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Local analysis of bearing stresses and initiation of failure at fastener-hole location in interference-fit structures is
crucial for achieving their optimal structural design and reliable service conditions. To this end, analytical
research devoted to strain analysis of double-shear riveted or bolted joints is performed. The decohesive carrying
capacity criterion based on the radial strains is applied and discussed. Thematerial of the plate is considered to be
elastic-perfectly-plastic obeying the Huber–Mises–Hencky yield criterion while the bolt is considered to be
elastic. Due to the singularities in the radial strains and displacement at the fastener/plate interface, the problems
solved analytically are of great importance for implementation of commercial numerical codes.
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1. Introduction

In preliminary engineering design of compound structures such as
double-shear riveted/bolted joints or pressurized containers, the
modeling of cold expansion and shrink-fit processes is of great
importance. The modeling of cold expansion process is usually made
either with a removable or with a stay-in mandrel. The assumptions of
plane-stress, the Huber–Mises–Hencky (HMH) yield criterion and
elastic-perfectly-plastic or specifically hardening materials are pre-
ferred. Most of the papers devoted to compound structures consider a
removable (rigid) mandrel to describe residual stress field near the
fastener-hole location [1–6]. On the other hand, a stay-in mandrel is
also used to describe bolted structures with an elastic bolt or insert
[7,8]. Themodeling of shrink-fit process as ameans of solving structural
engineering applications was comprehensively developed by Gamer
and his co-workers on the basis of the Tresca yield criterion [9–13]
influenced by the earlier works of Lundberg [14] with the HMH yield
criterion and Kollmann [15] with the Tresca yield criterion. Following
these theoretical studies, some combined technological processes have
been successfully modeled and solved such as a) interference-fit of
two circular tubes executed by cold expansion technique with or with-
out clearance between fitting parts. This type of modeling presumes
completely plastic inner part (insert) while the outer part (plate) may
be elastic, elasto-plastic, or fully plastic. It was possible to get analytical
solutions to this problem by employing the Tresca yield criterion and
elastic-perfectly-plastic material [16,17]. b) Cold expansion of a hole
with subsequent application of internal pressure or remote load [18].
. Published by Elsevier Ltd. All rights
c) Shrink-fit with subsequent application of internal or external pres-
sure for fitting partsmade of differentmaterials. This problemwas ame-
nable to analytical solution due to the HMH yield criterion and
assumption of plane-strain state [19]. d) Shrink-fit followed by cold
expansion process [20].

Meanwhile, for analytical procedures developed to assess com-
pound structures, the HMH yield criterion is preferred, particularly,
when the elastic-perfectly-plastic material is involved. It was specifical-
ly outlined by Gamer [11] that in this case for some working pressures
the Tresca yield criterion leads to a discontinuous stress field near the
hole of the plate and discontinuous displacement field at the insert/
plate interface.

Analytical solutions based on the HMH yield criterion all have their
origin in the work of Nadai [21] who obtained distribution of stresses
in an infinite plate with a circular hole subjected to uniform radial pres-
sure. The material of the plate was assumed to be incompressible
elastic-perfectly-plastic. This assumption together with a parametriza-
tion of the yield criterion permitted to derive a simple, elegant closed-
form stress solution. Later on, this parametrization technique was
used by Budiansky [22] who proposed a modified Ramberg–Osgood
law to solve analytically the problem of orthotropic in thickness direc-
tion plate. Budiansky's procedure was successfully adopted both for in-
finite [1] and finite [2] platemodels to obtain residual stressfields based
on elastic unloading. The more advanced analysis of residual stresses
with reverse yielded zones belongs to Ball [8] and Zhang et al. [23] for
an infinite and finite annular plate, respectively. However, only the
stress-displacement solutions were covered in both studies. As
concerning elastic-perfectly-plastic material, reverse yielded zones
were considered in [6], and, within elastic unloading assumption, vari-
ous engineering stress solutions were presented by Aleksandrova [24]
to discuss specific applications to bolted structures and pressurized
reserved.
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containers. The comparison of various analytical models in terms of
their abilities to predict residual stresses is given in [23,25–26].

As it follows from the above, analytical works on thin compound
structures have been mostly devoted to residual stress analysis rather
than the determination of the strain field. This justifies such assump-
tions as incompressible material both in the elastic and plastic zones
of the plate or neglect of elastic strains in the plastic zone. However,
the knowledge of the strain field is important both from the academic
and engineering points of view. From the academic point of view, its im-
portance is in the validation of the stress solution, that is, the complete
stress–strain field must be continuous (not only the stress field). This is
a particular concern for an elastic-perfectly-plastic material [11,27–28].
From the engineering point of view, strain analysis is important for final
structural design and selection of a reliable failure criterion. However, at
themoment, there is a lack of analytical research specifically devoted to
the strain analysis of interference-fit structures leading to formulation
of a reliable failure criterion. So, the objective of this study is to conduct
such research as an extension of the earlier work on stresses [24].

2. Stress distributions in fastener-hole structures

The detailed discussion of stresses has been done in previous work
[24], so, here, only necessary formulae for further kinematic analysis
will be retrieved for convenience. In cylindrical coordinate system rθz
with non-zero radial, σ ̂

rr , and circumferential, σ ̂
θθ , stress tensor

components, consider a thin annular plate of inner radius a and outer
radius b subjected to gradually increasing radial pressure p̂ around its
inner edge, r=a (Fig. 1). The following boundary conditions should be
satisfied:

σ ̂
rr ¼ −p̂ at r ¼ a and σ ̂

rr ¼ 0atr ¼ b ð1Þ

For sufficiently small values of pressurep ̂, the plate is entirely elastic.
The elastic carrying capacity (when the plate just starts yielding due to
the HMH yield criterion) corresponds to

p̂=Y ¼ 1− a=bð Þ2
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ a=bð Þ2

q
ð2Þ

where Y is the yield stress of theplatematerial in tension test. For higher
loads, the plate in general consists of two zones – inner plastic and outer
Fig. 1. Geometrical model of annular plate with elastic insert in cylindrical coordinate
system.
elastic – divided by an elastic/plastic boundary, c. In the elastic zone, the
material obeys the Hooke's law with the following stress–strain-
displacement relations:

ε ̂rr ¼ ∂û=∂r ¼ σ ̂
rr−νσ ̂

θθ

� �
=E; ε ̂ θθ ¼ u ̂=r ¼ σ ̂

θθ−νσ ̂
rr

� �
=E ð3Þ

whereε ̂rr andε ̂ θθ are the radial and circumferential strains, respectively;
û is the radial displacement; E is the Young modulus, and ν is the
Poisson coefficient. In the plastic zone, the HMH yield criterion is
adopted. For plane-stress state and at the absence of in-plane shear
stresses, it simplifies to

σ ̂2
rr þ σ ̂2

θθ−σ ̂
rrσ ̂

θθ ¼ Y2 ð4Þ

and is automatically satisfied by the standard parametric substitution

σ ̂
rr=Y ¼ 2=

ffiffiffi
3

p� �
cosφ; σ ̂

θθ=Y ¼ 2=
ffiffiffi
3

p� �
cos φ−π=3ð Þ ð5Þ

whereφ is an auxiliary variable. In fact, Eq. (5) describes stress distribu-
tions in the plastic zone of the plate. Due to circular symmetry of the
problem, σ ̂

rr ¼ σ ̂
rrðrÞ , σ ̂

θθ ¼ σ ̂
θθðrÞ , and plane-stress assumption,

σ ̂
zz ¼ 0, there is only one non-trivial equilibrium equation

dσ ̂
rr=dr þ σ ̂

rr−σ ̂
θθÞ=r ¼ 0

�
ð6Þ

which is valid both in elastic and plastic zones of the plate.
To conduct further analysis, the dimensionless parameters should be

introduced:σ rr ¼ σ ̂
rr=Y ; σ θθ ¼ σ ̂

θθ=Y; p ¼ p̂=Y; β ¼ r=b; α ¼ a=b;
γ ¼ c=b; εrr ¼ ε ̂rrE=Y ; εθθ ¼ ε ̂ θθE=Y ;u ¼ ûE=ðYbÞ.

In the inner plastic zone α≤β≤γ, the solution of equilibrium Eq. (6)
in parametric form (5)with theboundary condition (1) atβ=α leads to
an analytical expression defining the relation between the dimension-
less radial coordinate β and auxiliary variable φ

β2=α2 ¼ sin φα−π=6ð Þ exp
ffiffiffi
3

p
φα−φð Þ

h i
= sin φ−π=6ð Þ ð7Þ

where φa is the value of φ at β=α such that

φa ¼ arccos −
ffiffiffi
3

p
p=2

� �
ð8Þ

From here, one may see that for a finite annular plate made of
elastic-perfectly-plasticmaterial, the value ofmaximumallowable pres-
sure is p ¼ pmax ¼ 2=

ffiffiffi
3

p
.

The radius of the elastic–plastic boundary is determined by a simple
formula

1=γ2 ¼ tg φγ−π=6
� �

=
ffiffiffi
3

p
ð9Þ

where φγ is the value of ϕ at the elastic–plastic boundary γ which is
expressed through the ϕa, Eq. (8), and a given size of the hole, α,
Eq. (7), as follows:

1
α2 ¼ 1ffiffiffi

3
p exp

ffiffiffi
3

p
φα−φγ

� �h i sin φα−π=6ð Þ
cos φγ−π=6

� � ð10Þ

In the outer elastic zone γ≤β≤1, taking into account the condition of
continuity of stresses at the elastic–plastic boundary, the stress-
displacement solution is also defined analytically

σE
rr ¼ 1−1=β2

� �
cos φγ−π=6

� �
; σE

θθ

¼ 1þ 1=β2
� �

cos φγ−π=6
� �

ð11Þ



Fig. 3. Dependence of the elastic–plastic boundary on the pressure for various geometric
ratios.

Fig. 2. Limit external loading curves.
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uE ¼ 1−νð Þβ þ 1þ νð Þ=β½ � cos φγ−π=6
� �

ð12Þ

3. Kinematic analyses for fastener-hole structures in plastic zone

The total strain in the inner plastic zone of the plate is assumed to be
the sum of elastic and plastic portions. The elastic portion is obtained
from the Hooke's law (3) and stress distributions (5)

εerr ¼ 2−νð Þ cosφ−
ffiffiffi
3

p
ν sinφ

h i
=

ffiffiffi
3

p
; εeθθ

¼ 1−2νð Þ cosφþ
ffiffiffi
3

p
sinφ

h i
=

ffiffiffi
3

p
ð13Þ

The plastic portion is related to the proportionality relation offered
by the Hencky–Ilyushin deformation theory

εprr=ε
p
θθ ¼ srr=sθθ ð14Þ

where εrrp and εθθp are the radial and circumferential plastic portions of
strains, respectively; srr and sθθ are the radial and circumferential
deviatoric components of stress tensor, respectively. So, Eq. (14) may
be rewriting with the use of Eq. (5) in the form

εprr ¼ εpθθ
ffiffiffi
3

p
cosφ− sinφ

� �
= 2 sinφð Þ ð15Þ

Due to the general statement of the problem, in the plastic zone
εrrPz=εrre +εrrp =∂u/∂β andεθθPz=εθθe +εθθp =u/β. Substituting Eqs. (13)
and (15) into these equalities gives

∂u
∂β

¼ 1ffiffiffi
3

p 2−νð Þ cosφ−
ffiffiffi
3

p
ν sinφ

h i
þ εpθθ

ffiffiffi
3

p
cosφ− sinφ
2 sinφ

;

u
β
¼ 1ffiffiffi

3
p 1−2νð Þ cosφþ

ffiffiffi
3

p
sinφ

h i
þ εpθθ

ð16Þ

Elimination of εθθp from the above Eq. (16) results in a differential
equation for the radial displacement in the plastic zone

∂u
∂β

−
ffiffiffi
3

p
cosφ− sinφ
2 sinφ

u
β
¼ 1−2ν

2
ffiffiffi
3

p
sinφ

sin 2φ−
ffiffiffi
3

p
cos 2φ

� �
ð17Þ
which may be rewritten using ϕ-function (to be consistent with the
main stress analysis) as an independent variable (instead of β)

du
dϕ

−
sin φ−π=3ð Þ
sin φ−π=6ð Þu

¼ −
1−2νð Þα
2

ffiffiffi
3

p
sin 2φ−

ffiffiffi
3

p
cos 2φ

� �
sin φ−π=6ð Þ½ �3=2

exp
ffiffi
3

p
=2 φα−φð Þ

i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin φα−π=6ð Þ

q�

ð18Þ

Analytical solution of this equation has the following form:

u φð Þ ¼
exp

ffiffi
3

p .
2 φ−π=6ð Þ

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin φ−π=6ð Þp C þ

Zφ
φγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ξ−π=6ð Þ

p
exp

ffiffi
3

p .
2 ξ−π=6ð Þ

h iΦ1 ξð Þdξ

0
B@

1
CA
ð19Þ

whereΦ1 is the right-hand side of Eq. (18) and C is a constant. Since the
radial displacement u is a continuous function across the elastic–plastic
boundary, the constant C in Eq. (19) is determined from the continuity
condition for displacements

u φγ

� �
¼ uγ ð20Þ

where uγis the value of u at the elastic–plastic boundary. Plugging β=γ
into Eq. (12) and using Eq. (9), it becomes

uγ ¼ γ 1−νð Þ cos φγ−π=6
� �

þ 1þ νð Þ sin φγ−π=6
� �

=
ffiffiffi
3

ph i
ð21Þ

Finally, the radial displacement in the plastic zone is obtained by
combining Eqs. (19)–(21).

u ¼ γ 1−νð Þ cos φγ−π=6
� �

þ 1ffiffiffi
3

p 1þ νð Þ sin φγ−π=6
� �� �

exp
ffiffi
3

p .
2 φ−φγ

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin φγ−π=6

� �
sin φ−π=6ð Þ

vuut þ 1−2ν
2

ffiffiffi
3

p α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin φα−π=6ð Þ
sin φ−π=6ð Þ

s
exp

ffiffi
3

p .
2 φα þ φð Þ

h iZφ
φγ

Φ2 ξð Þdξ

ð22Þ

where Φ2 ξð Þ ¼ −
sin 2ξ−

ffiffiffi
3

p
cos 2ξ

sin ξ−π=6ð Þ exp −
ffiffiffi
3

p
ξ

h i

As soon as the displacement in the inner plastic zone is obtained, the
total circumferential strain in this zone follows directly from Eq. (22),
where u is divided by the dimensionless radius β. The elastic portion
of circumferential strain is given by Eq. (13)2 where function φ is



Fig. 5. Circumferential strain distributions in the plastic zone of the plate (dashed
lines—plastic portions; solid lines—total values).

Table 1
Comparison of elastic–plastic boundary and circumferential strain obtained from analyti-
cal and finite element studies for various loading cases.

p=Y 0.65 0.75 0.85

c/a 1.066/1.065/1.010 1.164/1.165/1.150 1.273/1.265/1.250

εθθ ¼ ðu=aÞ � 103 3.42/3.24/3.42 4.17/4.17/4.11 5.20/5.19/5.00
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replaced according to Eqs. (7)–(8) for specific values of pressure p and
geometric parameter α (to provide distribution in coordinate β).
Then, the plastic portion of circumferential strain is calculated as a dif-
ference between the total strain and the elastic portion. Knowing the
plastic portion of circumferential strain, the corresponding plastic por-
tion of radial strain is obtained from Eq. (15), and the elastic
portion—from Eq. (13)1, both with the help of Eqs (7)–(8). In the plastic
zone, the coordinate β goes up to the elastic–plastic boundary γ which
is defined for specific values of pressure p and geometric parameter α
by means of Eqs (8), (10), and (9). In the outer elastic zone, the kine-
matic analysis is straightforward and based on Eqs (11)–(12) and (3)
with parameter ϕγ derived from Eqs (8) and (10) for the same values
of p and α.

4. Extension of kinematic analysis to interference-fit structures

In the case of double-shear riveted/bolted joints or, in broad sense,
any elastic inclusion embedded with interference into elastic-
perfectly-plastic plate, some adjustments to the analysis presented
must be done. First of all, the stress–strain solution is not uncoupled
any more due to the additional boundary condition on displacements
at the bolt/plate connection. So, in fact, this type of problems is more
elaborated, especially for the materials with different mechanical prop-
erties for the bolt and the plate.

As concerning elastic bolt, the stress-displacement solution is rather
simple:

σ ̂B
rr ¼ σ ̂B

θθ ¼
2ffiffiffi
3

p A; û
B ¼ 2ffiffiffi

3
p 1

EB
r 1−νB� �

A
	 
 ð23Þ

where A is a constant of integration; EB and νB are modulus of elasticity
and Poisson coefficient of the bolt, respectively. Applying boundary con-

dition of continuity of radial stresses σ ̂B
rr−σ ̂Plate

rr ¼ 0 at r=a and taking

into account that σ ̂Plate
rr ðaÞ ¼ −p̂ , the constant A is found as A ¼ −

ffiffiffi
3

p

p̂=2. So, Eq. (23) becomes

σ ̂B
rr ¼ σ ̂B

θθ ¼ −p ̂, û
B ¼ −rð1−νBÞp̂=EB.
Fig. 4. Radial strain distributions in the plastic zone of the plate (dashed lines—plastic
portions; solid lines—total values).
Introducing now dimensionless parameteruB ¼ u ̂B=band keeping
p ¼ p ̂=Y; β ¼ r=b, one gets the displacement field in the elastic bolt
for further kinematic analysis

uB βð Þ ¼ −β 1−νB� �
pY=EB ð24Þ

Fromhere, the necessary additional boundary condition on displace-
ments must be formulated at the bolt/plate interface

qþ uB qð Þ ¼ α þ u αð ÞY=E ð25Þ

where q=aB/b, aB being the underformed radius of the bolt. Substitu-
tion of Eq. (24) at β=q into Eq. (25) gives the value of initial radius of
the bolt (before the embedment)

q ¼ α þ Y=Eð Þu αð Þ
1− Y=EB

� �
1−νBð Þp

ð26Þ

where u(α) is defined from Eq. (22) at β=α. So, the interference ratio
for an elastic bolt is calculated as

IntE ¼ q−αð Þ=α ð27Þ

In the case of open fastener-holes, the analysis presented also per-
mits an assessment of the residual permanent enlargement of the hole
Fig. 6. Axial deformation at the bore of the hole as a function of pressure for various
geometric ratios.



Fig. 9.Dependence of residual expansion ratios on pressure for various geometric ratios in
general cold expansion processes.

Fig. 7. Dependence of interference ratios on pressure for various geometric ratios in
double-shear bolted joints.
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(after the pressure p is removed) in terms of the residual expansion
ratio

IntR ¼ u αð Þ=α−uelastic αð Þ=α
� �

Y=Eð Þ ð28Þ

where u(α) is defined from Eq. (22) at β=α, and uelastic(α) is the purely
elastic solution for the radial displacement in an annular disk.

To this matter, the assessment of axial deformation at the fastener-
hole location due to pressure may be important. Considering the most
general case of compressiblematerial, the sumof plastic and elastic por-
tions of axial strain has been derived in the plastic zone of the plate

εPzzz ¼ −
ffiffiffi
3

p
cosφþ sinφ

� �
εpθθ= 2 sinφð Þ þ ν
	 
 ð29Þ

whereϕ as a function ofβ,ϕ=ϕ(β), is determined fromEqs. (7)–(8) for
a specific pressure p and geometry α.

5. Discussion and conclusions

Numerical calculations are performed for an aluminum plate with
the following mechanical properties: Y=414 MPa, E=69 GPa, ν=
0.33 [8] and an elastic inclusion (for example, steel bolt). It follows
from the stress analysis that the maximum allowable pressure is p ¼
pmax ¼ 2=

ffiffiffi
3

p
. This value corresponds to the hole size α=0.3376

which implies that for α≤0.3376, the plate never reaches its limit load
carrying capacity (full plasticization), that is, some region of the plate
near the outer radiuswill always be in the elastic state. For bolted struc-
tures, it means that the minimum distance between centers of bolts
should be at least 2.96 times the bolt diameter (b = 2.96a). Hence, the
Fig. 8. Dependence of interference ratios on pressure for typical elastic moduli
combinations in metal interference-fit structures.
analytical modeling of interference-fit structures presumes roughly
α≤0.33. Meanwhile, in general fastener-hole applications, geometrical
ratio α goes up to 1, and for αN0.3376, the plate reaches its limit load
carrying capacity determined directly from the stress analysis for specif-
ic loads pmax≤2=

ffiffiffi
3

p
.

However, to establish actual boundaries of external loading, a ductile
failure criterion should be supplied based on the consideration of
strains. One of the suitable criteria for interference-fit structures and
elastic-perfectly-plasticmaterial is so-called the decohesive carrying ca-
pacity criterion [29]. According to this criterion, the decohesion of the
material may occur as a result of local infinite increase in radial strains,
so a continuous deformation process terminates which automatically
leads to the limit of serviceability of the structure. The review of papers
dealing with problems of decohesive carrying capacity is given by
Szuwalski [27] within elastic-perfectly-plastic material. For similar (to
considered here) engineering problems, this criterion has been applied
to a disk with rigid inclusion under various types of loading, namely,
uniform tension at infinity [29], tension and in-plane torsion [30], ten-
sion and out-of-plane bending [31], and to a variable-thickness annular
disk subjected to internal and external radial loading [32]. In most of
these studies [29–31], at the moment of decohesion, radial strains in-
crease infinitely at a disk/inclusion interface, and in [32]—at a particular
location inside the disk.

In the present study, strain analysis shows that the tendency to in-
finity of radial strains from within the plastic zone also takes place
along the connection of the plate material with the bolt. For this type
of applications (α≤0.3376), the deformation process is limited by the
dimensionless critical pressure pcr=1 (which is 13.4% less than pmax ¼
2=

ffiffiffi
3

p
obtained directly from the stress analysis). Apparently, this level

of pressure corresponds to a stress condition such that the circumferen-
tial stress reaches zero at the bolt/plate interface. Indeed, due to Eq. (5),
dimensionless stresses σrr and σθθ are functions of ϕ only, and their
values at the bolt/plate interface are characterized by parameter ϕα

which explicitly depends on pressure p, Eq.(8). So, for any α, critical
stress condition σθθ=0 at β=α occurs for ϕα=5π/6 and gives pcr=
1. Further increase of pressure leads to a separation of the bolt from
the plate material. This behavior of plate/bolt connection is observed
experimentally and has been studied from various engineering per-
spectives [33].

For general case of fastener-hole applications, the decohesive carry-
ing capacity (occurring as well at pcr=1) exists as a result of local infi-
nite increase in radial strains at the border of the hole location. The
value of α up to which this phenomenon persists is determined from
Eqs. (7)–(8)

α2 ¼
ffiffiffi
3

p
exp −

ffiffiffi
3

p
φα−π=2ð Þ

h i
= 2 sin φα−π=6ð Þ½ � ð30Þ
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Pluggingϕα=5π/6 into Eq. (30) givesα=0.4037. That is, within the
interval 0.3377≤α≤0.4037, the c the limit load carrying capacity as a
mechanism of failure in fastener-hole structures. Then, for αN0.4037,
the ductile failure of interference-fit or cold expanded structures is dic-
tated by the limit load carrying capacity mechanism. The curves bound-
ed the elastic carrying capacity (when the material of the plate starts
yielding), limit load carrying capacity, and decohesive carrying capacity
are presented in Fig. 2.

The uncoupled stress solution, Eqs. (9)–(10), is also used to predict
propagation of elastic–plastic boundary as a function of external load-
ing. Besides the safe fastener-hole locations, the knowledge of the size
of plastic zones in interference-fit structures is particularly important
in a preliminary engineering design dealing with fatigue phenomenon.
It was outlined by Jahed et al. [25] that for structures experiencing fa-
tigue loads, the theories allowing for reliable residual stress calculations
may be chosen on the basis of their capabilities to predict elastic–plastic
zones since these zones are easier to measure experimentally than the
residual stresses. The position of the elastic–plastic boundary as a func-
tion of pressure for various geometric ratios is shown in Fig.3. This plot
may be used efficiently to relate the level of interferencewith the plastic
zone propagation since the pressure and interference are mutually re-
lated parameters [8].

Since consideration of two separate zones, inner plastic and outer
elastic, divided by an elastic–plastic boundary is a simplification of the
real material behavior, the analytical solution proposed was compared
with finite element results obtained by Pinho et al. [18] both for an
elastic-perfectly-plastic material with Y=285 MPa, E=71400 MPa,
ν=0.3 and real aluminum alloy Al 2024-T3 Alclad with the uniaxial
stress–strain relation given (for n=8) by

ε ¼ σ=E; σ b Y
Y=Eð Þ σ=Yð Þn; σ ≥ Y

�

The comparison is provided in Table 1 for various loading cases in
the following sequence: present study/finite element study (elastic-
perfectly-plastic model)/finite element study (real aluminum alloy).
To simulate infinite plate considered in [18], the geometric ratio in the
present study was chosen as α=0.05. From Table 1, it can be seen
that an excellent agreement is achieved between the present analytical
and finite element results.

Distributions of radial and circumferential strains in the plastic zone
of the plate (marked by index “Pz” in the figures) for the critical (at the
moment of decohesion) and someworking pressures are presented, re-
spectively, in Figs 4 and 5, where the dashed lines correspond to the
plastic portion of strains and the solid lines correspond to the sum of
elastic and plastic portions. Besides the tendency to infinity for radial
strains, it can be clearly seen from both figures that it is very important
to take into account the elastic portions of strains in plastic zone of the
plate. Another conclusion is that there is a significant difference (up to
50% on the bolt/plate interface in absolute value) between plastic por-
tion of radial strain and plastic portion of circumferential strain which
shows the adequacy of theHMHyield criterion over the Tresca yield cri-
terion (for which the equality of the absolute values of plastic radial and
circumferential strains is assumed).

Other than that, the HMH yield criterion allows for an assessment of
axial strains at the bore location in fastener-hole structures. It is shown
in Fig. 6 that the axial strain increases rapidly as soon as the pressure
reaches the critical value and is moderate for customary working
loads. The axial strain for the critical pressure is comparable, in fact,
with the circumferential one, and it is almost three times less for work-
ing pressures, so no appreciable thickening at the bore takes place dur-
ing the deformation process. Being technically important by
themselves, these results prove that the plane-stress model is more ad-
equate than the plane-strain one (where it is presumed that εzzPz=0),
and is valid not only for fastener-holes but also for interference-fit struc-
tures. The effect of Poisson coefficient on the axial strain for a customary
working pressure and various hole sizes may be observed directly from
Eq. (29): this effect cannot be ignored and so the compressibility of the
material both in the inner plastic and outer elastic zones should be
taken into account.

Practical recommendations from the proposed strain analysis for en-
gineering applications are mostly related to interference parameters.
Fig. 7 shows predicted dependence of the interference ratio on the pres-
sure up to pmax ¼ 2=

ffiffiffi
3

p
for several characteristic values of α in an alu-

minum plate with a steel bolt. The vertical axis line corresponds to the
critical pressure pcr=1 for which decohesion (separation of the bolt
from the surrounding plate) takes place. The interference ratio is higher
for larger diameter bolts, and maximum safe values (corresponding to
pcr=1) are marked (in percent) in the plot for each α. Besides the
bolt size, the difference in elastic moduli for plate/bolt materials plays
a significant role in the design of interference-fit structures. Some
results for elastic bolts of varying stiffness are depicted in Fig. 8. These
results coincide with [8] and indicate that the softer the bolt is, the
higher the level of interference will be at a given pressure. The maxi-
mum safe values of the interference correspond to pcr=1 which are
marked in the figure.

In general, while modeling fastener-hole applications within the
elastic-perfectly-plastic material, two different failure mechanisms
should be considered, namely, decohesive carrying capacity and limit
load carrying capacity (depending on the ratio α). The dependence of
residual expansion ratio (which also may be called as interference
ratio with a removable mandrel) on pressure for several characteristic
values of αis presented in Fig. 9. The maximum residual expansion
ratio (corresponding to pcr=1, decohesive carrying capacity criterion)
is 2% which is attained for α=0.4. For larger holes, the plate reaches
its fully plastic state (for a certain pressure pf .p.), and limit load carrying
capacity criterion then should be used to calculate residual expansion
ratios.
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