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Considering the coupling effect of axial force, bending moment and shear force, the displacement interpolation
functions of the spatial beam-columnelement under axial tension and axial compression are derived respectively
based on the differential equilibrium equations of the deformed member. The different displacement interpola-
tion functions of the tension and compression elements are unified by replacing the stability integration func-
tions with the Maclaurin series, and the unified functions are completely equivalent to those expressed by
stability integration functions. The second-order element tangent stiffness matrix considering the effect of
axial deformation, shear deformation, biaxial bending and torsion is derived. The number of series expansion
terms in unified displacement interpolation functions is determined from aspects of calculation accuracy and
positive definiteness of the structural general stiffness matrixes. Numerical calculation results by this element
model accord well with the experimental data, and it indicates the accurateness of this element. Different ele-
ment models are used in the analyses of a single layer lattice shell, and calculation results indicate that the geo-
metrical nonlinearity of the structure is well exhibited with good efficiency by the refined spatial beam-column
element proposed in this paper.
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1. Introduction

There is additional bending moment in the member of lattice shell
structure as it bears axial force as well as lateral force. So second order
analysis is necessary, and the mechanical equilibrium equation should
be constituted based on the deformed configuration of the member.
Meek [1] and Chan [2] derived a geometrical stiffness matrix as the ad-
ditional item of the stiffness matrix of the first-order Hermite element.
This is a commonly usedmethod to take the second order effect into ac-
count, but it is not so accurate by this method when one member is
modeled by a single element (So and Chan [3]). Kondoh and Atluri [4]
proposed amixed beamelement bywhich onemember can bemodeled
by a single element, but the higher order terms of the displacement in-
terpolation function are omitted. Chan and Zhou [5] proposed the
pointwise equilibrating polynomial (PEP) element for nonlinear analy-
sis of structure. It is a complex element model with a number of coeffi-
cients in the stiffness matrix compression, and the computational error
gets larger in the case that the element carries quite big axial forcewhen
thismodel is used. Oran [6,7] elementmodel is derived based on the de-
formed configuration of themember, and the element stiffnessmatrix is
expressed by stability integration functions (Livesley and Chandler [8]).
Though this model is applicable to the nonlinear analysis, it is not so
. Published by Elsevier Ltd. All rights
accurate due to the omission of the shear effect and some coupling
terms in the displacement interpolation functions of 3D element.
Ekhande [9], Liew [10] and Zheng [11] proposed a refined spatial ele-
ment model which is expressed by stability integration functions
(SIFs) with the consideration of biaxial bending moment coupling ef-
fect. This is the analytical solution with a high accuracy. However, the
displacement interpolation functions of the compression element are
different from those of the tension element, and the calculation is rela-
tively complicated. Chen [12], Goto [13] and Liew [14] used Taylor series
to simplify the displacement interpolation functions of the spatial
beam-column element, but the calculation result is markedly different
in the case that the element carries quite small axial force. Li [15] pro-
posed element stiffnessmatrix considering the effects of geometric non-
linearity, material nonlinearity and shear deformation. He also studied
the influence of shear deformation on the beam element [16] and pro-
posed a systemic analysis and design method of the steel frames [17].
Mohri et al. [18] developed a non-linear model that is performed in
large torsion context according to a new kinematics that accounts for
large torsion, flexural–torsional coupling and the presence of tapering
terms in bending and torsion. Asgarian B et al. [19] investigated a nu-
merical model based on the power series method for the lateral buck-
ling stability of tapered thin-walled beams with arbitrary cross-
sections and boundary conditions. Dourakopoulos et al. [20] developed
a model for beams of arbitrary cross section considering the post-
buckling effect and the moderate large displacements, large angles of
reserved.
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twist and adopting second order approximations for the deflection–
curvature relations. Couturier et al. [21] presented amethod for analysis
of the properties of general cross-sections with arbitrary geometry and
material distribution. By this method the full six by six cross-section
stiffnessmatrix is evaluated from a single element thickness slice repre-
sented by 3D solid elements with lengthwise Hermitian interpolation
with six independent imposed deformation modes corresponding to
extension, torsion, bending and shear. Hogsberg et al. [22] developed
an element model for moderately thin-walled cross-sections. By this
model the cubic interpolation is used to represent the quadratic shear
stress variations along cross-section walls. Liu et al. [23,24] proposed a
new and curved beam-column element with arbitrarily-located plastic
hinge for second-order inelastic or direct analysis of steel frames. Li
et al. [25] proposed a direct analysis method (DAM) for design of
high-strength steel members and frames allowing explicit modeling of
residual stresses. All themembers of lattice shell structure bear the spa-
tial external forces among which the axial force is markedly bigger in
amount than the bending moment and shear force. So it is necessary
to propose a refined element model for the lattice shell structure that
is suitable to develop the computer program.

In this paper, the displacement interpolation functions of the spatial
beam-column element under axial tension and axial compression are
derived respectively based on the differential equilibrium equations of
the deformed member with the consideration of the coupling effect of
axial force, bending moment and shear force. The different displace-
ment interpolation functions of the tension and compression elements
are unified by replacing the stability integration functions with the
Maclaurin series, and the unified functions are completely equivalent
to those expressed by stability integration functions. The second-order
element tangent stiffnessmatrix considering the effect of axial deforma-
tion, shear deformation, biaxial bending and torsion is derived. The
number ofMaclaurin series expansion terms in unified displacement in-
terpolation functions is determined from aspects of calculation accuracy
and positive definiteness of the structural general stiffnessmatrixes. For
lattice shell structure the axial force, shear force and the bending mo-
ment are applied at the node. It is the end cross section of the structural
member bears themaximum force. Under heavy load the end section of
the structural member is considered to yield most likely, and the other
sections maintain in linear. So the plastic hinge is arranged at the end
section of the member, and the other segment is modeled by elastic el-
ementmodel which is proposed in this paper. The numerical analyses of
the sample structures are then carried out to testify the precision and ef-
ficiency of the element.

2. Element displacement interpolation functions

The deformed planar beam-column element which bears compres-
sion axial force, bending moment and shear force is shown in Fig. 1.
Fig. 1. Deformed planar beam-column element.
The axial force, bending moment and shear force are applied at the
end section of the element. Based on the basic theory of material me-
chanics, the rotation of the element axis is assumed to be the shear
strain at the element neutral axis. Based on Timoshenko theory about
the element shear deformation, the rotation of the element cross section
is independent with the lateral displacement. The curve of the element
axis referable to the bending moment is calculated based on the plane
cross-section assumption. The concentrate loads applied at the node
do not turn with the rotation of the end section of the element.

The lateral deformation y at any cross section of a planar beam-
column element consists of yM caused by bending moment and yQ
caused by shear force. This is given by Eq. (1).

y ¼ yM þ yQ ð1Þ

Based on the plane cross-section assumption, the curve of the ele-
ment axis referable to the bending moment is given by:

y″M ¼ −
M
EI

ð2Þ

where E is the elasticity modulus; I is the moment of inertia; M is the
bending moment at any section of the element.

The mechanical equilibrium equation based on the deformed ele-
ment which is shown in Fig. 1 is given by:

M ¼ Mj−Q jxþ Ny ð3Þ

where N is the axial force of the planar beam-column element; Mj and
Q j are the bending moment and shear force at the element end j; x
and y are shown in Fig. 1.

Based on the basic theory of material mechanics, the rotation of the
element axis is assumed to be the shear strain at the element neutral
axis. So the rotation of the element axis at any cross section referable
to the shear force is given by:

y0Q ¼ μQ
GA

¼ μ
GA

� dM
dx

ð4Þ

where G is the shear modulus; A is the cross section area; μ is the shape
factor of the cross section.

Eq. (5) is constituted by substituting Eq. (3) in Eq. (4).

y0Q ¼ μQ
GA

¼ μ
GA

� dM
dx

ð5Þ

Eq. (6) is derived by the derivation operation of Eq. (5).

y″Q ¼ μN
GA

y″ ð6Þ

Eq. (5) is constituted by substituting Eq. (2) and Eq. (6) in the
secondary derivative of Eq. (1).

y″ ¼ −
M
EI

þ μN
GA

y″ ¼ −
Mj−Q jxþ Ny

EI
þ μN
GA

y″ ð7Þ

Let η=1−μN/(GA) andϖ2=N/(ηEI). Eq. (8) is then constituted by
substituting these two parameters in Eq. (7).

y″ þϖ2y ¼ −
Mj−Q jx

ηEI
ð8Þ

The general solution of Eq. (8) is given by Eq. (9).

y ¼ a1 cosϖxþ a2 sinϖx−
Mj−Q jx

N
ð9Þ

where a1 and a2 are the undetermined coefficients.
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The boundary conditions of the planar beam-column element
shown in Fig.1 are given as follows: y = 0 and y ' =y'M−y ' =
θj+μ(−Qj+Ny')/GA when x = 0; y=δk−δj and y ' =θk−
μ(−Qj+Ny')/GA when x= l where l is the length of the element; δj
and δk are the lateral displacements of the end j and end k; θk is the ro-
tation of the end k.

The derivation above is based on the mechanical equilibrium
equation of the deformed configuration of the planar beam-column
element, so the second-order effect is taken into consideration.
Substitute the boundary conditions in Eq. (9), and the lateral transla-
tional displacement interpolation function of the compression
planar beam-column element can be acquired as the solution of this
equation.

y ¼ 1
φc

cosϖx 1− cosϖlð Þ− sinϖl sinϖxþ ηϖx sinϖl−1þ cosϖl½ �δ jþ
1
φc

sinϖl sinϖx− cosϖx 1− cosϖlð Þ−ηϖx sinϖx− cosϖlþ 1½ �δkþ
1

ηϖφc
sinϖx 1− cosϖlþ ηϖl sinϖlð Þ þ ηϖl cosϖl− sinϖlþ½ ηϖx�

1− cosϖlð Þ þ cosϖx sinϖl−ηϖl cosϖlð Þ�θ j þ
1

ηϖφc
sinϖl−½ ηϖlþ

sinϖx cosϖl−1ð Þ þ cosϖx ηϖl− sinϖlð Þ þ ηϖx 1− cosϖlð Þ�θk
ð10Þ

where φc=2−2cosϖl−ηϖlsinϖl.
The shear force at the end j of the compression planar beam-column

element can be acquired based on Eq. (10).

Q j ¼
EIηϖ2

φc
ηϖ sinϖl δ j−δk

� �þ 1− cosϖlð Þ θ j þ θk
� �� � ð11Þ

The shear force in the cross section with a distance of x away from
the element end j is given by:

Q ¼ −Q j ¼ −
EIηϖ2

φc
ηϖ sinϖl δ j−δk

� �þ 1− cosϖlð Þ θ j þ θk
� �� � ð12Þ

Based on the Timoshenko [26] theory about the element shear de-
formation, the rotation of the element cross section is independent
with the lateral displacement. So the rotation θ of the cross section
with a distance of x away from the element end j is given by:

θ ¼ dy
dx

−
μQ
GA

¼ dy
dx

þ μEIηϖ2

GAφc
ηϖ sinϖl δ j−δk

� �þ 1− cosϖlð Þ θ j þ θk
� �� �

ð13Þ

The rotational displacement interpolation function of the compres-
sion planar beam-column element can be acquired by substituting
Eq. (10) in Eq. (13).

θ ¼ ϖ
φc

η2 sinϖl− sinϖl cosϖx− 1− cosϖlð Þ sinϖx
� �

δ j þ
ϖ
φc

sinϖl cosϖxþ½

sinϖx 1− cosϖlð Þ−η2 sinϖl
�
δk þ

1
ηφc

cosϖx 1− cosϖlþ ηϖl sinϖlð Þþ½

η2 1− cosϖlð Þ− sinϖx sinϖl−ηϖl cosαlð Þ�θ j þ
1

ηφc
η2 1− cosϖlð Þþ�

cosϖx cosϖl−1ð Þ− sinϖx ηϖl− sinϖlð Þ�θk
ð14Þ

Similarly, based on the differential equilibrium equations of the de-
formed member with tension axial force the lateral translational dis-
placement interpolation function of the tension planar beam-column
element with the consideration of the second-order effect can be de-
rived as follows:

y ¼ 1
φt

shϖlshϖx−ηϖxshϖlþ chϖx 1−chϖlð Þ þ chϖl−1½ �δ j þ
1
φt

ηϖxshϖl−½

shϖlshϖxþ chϖx chϖl−1ð Þ−chϖlþ 1�δk þ
1

ηϖφt
ηϖlchαl−shϖlþ ηϖx½ �

1−chϖlð Þ þ shϖx 1−chϖlþ ηϖlshαlð Þchϖx shϖl−ηϖlchϖlð Þ�θ j þ
1

ηϖφt
�

chϖl−1ð Þ shϖx−ηϖð Þ þ shϖl−ηϖlþ chϖx ηϖl−shϖlð Þ½ �θk
ð15Þ

where φt=2−2chϖl+ηϖlshϖl.
Similarly, based on the Timoshenko [26] theory about the element

shear deformation, the rotation of the element cross section is indepen-
dent with the lateral displacement. The rotational displacement inter-
polation function of the tension planar beam-column element with
the consideration of the second-order effect is given by:

θ ¼ ϖ
φt

shϖx 1−chϖlð Þ þ shϖlchϖx−η2shϖl
� �

δ j þ
ϖ
φt

η2shϖl−
�

shϖlchϖx−shϖx 1−chϖlð Þ�δk þ
1
ηφt

shϖx shϖl−ηϖlchϖlð Þþ½

η2 1−chϖlð Þ þ chϖx 1−chϖlþ ηϖlshϖlð Þ� �
θ j þ

1
ηφt

chϖl−1ð Þ�½
chϖx−η2
� �þ shϖx ηϖl−shϖlð Þ�θk

ð16Þ

According to Eq. (10), Eq. (14), Eq. (15) and Eq. (16), it is known that
the expressions of the displacement interpolation functions of the com-
pression element and the tension element are different. What shear
with each other is that they are all constituted by stability integration
functions such as sine, cosine, hyperbolic sine and hyperbolic cosine.
The stability integration functions do not consist of variables by finite-
time math operations such as addition, subtraction, multiplication,
division, involution or evolution. Based on differential equilibrium equa-
tions of the deformed element the displacement interpolation functions
with different expressions corresponding to the compression element
and tension element are constituted by trigonometric function andhyper-
bolic function which are stability integration functions both. If the SIF
formed displacement interpolation functions are used in the numerical
calculation, the axial force needs to be checked at the beginning of each
increment step. Moreover, in the numerical calculation the integration
speed of stability integration functions is much slower than that of the
polynomials. So it is less efficientwhen the SIF formeddisplacement inter-
polation functions are used in the numerical nonlinear calculation. In this
paper, Maclaurin series are used to replace the stability integration func-
tions, and the number of the expansion terms is determined from the as-
pects of calculation accuracy and positive definiteness of the structural
general stiffness matrixes. Then the displacement interpolation functions
are transformed into the polynomial formof a unified expression. The sta-
bility integration functions can be replaced byMaclaurin series as follows:

sinϖl ¼ ϖl 1þ
X∞
n¼1

−1ð Þn
2nþ 1ð Þ! ϖlð Þ2

h in( )
ð17Þ

cosϖl ¼ 1þ
X∞
n¼1

−1ð Þn
2nð Þ! ϖlð Þ2

h in
ð18Þ

shϖl ¼ ϖl 1þ
X∞
n¼1

1
2nþ 1ð Þ! ϖlð Þ2

h in( )
ð19Þ

chϖl ¼ 1þ
X∞
n¼1

1
2nð Þ! ϖlð Þ2

h in
ð20Þ

where n is the number of the series expansion terms.



102 L. Qi, Y. Ding / Structures 6 (2016) 99–106
The unified lateral translational displacement interpolation function
and rotational translational displacement interpolation function of the
compression element and tension element can be acquired by substitut-
ing Eqs. (17)–(20) in Eqs. (14)–(16).

y ¼ B1δ j þ B2θ j þ B3δk þ B4δk ð21Þ

θ xð Þ ¼ B5δ j þ B6θ j þ B7δk þ B8δk ð22Þ

where

B1 ¼ −
1
φ
χo � ψo þ

1
φ
ρξ 1þ χ j

h i
1þ ψ j

h i
−

η
φ
ρξ 1þ χ j

h i
ð23aÞ

B2 ¼ −
lψo

ηφ
1þ χ j

� �
−η 1þ χoð Þ

h i
−

x
ηφ

χop−ρ0η 1þ χ j

� �h i
� 1þ ψ j

� �
−

x
φ
χo ð23bÞ

B3 ¼ 1
φ
χoψo−

1
φ
ρξ 1þ χ j

� �
� 1þ ψ j

� �
þ ηρξ

φ
1þ χ j

� �
ð23cÞ

B4 ¼ lψo

ηφ
η− 1þ χ j

� �h i
þ x
ηφ

χo 1þ ψ j

� �
−

x
φ
χo ð23dÞ

B5 ¼ −
ρξ
lφ

χo 1þ ψ j

� �
þ ρ
lφ

1þ χ j

� �
� 1þ ψoð Þ−ρη2

lφ
1þ χ j

� �
ð23eÞ

B6 ¼ −
ρξ
ηφ

1þ χ j

� �
−η 1þ χoð Þ

h i
� 1þ ψ j

� �
þ 1
ηφ

ηρ0

l2
1þ χ j

� �
−χo

� 	
� 1þ ψoð Þ− η

φ
χo ð23fÞ

B7 ¼ ρξ
lφ

χo 1þ ψ j

� �
−

ρ
lφ

1þ χ j

� �
� 1þ ψoð Þ þ ρη2

lφ
1þ χ j

� �
ð23gÞ

B8 ¼ −
ρξ
ηφ

1−ηþ χ j

� �
� 1þ ψ j

� �
þ 1
ηφ

χo 1þ ψoð Þ− η
φ
χo ð23hÞ

where ρ=|N | l2/ηEI; ρ0=Nl2/ηEI;χo ¼ ∑
∞

n¼1
ρn=ð2nÞ!;χ j ¼ ∑

∞

n¼1
ρn= ð2n

þ1Þ! ; ψo ¼ ∑
∞

n¼1
ðρξ2Þn=ð2nÞ! ; ψ j ¼ ∑

∞

n¼1
ðρξ2Þn=ð2nþ 1Þ! ; φ=2−

2(1+χo)+ρη(1+χj); ξ=x/l.
The linear displacement interpolation function is used for the axial

displacement of the beam-column element. Extending the dis-
placement interpolation functions of the planar element to three-
dimensional analysis, the displacement interpolation function matrix
of the spatial beam-column element for the second-order calculation
is given by:

uc ¼ Bu0¼

1−ξ 0 0 0 0 0 ξ 0 0 0 0 0
0 B1 0 0 0 B2 0 B3 0 0 0 B4
0 0 B1 0 −B2 0 0 0 B3 0 −B4 0
0 0 0 1−ξ 0 0 0 0 0 ξ 0 0
0 0 −B5 0 B6 0 0 0 −B7 0 N8 0
0 B5 0 0 0 B6 0 B7 0 0 0 B8

2
6666664

3
7777775
u0 ¼

Bux

Buy

Buz

Bθx
Bθy
Bθz

2
6666664

3
7777775
u0

ð24Þ

where u0={uxj0 uyj0 uzj0 θxj0 θyj0 θzj0 uxk0 uyk0 uzk0 θxk0 θyk0 θzk0} which
is the centroid displacement of the end cross section of the element;
uc={uxc uyc uzc θxc θyc θzc} which is the centroid displacement of any
cross section of the element.

3. Element tangent stiffness matrix

The tangent stiffness matrix of the spatial beam-column is derived
based on the virtual work principle. The mechanical equilibrium
equation of the beam-column element at the given moment t + Δt in
the virtual work form is shown in Eq. (25):
Z
tV

tþΔt
t sTδtþΔt

t εdtV ¼ tþΔt
t W ð25Þ

where t
t+Δts is the Piola–Kirchhoff stress tensor at the given moment

t + Δt; δtt+Δtε is the vector of the Green–Lagrangian strain increment
from the moment t to the moment t + Δ t; V is the integration space;
t
t+ΔtW is the virtual work did by the external force at the moment
t + Δt, which is given by:

tþΔt
t W ¼

Z
tV

tþΔt
t qT

VδUdtV þ
Z
tS

tþΔt
t qT

SδUdtSþ tþΔt
t F Tδu0 ð26Þ

where t
t+ΔtqV, tt+ΔtqS and t

t+ΔtF are the body force, surface force and the
nodal concentrate force respectively; S is the integration area.

The stress, strain and displacement at the moment t+ Δt in the in-
crement forms are given as follows:

tþΔt
t s ¼ t

tσ þ ts ð27aÞ

tþΔt
t ε ¼ t

tε þ tε ð27bÞ

tþΔt
t u ¼ t

tu þ tu ð27cÞ

where t
tσ, ttε and t

tu are the stress vector, strain vector and displacement
vector at the time t respectively. ts, tε and tu are the stress increment
vector, strain increment vector and the displacement increment
vector at the time t respectively. tt+Δts, tt+Δtε and t

t+Δtu are the stress
vector, strain vector and displacement vector at the time t + Δ t
respectively.

The relationship between the stress increment vector ts and the
strain increment vector tε is given as follows:

ts ¼ tC tε ð28Þ

where tC is the constitutive matrix which is given bytC=diag{E,G,G}.
The Green–Lagrangian strain increment vector tε consists of the

linear component te and the nonlinear component tϑ. This is given by
Eq. (29).

tε ¼ te þ tϑ ð29Þ

Eq. (30) is acquired by substituting Eq. (28) and Eq. (29) in
Eq. (25).

Z
tV

tεT
tC tδεdtV þ

Z
tV

t
tσT

tδϑdtV ¼ tþΔt
t W−

Z
tV

t
tσT

tδed
tV ð30Þ

Let tε _¼te and δtε= tδe, and substitute them in Eq. (30).

Z
tV

te
T
tC tδed

tV þ
Z
tV

t
tσT

tδϑdtV ¼ tþΔt
t W−

Z
tV

t
tσT

tδed
tV ð31Þ

Let the x-axis of the rectangular coordinate system parallel to
the element axial direction, and the y-axis and z-axis of the rectangular
coordinate system parallel to the two cross-section directions. ttσxx, ttσxy

and t
tσxz are the independent stress components, and texx, texy, texz, tϑxx,

tϑxy and tϑxz are the independent linear and nonlinear strain
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components. Eq. (32) is constituted by substituting the stress compo-
nents, the strain components and the constitutive matrix in Eq. (31).

Z
tV

�
Etexxtδexx þ 4Gtexytδexy þ Gtexztδexz

�
dt

V

þ
Z
tV

�
t
tσ xxtδϑxx þ 2t

tσ xytδϑxyþ2t
tσ xztδϑxz

�
dtV ¼ tþΔt

t W

−
Z
tV

�
t
tσ xxtδexx þ 2t

tσ xytδ
texy þ 2t

tσ xztδexz
�
dtV

ð32Þ

Let Δux, Δuy and Δuz represent the translational displacement incre-
ments anywhere in the cross section that has a distance of x away from
end j of the element. Based on the basic theory of elastic–plastic me-
chanics, the components of the Green–Lagrangian strain increments
can be expressed as follows:

texx ¼
∂Δux

∂x
ð33aÞ

texy ¼
1
2

∂Δux

∂y
þ ∂Δuy

∂x


 �
ð33bÞ

texz ¼
1
2

∂Δux

∂z
þ ∂Δuz

∂x


 �
ð33cÞ

tϑxx ¼ 1
2

∂Δu2
x

∂x
þ ∂Δu2

y

∂x
þ ∂Δu2

z

∂x

 !
ð33dÞ

tϑxy ¼ 1
2

∂Δux

∂x
� ∂Δux

∂y
þ ∂Δuy

∂x
� ∂Δuy

∂y
þ ∂Δuz

∂x
� ∂Δuz

∂y


 �
ð33eÞ

tϑxz ¼ 1
2

∂Δux

∂x
� ∂Δux

∂z
þ ∂Δuz

∂x
� ∂Δuz

∂z
þ ∂Δuy

∂x
� ∂Δuy

∂z


 �
ð33fÞ

Let Δuxc, Δuyc, Δuzc,Δθx, Δθy and Δθz represent the translational and
rotational displacement increments at the centroid of the cross section
with a distance of x away from end j of the element. Based on the equi-
librium of section internal forces, the translational displacement incre-
ments anywhere in this cross section can be expressed as follows:

Δux ¼ Δuxc þ zΔθy−yΔθz ð34aÞ

Δuy ¼ Δuyc−zΔθz ð34bÞ

Δuz ¼ Δuzc þ yΔθx ð34cÞ

The Green–Lagrangian strain increments anywhere in the cross sec-
tion that has a distance of x away from end j of the element can be
expressed by the displacement increments at the centroid by substitut-
ing Eq. (34) in Eq. (33).

texx ¼ Δu0
xc þ zΔθ0y−yΔθ0z ð35aÞ

texy ¼
1
2

−zΔθ0x þ Δu0
yc−Δθz

� �
ð35bÞ

texz ¼
1
2

yΔθ0x þ Δu0
zc þ Δθy

� � ð35cÞ

tϑxx ¼ 1
2

Δu0
xc þ zΔθ0y−yΔu0

zc

� �2
þ Δu0

yc−zΔθ0x
� �2

þ Δu0
zc þ yΔθ0x

� �2� 	
ð35dÞ

tϑxy ¼ 1
2

− Δu0
xc þ zΔθ0y−yΔu0

zc

� �
Δθz þ Δu0

zc þ yΔθ0x
� �

Δθx
h i

ð35eÞ
tϑxz ¼ 1
2

Δu0
xc þ zΔθ0y−yΔu0

zc

� �
Δθy− Δu0

yc−zΔθ0x
� �

Δθx
h i

ð35fÞ

The stresses can be expressed by the sectional forces of the element.

t
tσ xx ¼ Fx

A
þMyz

Iy
−

Mzy
Iz

ð36aÞ

t
tσ xy ¼ Fy

A
−

Mxz
Jx

ð36bÞ

t
tσ xz ¼ Fz

A
þMxz

Jx
ð36cÞ

where Fx, Fy and Fz are the axial force and the shear forces along the two
cross-section axes of the element. Mx, My and Mz are the torsional mo-
ments and the bending moments about the two cross-section axes of
the element. Jx, Iy and Iz are the polar moments of inertia and the inertia
moments about the two cross-section axes of the element.

The virtual work equation of the spatial beam-column element
in the increment form is constituted by substituting Eq. (35) and
Eq. (36) in Eq. (32).

1
2

Z l

0
EAδ Δu0

xc

� �2dxþ 1
2

Z l

0
EIyδ Δθ0y

� �2
dxþ 1

2

Z l

0
GJx þ Fxi

2
o

� �
δ Δθ0x
� �2dx

þ1
2

Z l

0
EIzδ Δθ0z

� �2dxþ 1
2

Z l

0
GAδ Δu0

yc−Δθz
� �2

þ GAδ Δu0
zo þ Δθy

� �2� 	
dx

þ1
2

Z l

0
Fxδ Δu0

yc

� �2
þ Δu0

zc

� �2� 	
dxþ

Z l

0
Fyδ � −Δu0

xcΔθz þ Δu0
zcΔθx

� �
dx

þ
Z l

0
Fz � δ Δu0

xcΔθy−Δu0
ycΔθx

� �
dx−

Z l

0
MyδΔu0

ycΔθ
0
xdx

−
Z l

0
MzδΔu0

zc � Δθ0dxx−
Z l

0
MzδΔu0

zcΔθ
0
xdxþ

Z l

0

�
Mxiyxδ Δθ0yΔθz

� �

−Mxizxδ Δθ0zΔθy
� �	

dx ¼ tþΔt
t W−t

tW i ð37Þ

where i0
2=(Iy+ Iz)/A; iy2= Iy/A; iz2= Iz/A; iyx= Iy/Jx; t

tWi is the virtual
work did by the internal forces within the time of t.

Eq. (38) is constituted by substituting Eq. (35) in Eq. (32).

t
tW i ¼

Z l

0
Fxδ Δu0

xc

� �þ Fyδ Δu0
yc−Δθz

� �
þ Fzδ Δu0

zc þ Δθy
� �h

þMyδ Δθ0y
� �

þMzδ Δθ0z
� �þMxδ Δθ0x

� �i
dx

ð38Þ

The sectional forces in any cross section canbe expressed by the con-
centrated forces at the end of the element.

Fx ¼ Fxk ð39aÞ

Fy ¼ −
Mzj þMzk

l
ð39bÞ

Fz ¼
Myj þMyk

l
ð39cÞ

Mx ¼ Mxk ð39dÞ

My ¼ −Myj 1−
x
l

� �
þMyk

x
l

ð39eÞ

Mz ¼ −Mzj 1−
x
l

� �
þMzk

x
l

ð39fÞ

where Myj and Mzj are the bending moments about the two cross-sec-
tion axes at the end j of the element. Fxk, Mxk, Myk and Mzk are axial
forces, torsional moments and the bending moments about the two
cross-section axes.
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Table 2
Vertical displacements of the structure central node/mm.

LPF Element

SIF 10 terms 9 terms 8 terms 7 terms 6 terms 5 terms 4 terms

0.1 13.23 13.23 13.23 13.23 13.23 13.20 13.23 13.23
0.2 25.82 25.82 25.82 25.82 25.82 25.82 25.82 25.82
0.3 38.84 38.84 38.84 38.84 38.84 38.84 38.84 38.84
0.4 52.51 52.51 52.51 52.51 52.51 52.51 52.51 52.42
0.5 66.88 66.88 66.88 66.88 66.88 66.88 66.83 65.92

Fig. 2. The plan view of the cylindrical lattice shell.
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Based on the virtual work principle, the tangent stiffness matrix
of the spatial beam-column element is constituted by substituting
Eq. (24) and Eq. (39) in Eq. (37).

Ketc ¼ EAK110
uxux

þ EIyK110
θyθy þ EIzK110

θzθz þ GJxK
110
θxθx þ Fxk K110

uyuy þ K110
uzuz

� �
þFxki

2
0K

110
θxθx þ GAy � K110

uyuy

�
−K010

θzuy
−K100

uyθz þ K000
θzθz

�
þGAz K110

uzuzþK010
θyuz þ K100

uzθy þ K000
θyθy

��
þMxkiyx � K100

θyθz

�
þK010

θzθy

�
−Mxkizx K100

θzθy

�
þ K010

θyθz

�
þMyj þMyk

l
K100

uxθy þ K010
θyux

�
−K100

uyθx−K010
θxuy

−K111
uyθx−K111

θxuy

�
þMyj K110

uyθxþ
�

K110
θxuy

�
þMzj þMzk

l
K100

uxθz

�
þ K010

θzux

−K100
uzθx−K010

θxuz−K111
uzθx−K111

θxuz

�
þMzj K110

uzθx−K110
θxuz

� �
ð40Þ

where Kb1b2b3
b4b5

¼ ∫l0
db1Bb4

T

dxb1
� d

b2Bb5

dxb2
� xb3dx (41).

Where b1 and b2 are the numbers of the derivative order; xb3 repre-
sents b3th power of x; b4 and b5 represent the displacements such as ux,
uy, uz, θx, θy and θz.

The effects of the axial deformation, shear deformation, biaxial
bending and torsion are considered in Eq. (40). The elementmodel pro-
posed in this paper is mainly applicable for the members of lattice shell
structure which bear the axial force of an amount much bigger than
those of the bendingmoment and the shear force. Therefore, some cou-
pling terms that play a less important role such as the self-coupling term
of the shear force are omitted in the element tangent stiffness matrix.

4. Number of series expansion terms

Take a single layer cylindrical lattice shell as an example. The length
and span of the structure are 27 m and 15 m. The structure bears a
surface load of 1.2 kN/m2, and the plan view is shown in Fig. 2. The SIF
(Stability Integration Function) element model proposed in literatures
[9–11] as well as the element model proposed in this paper are used
for the structural analysis.

The displacement interpolation functions of SIF model are the ana-
lytical solutions of the mechanical equilibrium equation of the de-
formed member. It is a precise method although it is less efficient.
When the series in Eq. (23a–h) are expanded by more terms, the result
by the element of this paper gets closer to that of the SIF model, and it
also accompanies a more calculation time. There will be an inflection
point on the load–displacement curvewhen the general stiffnessmatrix
Table 1
LPFs when the general stiffness matrix becomes non-positive.

Element SIF 10
terms

9
terms

8
terms

7
terms

6
terms

5
terms

4
terms

LPF 1.00 1.00 0.98 0.89 0.79 0.72 0.61 0.52
of the structure gets non-positive. The inflection point usually corre-
sponds to the ultimate bearing capacity of the structure. The element
proposed in this paper with the expanded series by 4 terms to 10
terms is respectively used for the analyses of the example lattice shell,
and the load proportion factors (LPFs) when the structural general stiff-
ness matrix becomes non-positive are listed in Table 1. The numerical
results of the vertical displacements of the structure central node by dif-
ferent elements are listed in Table. 2.

FromTable 2 it is known that there are only tinydifferences between
the calculation result by SIF element and those by element with the ex-
panded series of 4 terms to 10 terms.When LPF is 0.5, the relative differ-
ence of the calculation results by SIF element and element proposed by
this paperwith the expanded series of 4 terms is only 1.43%. So from the
point of view of precision, the series in the displacement interpolation
function and the stiffness matrix need to be expanded by just 4 terms.
However, it is also known from Table 1 that if the series are expanded
by fewer terms, the structural general stiffness matrix gets non-
positive at a small LPF. The more terms the series are expanded by,
the bigger the LPF is when the stiffness matrix gets non-positive. The
structural general stiffness matrix gets non-positive when LPF is 1.00
by SIF element as well as the element with the expanded series of 10
terms. So the series in the displacement interpolation functions and
the stiffness matrix should be expanded by at least 10 terms.
5. Examples

5.1. Example 1

Gao [27] tested the deflections of a single layer spherical latticed
shell model. The test model has a span of 3.6 m and the rise-span ratio
of 1/7. The structure consists of circular steel bars ofΦ14, and bears sur-
face load of 4.0 kN/m2. The plan view and the distribution of the survey
points are shown in Fig. 3.

The calculation results by the element proposed by this paper and
the test results of the deflections at the survey points are listed in
Fig. 3. Distribution of the survey points.



Fig. 5. The cantilever beam.

Table 3
Deflections at the survey points.

Survey points 1 2 3 4 5 6

Calculation results/mm 0.158 0.208 0.385 0.432 0.441 0.463
Test results/mm 0.165 0.218 0.382 0.451 0.443 0.436
Relative errors/% −4.24 −4.59 0.79 −4.21 −0.45 6.19

105L. Qi, Y. Ding / Structures 6 (2016) 99–106
Table 3. The curve of load proportion factor vs. displacement of Survey
Point 5 is shown by Fig. 4.

From Table 3 and Fig. 4 it is known that the numerical results by the
element proposed by this paper accordwell with the test results. It indi-
cates the precision of the element. The relative errors of the numerical
results and the test results are allwithin 4.59% except for that of the Sur-
vey Point 6. It can be referable to the test error.

5.2. Example 2

Illustrated in Fig. 5, the cantilever beam 2.2 m long is constituted by
steel section of Φ114 × 6 (the cross-sectional diameter and thickness
are 114 mm and 6 mm respectively). The cantilever beam which bears
a changeless shear force of 3 kN and a variable axial compression force
is simulated by a single elementmodel proposed in this paper and a sin-
gle general beam element B31, B32 and B33 of FEM program ABAQUS.
The load increment method is used for the nonlinear analysis, and the
vertical displacement at the end section is shown in Fig. 6.

It can be seen that there are two opposite trends in Fig. 6. When the
model proposed in this paper is used for the cantilever beam that bears
a changeless shear force, the bigger the axial force is, the larger the ver-
tical displacement becomes. However the trend turns opposite when
the general beam element models of ABAQUS are used. The second
order effect that consists of P-Δ effect and P-δ effect is showing when
the cantilever beam bears axial compression as well as the shear force.
There is lateral displacement when the beam bears shear force, and
the additional bending moment is then arose if it bears the axial force
meanwhile. Therefore, the additional bending moment gets bigger
along with the increment of axial compression force, and the vertical
displacement at the end section of the beamwill become greater conse-
quently. Both of the P-δ effect caused by the member deformation and
the P-Δ effect caused by the structure deformation should be taken
into consideration in the secondorder analysis. P-Δ effect can be consid-
ered by nonlinear numerical solution methods such as load increment
method, displacement increment method and arc length method. By
these methods the structural equilibrium equations are formed based
on the deformed structural configuration. P-δ effect is caused by the el-
ement deformation. In order to get a reasonable result, the higher order
interpolation terms of the element model cannot be omitted when a
structure member is modeled by a single element. In the general FEM
program ABAQUS, B31 is the linear interpolation Timoshenko element,
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Fig. 4. The curve of load proportion factor vs. displacement of survey point 5.
B32 is the interpolation quadratic Timoshenko element and B33 is the
cubic interpolation Euler–Bernoulli element. The general FEM program
pursues the balance between precision and efficiency of the calculation.
Only the lower interpolation terms are considered in the beam element
of the general FEM program. For the consideration of P-δ effect, usually
more than one beam elements are used to model a member of bigger
slenderness by this method, the P-δ effect is then transferred to P-Δ ef-
fect in the nonlinear solving process. However, there are no rules about
howmany elements are to beused for amember could contribute a pre-
cise result. A refined element should be of great applicability in the nu-
merical analysis and well simulate the P-δ effect even the member is
modeled just by a single element. The P-δ effect can be directly consid-
ered by the element model proposed in this paper and the P-δ effect
does not need to be transferred to P-Δ effect if this element is used in
the analysis. To verify themodeling of the second order effect by differ-
ent element, the cantilever is modeled by a single element of different
type in this example. Based on the accuracy and efficiency of the calcu-
lation, the higher order terms that have influence on the second order
effect are all considered in the element model proposed in this paper.
So it can be used to model the member by a single element.

5.3. Example 3

The elementmodel proposed by this paper, Zheng [11] and Liew [14]
are used respectively for the analyses of the cylindrical lattice shell
shown in Fig. 2. The curve of the vertical displacement of the structure
central node is shown in Fig. 7.

From Fig. 7 it can be seen that the calculation result by Liew [14] el-
ement is the smallest.When LPF is 0.96 the vertical displacements of the
structure central node calculated by Liew [14] element is 31.80% smaller
than that calculated by the element proposed in this paper. The coupling
effect of the axial deformation and the shear deformation is not consid-
ered in the derivation of Liew [14] element. So the stiffness of the ele-
ment is a little bit bigger. It has perceptible effect on the calculation
result as the LPF increases. The arch effect, Wagner effect, the coupling
effect of axial deformation and shear deformation, the coupling effect
of axial force and torsion and the coupling effect of biaxial bending
and torsion are all considered in Zheng [11] element. It is a complicated
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precise model though it is less efficient. The displacement curves calcu-
lated by the elements proposed by Zheng [11] in this paper are almost
the same. The geometrical nonlinearity of the structure iswell exhibited
by these two curveswhich have amaximum relative difference of 1.68%
only. It indicates the precision of the simplified element tangent stiff-
ness matrix in the nonlinear analysis of lattice shells. Furthermore, the
calculation efficiency is improved noticeably as a result of the simplifica-
tion. The computation time of the analysis by Zheng [11] model is 25
times of that by element proposed in this paper. It indicates that the spa-
tial beam-column element model proposed in this paper performs well
in efficient.

6. Conclusions

(1) Considering the coupling effect of axial force, bending moment
and shear force, the displacement interpolation functions of the
spatial beam-column element under axial tension and axial com-
pression are derived respectively based on the differential equi-
librium equations of the deformed member.

(2) The different displacement interpolation functions of the tension
and compression elements are unified by replacing the stability
integration functions with the Maclaurin series, and the unified
functions are completely equivalent to those expressed by stabil-
ity integration functions. The number of series expansion terms
in unified displacement interpolation functions is determined
from aspects of calculation accuracy and positive definiteness of
the structural general stiffness matrixes.

(3) The second-order element tangent stiffness matrix considering
the effect of axial deformation, shear deformation, biaxial bend-
ing and torsion is derived.

(4) Numerical calculation results by this element model accord well
with the experimental data, and it indicates the accurateness of
this element. Different element models are used in the analyses
of a single layer lattice shell, and calculation results indicate
that the geometrical nonlinearity of the structure is efficiently
exhibited by the refined spatial beam-column element proposed
in this paper.
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