtsT6§+At8dtv _ §+AtW (25)
ty

where 7% is the Piola-Kirchhoff stress tensor at the given moment
t + At; ;4% is the vector of the Green-Lagrangian strain increment
from the moment t to the moment t 4+ At; V is the integration space;
L TAW is the virtual work did by the external force at the moment
t + At, which is given by:

AW = / FAgLeUd Y + / FAqLaUd'S + [ F dug (26)
ty tg

t+ At t+At

where £T2%qy, {7245 and ¢ T A'F are the body force, surface force and the
nodal concentrate force respectively; S is the integration area.

The stress, strain and displacement at the moment t + At in the in-
crement forms are given as follows:

it g 4+ s (27a)
tritg —fg 4 g (27b)
Uity —ty 4 (27¢)

where {0, {e and {u are the stress vector, strain vector and displacement
vector at the time t respectively. s, ;€ and (u are the stress increment
vector, strain increment vector and the displacement increment
vector at the time t respectively. 2%, {7 4% and {2ty are the stress
vector, strain vector and displacement vector at the time t + At
respectively.

The relationship between the stress increment vector ,s and the
strain increment vector (€ is given as follows:

S =,Ce (28)

where ,C is the constitutive matrix which is given by,C=diag{E,G,G}.

The Green-Lagrangian strain increment vector & consists of the
linear component (e and the nonlinear component (4. This is given by
Eq. (29).

(& = e+ 9 (29)

Eq. (30) is acquired by substituting Eq. (28) and Eq. (29) in
Eq. (25).

/ (&7, CoedV + / toT 59d'V = B — / toT bed (30)
ty ty

tv
Let .£=,e and 6,& = 0e, and substitute them in Eq. (30).

/ e’ C,oed'V + / (o7 59dV = AW — / to7 sedV 31)
ty

’ ty ty

Let the x-axis of the rectangular coordinate system parallel to
the element axial direction, and the y-axis and z-axis of the rectangular
coordinate system parallel to the two cross-section directions. {Oy, (Oxy
and {0y, are the independent stress components, and (€, (€xy, texz, (Vs
¢9xy and 9, are the independent linear and nonlinear strain
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components. Eq. (32) is constituted by substituting the stress compo-
nents, the strain components and the constitutive matrix in Eq. (31).

/ (E[exxt(Sexx + 4Gieyy,Oeyy + Gfe'xzt(‘Sexz)dt v (32)

ty

+ / (}oms Bux + 2801y 801y +2L0 42,6 19XZ> dtv = Hatw

—/ (ﬁamﬁexx 4 2l0 0 ey + 2§om5exz) dv

Let Auy, Auy, and Au, represent the translational displacement incre-
ments anywhere in the cross section that has a distance of x away from
end j of the element. Based on the basic theory of elastic-plastic me-
chanics, the components of the Green-Lagrangian strain increments
can be expressed as follows:

(exx = a?”* (33a)
ey = <8Aux aAuy) (33b)

1 <6?;1x BAuZ> (330
m—i(assfﬁs:ﬁf’s:f) 530
R
T

Let Auy, Auy, Au,.,Aby, Af), and A6, represent the translational and
rotational displacement increments at the centroid of the cross section
with a distance of x away from end j of the element. Based on the equi-
librium of section internal forces, the translational displacement incre-
ments anywhere in this cross section can be expressed as follows:

Auy = Auye + 2A0y —yAD, (34a)
Auy = Auyc—zA0, (34b)
Au, = Auge + yAbx (34c)

The Green-Lagrangian strain increments anywhere in the cross sec-
tion that has a distance of x away from end j of the element can be
expressed by the displacement increments at the centroid by substitut-
ing Eq. (34) in Eq. (33).

(exx = Al + A8, —yAd, (35a)
1 / !

(ery =5 (—240) + Auj— A6, (35b)
1o /

texz = i (yAex + Auzc + AO}’) (35C)
1 ’ / 2 ' 2 / /) 2

o =5 {(Auxc + 240, —yAuZC) + (Auyc—er;) + (Aug +yA8,) }

(35d)

1 ’ / / ! /

(O = 5 |~ (Bt + 206~y Al ) A0, + (At + yA0,) Ay (35e)

By = % [(Au;c +2A0,— yAu’ZC> A8, — (Au;c—er;) AGX] (35f)

The stresses can be expressed by the sectional forces of the element.

- Q M,z _ My
O = A +—Iy I, (36a)
Fy, Myz
Loy = Wy — j" (36b)
X
F, Myz
t _ Iz X
Oxz = A + 7, (36¢)

where F,, F, and F, are the axial force and the shear forces along the two
cross-section axes of the element. M, M, and M, are the torsional mo-
ments and the bending moments about the two cross-section axes of
the element. J,, I, and I, are the polar moments of inertia and the inertia
moments about the two cross-section axes of the element.

The virtual work equation of the spatial beam-column element
in the increment form is constituted by substituting Eq. (35) and
Eq. (36) in Eq. (32).

1 /! , 1 /! 2 1 /! )
z/OEA(S(AuXC)de + z/OElyﬁ (Ae;) dx + z/0 (ij + Fig ) 6(46})"dx
1 ! /2 1 ! N ’ 2 N ’ 2
+ / EL&(A0,)%dx + = / GAS((Auj —26;)” + GAS(Auy, -+ A6y)° | dx
2/0 2/0 Y
1 /! 2 /2 !
+§/0Fx5{(Au;,c) + (Aul,) }dx—&-/oFyS- (

1 1
+ / F,- 5(Au;cA9y—Au;cA9x)dx— / My 6AU, Af,dx
J 0 J 0

—Auy AB; + Auy Aby)dx

-l I 1
- / M5AU., - A0 dxy— / M.5AU, A, dx + / [Mxiyxs(Ao’yAez)
0 0 0
—Mxizxé(AG’zAOy)} dx = FAtW =ty (37)

where 3= (I, 4+ L,)/A; i =1,/A; 2=L/A; i,x=1,/]x; iW; is the virtual
work did by the internal forces within the time of t.
Eq. (38) is constituted by substituting Eq. (35) in Eq. (32).

1
W, = / i [Fxb () + Fyo(Auj—A6; ) + Fz6(Aul + Ady)

(46,)] dx

(38)
+My5(A6'y) +M,5(A6,) + Myd

The sectional forces in any cross section can be expressed by the con-
centrated forces at the end of the element.

Fo— Fy (39)
F,— - M3 J; Mz (39b)
F, = Mt M (390)
My = My, (39d)
My = —My(1— il‘) ¥ Myk%( (39%)
M, — —MZ,<1—T> M ")T< (39f)

where M,; and M; are the bending moments about the two cross-sec-
tion axes at the end j of the element. Fyy, My, Myx and My are axial
forces, torsional moments and the bending moments about the two
cross-section axes.
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Fig. 2. The plan view of the cylindrical lattice shell.

Based on the virtual work principle, the tangent stiffness matrix
of the spatial beam-column element is constituted by substituting
Eq. (24) and Eq. (39) in Eq. (37).

Uyl uyuy Uz,

Kete = EAKG) + ELKG + ELKYY + GILKYY + Fy (1(110 n Kl]o)

+FudgKilg, + GAy - (K6 — K3 — KL%, + K35

uyly 0zuy

+GA, (1(“0 K0 K%+ 1(23;1) + Mgy - (K},YO;’Z +KQL )

Ul Oyu;
Oxuy

M, +M
_KEJ;X_K”])+Myj(l(“0+l(“0>+ zﬂlf 2k <K:]1332+ng]1?x

Oxuy uy by Oxuy

. M, + M k
~ Mz (K5, + K15 ) + =22 (KG9, + KO0 —K0% —KO
—K%, —KaS — Kl — KL, ) + My (KL —KGY) (40)

bp T
where I(Z;Zil” = dd)l;f? ~ddzxf,;2"5 -xbsdx (41).

Where b; and b, are the numbers of the derivative order; X repre-
sents b power of x; b, and bs represent the displacements such as i,
Uy, Uz, Oy, 0y and 6,.

The effects of the axial deformation, shear deformation, biaxial
bending and torsion are considered in Eq. (40). The element model pro-
posed in this paper is mainly applicable for the members of lattice shell
structure which bear the axial force of an amount much bigger than
those of the bending moment and the shear force. Therefore, some cou-
pling terms that play a less important role such as the self-coupling term
of the shear force are omitted in the element tangent stiffness matrix.

4. Number of series expansion terms

Take a single layer cylindrical lattice shell as an example. The length
and span of the structure are 27 m and 15 m. The structure bears a
surface load of 1.2 kN/m?, and the plan view is shown in Fig. 2. The SIF
(Stability Integration Function) element model proposed in literatures
[9-11] as well as the element model proposed in this paper are used
for the structural analysis.

The displacement interpolation functions of SIF model are the ana-
lytical solutions of the mechanical equilibrium equation of the de-
formed member. It is a precise method although it is less efficient.
When the series in Eq. (23a-h) are expanded by more terms, the result
by the element of this paper gets closer to that of the SIF model, and it
also accompanies a more calculation time. There will be an inflection
point on the load-displacement curve when the general stiffness matrix

Table 1
LPFs when the general stiffness matrix becomes non-positive.
Element  SIF 10 9 8 7 6 5 4
terms terms terms terms terms terms terms
LPF 1.00 1.00 0.98 0.89 0.79 0.72 0.61 0.52

Table 2
Vertical displacements of the structure central node/mm.

LPF Element

SIF 10terms 9terms 8terms 7terms 6terms 5terms 4 terms

0.1 1323 1323 13.23 13.23 13.23 13.20 13.23 13.23
02 2582 2582 25.82 25.82 25.82 25.82 25.82 25.82
0.3 38.84 3884 38.84 38.84 38.84 38.84 38.84 38.84
04 5251 5251 52.51 52.51 52.51 52.51 52.51 52.42
0.5 66.88 66.88 66.88 66.88 66.88 66.88 66.83 65.92

of the structure gets non-positive. The inflection point usually corre-
sponds to the ultimate bearing capacity of the structure. The element
proposed in this paper with the expanded series by 4 terms to 10
terms is respectively used for the analyses of the example lattice shell,
and the load proportion factors (LPFs) when the structural general stiff-
ness matrix becomes non-positive are listed in Table 1. The numerical
results of the vertical displacements of the structure central node by dif-
ferent elements are listed in Table. 2.

From Table 2 it is known that there are only tiny differences between
the calculation result by SIF element and those by element with the ex-
panded series of 4 terms to 10 terms. When LPF is 0.5, the relative differ-
ence of the calculation results by SIF element and element proposed by
this paper with the expanded series of 4 terms is only 1.43%. So from the
point of view of precision, the series in the displacement interpolation
function and the stiffness matrix need to be expanded by just 4 terms.
However, it is also known from Table 1 that if the series are expanded
by fewer terms, the structural general stiffness matrix gets non-
positive at a small LPF. The more terms the series are expanded by,
the bigger the LPF is when the stiffness matrix gets non-positive. The
structural general stiffness matrix gets non-positive when LPF is 1.00
by SIF element as well as the element with the expanded series of 10
terms. So the series in the displacement interpolation functions and
the stiffness matrix should be expanded by at least 10 terms.

5. Examples
5.1. Example 1

Gao [27] tested the deflections of a single layer spherical latticed
shell model. The test model has a span of 3.6 m and the rise-span ratio
of 1/7. The structure consists of circular steel bars of d14, and bears sur-
face load of 4.0 kN/m?. The plan view and the distribution of the survey
points are shown in Fig. 3.

The calculation results by the element proposed by this paper and
the test results of the deflections at the survey points are listed in

Fig. 3. Distribution of the survey points.
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Table 3

Deflections at the survey points.
Survey points 1 2 3 4 5 6
Calculation results/mm 0.158 0.208 0.385 0.432 0441 0.463
Test results/mm 0.165 0.218 0.382 0.451 0443 0436

Relative errors/% —4.24 —459 079 —4.21 —045 6.19

Table 3. The curve of load proportion factor vs. displacement of Survey
Point 5 is shown by Fig. 4.

From Table 3 and Fig. 4 it is known that the numerical results by the
element proposed by this paper accord well with the test results. It indi-
cates the precision of the element. The relative errors of the numerical
results and the test results are all within 4.59% except for that of the Sur-
vey Point 6. It can be referable to the test error.

5.2. Example 2

[llustrated in Fig. 5, the cantilever beam 2.2 m long is constituted by
steel section of ®114 x 6 (the cross-sectional diameter and thickness
are 114 mm and 6 mm respectively). The cantilever beam which bears
a changeless shear force of 3 kN and a variable axial compression force
is simulated by a single element model proposed in this paper and a sin-
gle general beam element B31, B32 and B33 of FEM program ABAQUS.
The load increment method is used for the nonlinear analysis, and the
vertical displacement at the end section is shown in Fig. 6.

It can be seen that there are two opposite trends in Fig. 6. When the
model proposed in this paper is used for the cantilever beam that bears
a changeless shear force, the bigger the axial force is, the larger the ver-
tical displacement becomes. However the trend turns opposite when
the general beam element models of ABAQUS are used. The second
order effect that consists of P-A effect and P-6 effect is showing when
the cantilever beam bears axial compression as well as the shear force.
There is lateral displacement when the beam bears shear force, and
the additional bending moment is then arose if it bears the axial force
meanwhile. Therefore, the additional bending moment gets bigger
along with the increment of axial compression force, and the vertical
displacement at the end section of the beam will become greater conse-
quently. Both of the P-6 effect caused by the member deformation and
the P-A effect caused by the structure deformation should be taken
into consideration in the second order analysis. P-A effect can be consid-
ered by nonlinear numerical solution methods such as load increment
method, displacement increment method and arc length method. By
these methods the structural equilibrium equations are formed based
on the deformed structural configuration. P-6 effect is caused by the el-
ement deformation. In order to get a reasonable result, the higher order
interpolation terms of the element model cannot be omitted when a
structure member is modeled by a single element. In the general FEM
program ABAQUS, B31 is the linear interpolation Timoshenko element,

1.0
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: - o- Calculation Results

Load Proportion Factor

0.2}

0.0 1 1 1 1 I
0.0 0.1 0.2 0.3 0.4 0.5

Deflection/mm

Fig. 4. The curve of load proportion factor vs. displacement of survey point 5.
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Fig. 5. The cantilever beam.

B32 is the interpolation quadratic Timoshenko element and B33 is the
cubic interpolation Euler-Bernoulli element. The general FEM program
pursues the balance between precision and efficiency of the calculation.
Only the lower interpolation terms are considered in the beam element
of the general FEM program. For the consideration of P-5 effect, usually
more than one beam elements are used to model a member of bigger
slenderness by this method, the P-6 effect is then transferred to P-A ef-
fect in the nonlinear solving process. However, there are no rules about
how many elements are to be used for a member could contribute a pre-
cise result. A refined element should be of great applicability in the nu-
merical analysis and well simulate the P-5 effect even the member is
modeled just by a single element. The P-6 effect can be directly consid-
ered by the element model proposed in this paper and the P-5 effect
does not need to be transferred to P-A effect if this element is used in
the analysis. To verify the modeling of the second order effect by differ-
ent element, the cantilever is modeled by a single element of different
type in this example. Based on the accuracy and efficiency of the calcu-
lation, the higher order terms that have influence on the second order
effect are all considered in the element model proposed in this paper.
So it can be used to model the member by a single element.

5.3. Example 3

The element model proposed by this paper, Zheng [11] and Liew [14]
are used respectively for the analyses of the cylindrical lattice shell
shown in Fig. 2. The curve of the vertical displacement of the structure
central node is shown in Fig. 7.

From Fig. 7 it can be seen that the calculation result by Liew [14] el-
ement is the smallest. When LPF is 0.96 the vertical displacements of the
structure central node calculated by Liew [ 14] element is 31.80% smaller
than that calculated by the element proposed in this paper. The coupling
effect of the axial deformation and the shear deformation is not consid-
ered in the derivation of Liew [14] element. So the stiffness of the ele-
ment is a little bit bigger. It has perceptible effect on the calculation
result as the LPF increases. The arch effect, Wagner effect, the coupling
effect of axial deformation and shear deformation, the coupling effect
of axial force and torsion and the coupling effect of biaxial bending
and torsion are all considered in Zheng [11] element. It is a complicated
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Fig. 6. Vertical displacement curve at the end section.
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Fig. 7. Vertical displacements of the structure central node.

precise model though it is less efficient. The displacement curves calcu-
lated by the elements proposed by Zheng [11] in this paper are almost
the same. The geometrical nonlinearity of the structure is well exhibited
by these two curves which have a maximum relative difference of 1.68%
only. It indicates the precision of the simplified element tangent stift-
ness matrix in the nonlinear analysis of lattice shells. Furthermore, the
calculation efficiency is improved noticeably as a result of the simplifica-
tion. The computation time of the analysis by Zheng [11] model is 25
times of that by element proposed in this paper. It indicates that the spa-
tial beam-column element model proposed in this paper performs well
in efficient.

6. Conclusions

(1) Considering the coupling effect of axial force, bending moment
and shear force, the displacement interpolation functions of the
spatial beam-column element under axial tension and axial com-
pression are derived respectively based on the differential equi-
librium equations of the deformed member.

(2) The different displacement interpolation functions of the tension
and compression elements are unified by replacing the stability
integration functions with the Maclaurin series, and the unified
functions are completely equivalent to those expressed by stabil-
ity integration functions. The number of series expansion terms
in unified displacement interpolation functions is determined
from aspects of calculation accuracy and positive definiteness of
the structural general stiffness matrixes.

(3) The second-order element tangent stiffness matrix considering
the effect of axial deformation, shear deformation, biaxial bend-
ing and torsion is derived.
Numerical calculation results by this element model accord well
with the experimental data, and it indicates the accurateness of
this element. Different element models are used in the analyses
of a single layer lattice shell, and calculation results indicate
that the geometrical nonlinearity of the structure is efficiently
exhibited by the refined spatial beam-column element proposed
in this paper.
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