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A B S T R A C T

Dynamic relaxation is an analysis method that can be used to find the static equilibrium state of a struc-
ture undergoing large displacements. Due to the algorithm’s iterative nature, which derives from a damped
dynamic oscillations approach, it can take considerable time when solving models with dense node counts.
This research looks at a vectorised dynamic relaxation implementation, executed on a graphics card’s pro-
cessing unit (GPU) for the most computationally demanding calculations, and compared to traditional
computations on the central processing unit (CPU), to determine if time savings can be found with the
change in processor type. The programming language Python and module PyCUDA are utilised on a desktop
graphics card with over two thousand shader cores, and compared to a quad-core processor using the same
code layout. A vectorised formulation for bar elements and reduced degree-of-freedom beam elements is
used, to analyse the absolute and relative run-times for three benchmark cases. It is found that for models
with low node counts, the CPU is faster, while for medium to highly dense models, the GPU acceleration
can reduce absolute run-times by a factor of three to just over eight. Most benefit is gained when the exe-
cuted code allows the GPU cores to be overloaded, such that complex calculations involving large arrays of
data can be spread over the many cores. This was evident in the GPU load demand, which increased steadily
with increasing node count but remained below 100%, while the CPU was readily activated to maximum
load for even simple models. The time savings are of interest to architects, engineers and researchers utilis-
ing the dynamic relaxation method with medium to complex models, as the benefits can be harnessed with
minimal code alteration.

© 2016 Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic relaxation (DR) [1,2] is a dynamic analysis procedure
where one is interested in the final rest state of the structure, that
is, the static solution after the dynamic oscillations have been suf-
ficiently damped. The structural system is considered to be in equi-
librium after a convergence criterion is satisfied, for example, when
the balance of internal and external forces is suitably close relative
to some tolerance. The initial geometry of the structure need not be
close to the final rest state, and so the process may be initialised
from an approximate geometry and found after the external loads
are instantaneously applied. The method is particularly adept at
solving large displacement problems and has found application with
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analysing assemblies of cable, bending and membrane elements,
and is used extensively for tensile structures [3]. There are various
examples in the literature of using DR to analyse beam elements.
Work related to bending elements stabilised by membranes can be
found in [4]; in [5], six degree-of-freedom elements were used to
analyse the erection and loading of double-layered timber beams
for grid-shells, with an optimisation method for variable cross-
section depths; tubular glass-fibre-reinforced grid-shells have been
investigated by [6], and [7] looked at bending elements supported
by cables and/or cable-nets. Although membrane elements are
not investigated in this research, constant strain triangular ele-
ments could be used, as formulations in the literature describe the
behaviour of the membrane element via the edges of the faces to
give an equivalent cable-net system. Therefore by creating a rela-
tionship between membrane stresses and edge link tensile forces,
the methods described here-in for net structures may be extended
readily for application to membrane elements. Further literature on
membrane elements in the dynamic relaxation method can be found
in [2,8,9] and [10].
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Dynamic relaxation can be grouped alongside other methods such
as the Force Density Method [11,12], Particle–Spring systems [13]
and other form-finding methods, with comparisons detailed in [14].
The use of DR has an advantage over other form-finding methods,
in that engineering material properties can explicitly be included in
the analysis, permitting the inclusion and extraction of structural
forces, stresses and displacements. DR also possesses advantages
over standard analysis methods based on Newton–Raphson solvers
and stiffness matrix formulations, which can have stability problems
in addition to longer run-times [15]. The DR method also has the
advantage of not needing to assemble a full stiffness matrix. Difficul-
ties with stiffness matrix methods can be particularly prevalent with
the large displacements involved in form-finding, such procedures
are better suited for calculating forces, stresses and displacements
at working loads when the initial geometry is already known or the
displacements are small.

For numerical analysis, computations may be executed on the
central processing unit (CPU) or the graphics processing unit (GPU).
The decision as to which is faster for a particular numerical task,
depends on whether fewer cores at a higher clock-rate (CPU based)
performs superior than many hundreds or thousands of cores at a
lower clock rate (GPU based). Often, the former can be better suited
for programming code that runs in a linear manner, making best use
of the higher clock-rate of the CPU, while the latter can achieve sig-
nificant speed gains when the code is formulated, or the calculations
distributed, in a parallel format. This is the case when the com-
putations involve similar repetitive operations, and the order that
those operations are performed does not matter, for example, squar-
ing the first n integers does not require pre-requisite knowledge of
other calculation results to determine its own, however for calculat-
ing the first n Fibonacci numbers this is not the case. Investigations
were conducted by [9] for the DR analysis of membrane structures
using constant strain triangular elements, to determine the poten-
tial speed improvements from various parallel processing strategies
for multiple processors. Attention was drawn to the calculation of
the residual forces, which accounted for 70–80% of the time taken
by the integration scheme. The greatest speed improvements were
found for denser meshes, highlighting efficiencies for more complex
models.

In the use of graphics cards for video games and visualisation,
the near real-time processing of large data-sets is important, such
as with handling the rendering of particles, meshes, lighting and
physics simulations. The processing of large volumes of data in
such a rapid manner, can be carried over to scientific computing
with interfaces that allow the programmer to access the graphics
processing unit for setting up various calculation types, not just
graphics based tasks. GPU computing has been applied to a diverse
range of mathematical and scientific disciplines, including molecu-
lar biology, cryptography, neural networks, computational finance,
astrophysics and climate research, to name only a few. This research
looks at the application of GPU programming to the dynamic relax-
ation method, to determine whether savings can be made in the time
taken to compute the static equilibrium of structures. Improvements
in the analysis time, which can be significant, has practical applica-
tion in the engineering design of structural forms involving cables,
membranes and beam elements.

2. GPU programming

This section presents in Section 2.1 an overview of the NVIDIA
CUDA implementation for GPU computing within PyCUDA for the
programming language Python; hardware differences between CPU
and GPU configurations in Section 2.2, including a description of that
used in this research; and finally in Section 2.3, an introduction to
vectorised programming for efficient computational analysis.

2.1. CUDA and PyCUDA

CUDA is a parallel computing platform created by NVIDIA for use
with their CUDA-enabled GPUs [16]. This research utilises the CUDA
API access by PyCUDA [17] for coding in the Python scripting lan-
guage [18]. Similar procedures to those that will be outlined can be
used with other environments such as CUDA for MATLAB [19] and
OpenCL [20], where the latter does not require NVIDIA chip-sets. The
CUDA Toolkit version 7.5.18 is used with the GeForce 364.51 drivers,
both direct from NVIDIA.

Some of the basic operations when interfacing with the GPU
in PyCUDA are as follows. Data B may be sent from the moth-
erboard memory to the video memory as a GPUArray A, with
A = pycuda.gpuarray.to_gpu(B), A can then be collected from
video memory with B = A.get(). This gives the option to send
GPUArrays and then compute the most computationally expen-
sive routines on the graphics card, as once an operation is called
to act on GPUArrays, it is automatically performed with the GPU.
The programming code must utilise functions that are GPU ready.
Standard element-wise arithmetic operations on GPUArrays can be
processed as normal, such as A = B/C + C*C, as can trigonomet-
ric and other basic operations such as pycuda.cumath.sin(),
pycuda.cumath.acos() and pycuda.cumath.sqrt(). However,
for more complex tasks, not all standard technical computing
functions are immediately available, and so this will involve
manufacturing functions to best utilise the available simpler
functions, such as pycuda.gpuarray.sum(), as well as con-
trolling carefully array sizes with pycuda.gpuarray.zeros(),
pycuda.gpuarray.reshape() and pycuda.gpuarray.ravel().
For this research, only linear algebra operations were needed,
using additional routines found in SCIKIT-CUDA [21] such as
skcuda.linalg.dot() and skcuda.linalg.transpose(). It
was necessary to construct a custom kernel for calculating the cross-
product of a matrix of vectors, as the required function was not
directly available in either PyCUDA or SCIKIT-CUDA. An overview of
the programming and hardware setup is shown in (Fig. 1).

It can be necessary to consider what data are sent to the lim-
ited video memory, particularly when manipulating large arrays
of 64 bit floats with double-precision. The accuracy needed in the
numerical analysis, particularly for engineering application, should
be considered for efficient video memory management. For example,
a 5000 × 5000 square array of 64 bit double-precision takes
200 MegaBytes (MB) of memory, as opposed to the same matrix in
32 bit single-precision taking 100 MB of memory space. If memory
issues occur, it may be necessary to perform the calculations on
smaller sub-arrays, and then to reconstruct the results afterwards. It
is preferred to limit the number of times data are transferred over
to and from the video memory, as the information is sent over the
relatively slower PCI Express Bus. It is more effective to construct
and send the necessary arrays to the video memory before the ini-
tiation of the main computations, and then to retrieve the results
after the computations have finished, rather than having interme-
diate data exchanges. For the same reason it is preferable, if the
necessary function is available, to construct the GPUArrays directly
on the video memory rather than initialising and then sending the
arrays.

2.2. Hardware

To-date, a high-performance consumer desktop CPU will have a
clock-speed of between 3000–4500 MegaHertz (MHz) over four to
eight physical cores, with additional virtual cores available through
the enabling of hyper-threading technology. A high-end GPU equiv-
alent will be within the range of 900–1300 MHz over 384–2048
shader cores, with a variety of professional NVIDIA workstation
Quadro graphics cards currently containing up to 3072 shader cores.
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Fig. 1. Coding interface with the CPU, GPU and associated memory used in this investigation.

When working with the data arrays, the CPU will store the infor-
mation on the motherboard’s random-access-memory (RAM) which
typically has a capacity of up to 32–64 Gigabytes (GB). When work-
ing with the GPU, data are stored on the graphics card’s on-board
video memory, which typically has a capacity of 2–12 GB. Con-
sumer motherboards may also allow the chaining together of two,
three or four graphics cards to utilise multiple GPU chips and video
memory.

The hardware used in this investigation is as follows. The NVIDIA
GPU graphics card is a Zotac GTX 980, possessing 4096 MB of DDR5
memory, with PCI Express ×16 Bus, a clock-rate of 1278 MHz over
2048 cores, and with a Compute Capability of 5.2 (a measure of
the hardware architecture affecting the functions the card can per-
form). The CPU is an Intel Core i5-4690 K running at a clock-rate of
4000 MHz over four physical cores and with 16 GB of available DDR3
memory. The maximum blocksize for the GPU is 1024, which indi-
cates that 340 count of 3-dimensional vectors (340 × 3 = 1020) can
be worked on per block. Therefore multiple blocks are arranged in a
grid for the benchmarks seen later that utilise larger numbers of 3D
vectors in the more complex models. Using electronics pricing at the
time of writing, the CPU and memory can be purchased at a price
of 290 EUR, whilst the graphics card will cost 390 EUR, highlighting
little financial difference between the test components for gen-
eral consumer computer parts. Higher-end professional Intel Xeon
processors with 10 or 12 cores are priced at 1300–2300 EUR, com-
pared to NVIDIA Tesla cards (K20, K40 and K80) which posses
between 2496 and 4992 cores, the price ranges between 1800 EUR
and 5000 EUR.

2.3. Vectorised programming

The principle of vectorised programming is to perform numeri-
cal computations on arrays representing vectors and matrices, rather
than many repetitive scalar operations on individual elements. Such
a programming philosophy is an effective way to make good use
of multiple processing cores, as they can be overloaded (loaded to
100%), so that a large volume of data can be processed with arrays
of hundreds and thousands of elements. When implemented, this
involves grouping the arrays that take part in the operation, so that
vectors and matrices are of the same size, and then performing cal-
culations in one step. Such a procedure leads to code with a minimal

(or sometimes zero) number of loop statements. This concept may
be further explained with an example. Suppose we wish to compute
z = cos x sin y for x = [0, 10] and y = [0, 10] in steps of 1 for x
and y. A purposefully inefficient non-vectorised Python and NumPy
programming layout could be:

The nested loop statement will invoke the inner np.cos(x) *
np.sin(y) calculation 121 times, with each iteration occurring in
sequence one after the other. This is highly undesirable for the fur-
ther embedding of loop statements, as well as for many thousands
of cycles. Instead, it is possible to use the following code as NumPy
functions np.cos() and np.sin() accept vectors or matrices as
inputs:

This places the final result directly in an array z, which has
size (11 × 11), without the use of any loop statements. This form
of coding is efficient with respect to calculation time and resource
use, and needs to be utilised when harnessing the benefits of
GPU acceleration, where spreading the computation over many
processing cores is needed. The np.meshgrid() function is used
to create arrays x and y which are of size (11 × 11), so that
the element by element multiplication can be performed. This is
a characteristic of vectorised programming, in that in order to
maintain consistent vector or matrix array sizes, some variables
may need to be repeated in a larger array size through tiling or
reshaping.
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For the notation in this paper, the multiplication of matrices
and vectors follows standard matrix product notation, such that
Ab, where A is (m × m) and b is (m × n), will give a matrix of
size (m × n). For element by element operations, the Hadamard (or
Schur) product notation is used, where (A ◦ B)i,j = Ai,jBi,j is the
element by element multiplication of two matrices A and B of the
same size. For division, the following notation is used: (A � B)i,j =
Ai,j/Bi,j.

3. Dynamic relaxation

The dynamic relaxation method involves tracing the motion of
structural nodes for small discrete time steps, until the nodes come
to rest, and the structure is in a state of static equilibrium. When
the external loads are applied at the start of the analysis, the struc-
ture undergoes dynamic motion until eventually the displacements
settle and velocities tend to zero, after energy is extracted from the
system through the damping method. This section describes this pro-
cess in more detail and presents the elements used in this research,
and how the entire method may be organised to fit the vectorised
programming framework needed for GPU processing.

3.1. Governing equations

The equation of motion for time t with a system of discrete masses
at node i for n number of nodes, is given by Eq. (1). This is represented
(with matrix and vector sizes in brackets) with mass matrix M̄ (n×n)
with point masses along the diagonal at M̄i,i, viscous damping matrix
C̄ (n × n), stiffness matrix K̄ (n × n), displacement vector x (n × 1),
velocity vector for the x direction vx (n×1) and subject to the forcing
vector for the x direction px (n × 1).

M̄
dvx

dt
+ C̄vx + K̄x = px. (1)

If a residual vector for the x direction is defined as rx = px − K̄x
to represent the out-of-balance forces, then

M̄
dvx

dt
+ C̄vx = rx. (2)

The viscous damping term, which represents the resistance to
motion, depends on the degree of viscous damping and the nodal
velocities, and can be replaced by a process of kinetic damping as will
be explained in Section 3.2, and so the C̄vx term can be removed to
give

M̄
dvx

dt
= rx. (3)

As matrix M̄ is diagonal for discrete masses at each node, it may
be written instead as a vector m and multiplied element by element
to the acceleration vector to give

m ◦ dvx

dt
= rx. (4)

Utilising an explicit integration scheme from [2], the following
central-finite-difference approximation for time t and for time-step
Dt, leads to Eq. (4) being approximated by

m ◦ vt+Dt/2
x − vt−Dt/2

x

Dt
= rt

x. (5)

Rearranging this gives

vt+Dt/2
x = vt−Dt/2

x + Dtrt
x � m. (6)

The new displacement vector at time t + Dt is

xt+Dt = xt + Dtvt+Dt/2
x . (7)

Similar equations can be constructed for the y and z directions,
and can be stacked horizontally in the matrices X = [xyz] and V =
[vx vy vz], which are of size (n × 3), so that

Xt+Dt = Xt + DtVt+Dt/2. (8)

With the residual forces now as R = [rx ry rz], the external loads
as P = [px py pz] and the mass vector tiled horizontally into a matrix
M = [mmm], then the updated velocities are

Vt+Dt/2 = Vt−Dt/2 + DtRt � M. (9)

3.2. Kinetic damping

In a dynamic system, passing through a local minimum poten-
tial energy state is associated with a local maximum kinetic energy,
for example a swinging pendulum passing through its vertical ori-
entation has maximum kinetic energy and minimum gravitational
potential energy. For kinetic damping in the DR, the kinetic energy
of the system is tracked at each time step, and the nodal velocities
are set to zero on the detection of a local peak energy. The kinetic
energy peaks then decline with time as energy is extracted from the
system and it approaches a final rest state. The process then restarts
with the kinetic energy U as zero, as all of the nodal velocities in V are
zero. A typical plot showing the decay of a system’s kinetic energy
and the out-of-balance residual forces can be seen in Fig. 2, for one of
the benchmarks that will be discussed later in Section 4 (specifically
this is the grid-net 20 × 20 model with E = 5 GPa). So for the kinetic
energy

U =
1
2

∑
M ◦ V ◦ V, (10)

when the following is satisfied

Ut+Dt/2 < Ut−Dt/2 (11)
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Fig. 2. Typical decay of a system’s kinetic energy U and reduction of residuals R with
increasing time-steps.
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Fig. 3. Bar elements with internal forces f, applied nodal loads P, lengths l and out-of-
balance residuals R.

the velocities are reset to zero. Kinetic energy damping is used in this
research as it has been found to offer a faster and more stable analysis
when compared to viscous damping, and is simpler to implement as
it does not require intermediate steps to calculate optimal damping
coefficients [15,22,23]. Further improvements to DR kinetic damping
may be possible by the use of adaptive mass matrix calculations [24].
Here, the mass matrix M is not continuously re-calculated through-
out the step cycles for computational efficiency, such a re-calculation
after each kinetic energy restart may lead to a more stable anal-
ysis [22] (although with increased computation cost), but was not
needed for the benchmarks described in Section 4.

3.3. Bar elements

Bar elements may transmit only axial forces, and are suited to
modelling structural elements when the flexural stiffness is insignif-
icant or not to be considered. These elements can be used to model
cable structures with the dynamic relaxation method [25]. If the bar
element length exceeds many times the cross-section dimensions,
the compressive load carrying capacity may be neglected, as com-
pression leads to buckling at even low loads. The following element
description follows from [2], for bars that are assumed to be straight
between end-nodes, with loading applied only directly at the node
points (Fig. 3).

For m number of bar elements, where internal bending moments
and shear forces are not considered, only the vector of axial forces f
(m × 1) for the elements is calculated. For each new time-step this is
given by

ft+Dt = f0 + E ◦ A ◦
(

lt+Dt − l0

)
� l0, (12)

where the following vectors are all of size (m × 1): initial pre-load
f0, Young’s modulus E, cross-section area A, initial lengths l0 and
lengths lt+Dt. Therefore ft+Dt is based on lengths lt+Dt calculated
from the updated geometry Xt+Dt. The areas A can be taken as con-
stant for time t so long as the assumed engineering strains are similar
to the true strains, so that the cross-section area change is negligible,
which will likely be the case when the material is within its elastic
range. When modelling a tie, the axial forces f can be set to zero for
elements found to be in compression (slackness correction).

To calculate the updated residuals, we make use of a connectivity
matrix C of size (m×n), to handle the connectivity between elements
and nodes, so that row i (for element i), has two columns marked
with 1 and −1 for the nodes at the two ends, where the node deemed
the start node is not governing. The use of a connectivity matrix, or
branch–node matrix, is familiar to the form-finding methods out-
lined in Section 1. From here, the distances between two ends of a
bar in the x direction are the x co-ordinate differences Cx. Once this
is multiplied by the force in the bar and divided by the length to give

Cx ◦ f� l, one has the x components of the bar forces. The residual
forces for the x direction are then

rx = px − CT(Cx ◦ f � l). (13)

Similar expressions can be obtained for the y and z co-ordinate
directions to give the residuals ry and rz. Alternatively, the calcula-
tion can be performed in one equation for all three directions with

R = P − CT(CX ◦ F � L), (14)

if f and l are tiled horizontally into (m × 3) arrays such that F = [fff]
and L = [lll].

For the mass vector m, which makes up the mass matrix M, the
axial stiffness at a node can be taken as the sum of the maximum
axial stiffness for all of the elements connected to that node, this is

m =
1
2
Dt2

∣∣∣CT
∣∣∣ (E ◦ A � l0 + f � l) , (15)

which takes the full unresolved axial stiffness for all three co-
ordinate directions m=mx=my=mz. This has been shown to be
satisfactory when compared to evaluating different mass vectors
for each co-ordinate direction. In the absence of an adaptive time-
stepping regime, Dt may be taken as constant, conveniently as unity.
The mass matrix M need not be accurately representative of the
actual nodal masses, as it is only important for the dynamic portion of
the analysis and may be chosen for convergence speed and stability.

3.4. Beam elements

Beam elements can be bent from an initial state (which is often
flat), into a final configuration such as a grid-shell, that is subse-
quently subject to design loads. These elements must be flexible
enough to bend into shape, yet strong enough to not fracture.
Such elements in construction are typically fabricated from wood,
glass/carbon fibre reinforced polymers or aluminium tubes and can
be stabilised laterally by other elements such as cables or mem-
branes, or other beam elements.

In finite element formulations for beam elements in 3D space,
each node is generally characterised by six degrees-of-freedom,
three translational and three rotational. Reducing the degrees-of-
freedom may lead to improvements in computation times. The
following beam element description uses the reduced three degree-
of-freedom formulation from [26] which, as will be seen in the
following equations, naturally follows a path to be vectorised when
programming for the dynamic relaxation method.

For a beam represented by n number of nodes, the position vector
of internal node i (where the internal nodes are [2, n − 1]) is qi, along
with the nodes located at position vectors qi−1 and qi+1, all lay on the
same plane (Fig. 4). The vectors qa=qi−qi−1, qb=qi+1−qi and qc=
qi+1−qi−1 represent the local vectors between the nodes. These vec-
tors can be created for all of the internal nodes and stored in arrays of

Fig. 4. Notation for beam elements: shear vectors Sa and Sb , position vectors qi−1, qi
and qi+1, local vectors qa , qb and qc , local co-ordinate vectors ex and ey , and angle a.
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size (n − 2)×3, by slicing the global nodal co-ordinate matrix X with
appropriate start and end points (these are [1, n − 2], [2, n − 1] and
[3, n]). This gives Qi−1, Qi, and Qi+1, which in turn gives

Qa = Q i − Q i−1 (16)

Qb = Q i+1 − Q i (17)

Q c = Q i+1 − Q i−1. (18)

The array of unit vectors representing the cross-section orienta-
tions for the internal nodes are ex, ey and ez and are again of size
(n − 2)×3.

The curvature vector j is introduced to store the curvatures at
each internal node, assuming a circular arc passing through the three
local nodes and contained within that plane, and is given by

j = 2 sina � ∣∣Q c
∣∣ with, (19)

cosa =
(∣∣Qa

∣∣2 +
∣∣Qb

∣∣2 − ∣∣Q c
∣∣2

)
� (

2
∣∣Qa

∣∣ ◦ ∣∣Qb
∣∣) . (20)

This is easily computed in vectorised form as all |Q| terms have
the same array size, and the trigonometric sin, arccos and vector
norm functions are commonly implemented to take vector input, as
is the case with NumPy and PyCUDA.

A matrix of curvature vectors for the internal nodes, of size
(n−2)×3, can be set-up such that each vector (each row in the array)
is orthogonal to the plane containing the three local nodes,

K = j′ ◦ (Qa × Qb) � ∣∣Qa × Qb
∣∣′. (21)

Here, the notation j′ indicates that j of size (n−2)×1 is tiled hor-
izontally to j′ = [jjj] of size (n − 2) × 3 for array size compatibility,
similarly for |Q a ×Q b|′. The calculation of Q a ×Q b is easily performed
on arrays of vectors using function numpy.cross(a,b,axis) in
NumPy. A custom cross-product PyCUDA kernel was used for this
operation on the GPU.

The components representing the x and y curvature vectors

Kx = (K • ex)
′ ◦ ex (22)

Ky = (K • ey)
′ ◦ ey, (23)

where the dot products K• ex and K• ey are performed using arrays
of vectors, i.e. each row of the curvature array represents a vector
where the dot product operation is performed with the correspond-
ing row in ex or ey. Both K• ex and K• ey are tiled horizontally three
times to match the sizes of ex and ey, as the dot product operation
will collapse one dimension.

The combined moment array is

MC = EI′x ◦ (Kx − Kx0) + EI′y ◦ (
Ky − Ky0

)
+ MT, (24)

where EIx and EIy are the flexural stiffnesses about local co-ordinate
axes ex and ey; Kx0 and Ky0 are arrays of initial curvature vectors,
which can be taken as zero if the beam is initially straight and
unstrained, and MT is the matrix of twisting vectors, which is taken
as zero for this research, indicating no torsion.

To calculate the corresponding shear forces, first the following are
defined,

ua = (MC × Qa) � ∣∣MC × Qa
∣∣′ (25)

ub = (MC × Qb) � ∣∣MC × Qb
∣∣′. (26)

Using ca =Q a × ua and cb =Q b × ub, the array of shear vectors is
given by

Sa = ua ◦
[(∣∣MC

∣∣2 ◦ |ca|
)

� (∣∣Qa
∣∣ ◦ (MC • ca)

)]′
(27)

Sb = ub ◦
[(∣∣MC

∣∣2 ◦ |cb|
)

� (∣∣Qb
∣∣ ◦ (MC • cb)

)]′
. (28)

These shear force vectors represent the forces at the ends of each
element, and must be super-imposed for the whole length of the
beam. This will give the complete array of shear force vectors S
(n × 3), which is then combined with the external point loads P, and
the resolved bar axial forces, for the definition of the out-of-balance
residual forces R. When multiple beam elements are present, the cal-
culations are performed by using an indexing matrix specific to that
beam, representing the global node numbers of the beam’s nodes.

The beam element formulation has been presented for a single
beam. For a structure consisting of many beams it is not desirable to
introduce a loop statement to perform the calculations on each beam
in turn, as shown with the example in Section 2.3. This is because
it is faster to perform calculations simultaneously in one operation
for as many nodes as possible, not just for the nodes of a particu-
lar beam element. This could be rectified by the expansion of the
arrays with a third dimension, i.e. using arrays of vectors of size
(n − 2)×3 × m where m is the number of beams. However, such a
fixed array size would not make it simple to analyse arrangements
of beams that do not have a consistent number of nodes n, and so
would only be suitable for regular grids of beams. Alternatively, and
as chosen here for adaptability, each array of vectors for a beam is
instead stacked vertically under another beam, preserving a 2D array
shape. This involves minimal code alteration, only that to produce
indexing arrays (which are one dimensional) to represent the beams
as if they were all chained together in one continuous line. Once the
indexing has completed, the calculations can proceed with no node
inter-dependence, as each row (each vector) does not depend on any
other row or beam. The shear forces are then assigned at the final
stage to the correct nodes with the indexing arrays.

4. Benchmarks

Three benchmark structures are investigated to assess how the
computation speed of the described dynamic relaxation regime dif-
fers between a CPU or GPU driven analysis. The code for each can
be considered identical, only differing by the relevant CPU or GPU
functions that are called. A tolerance on the mean of the residual
forces for all of the nodes is divided by the applied loading or pre-
stress force, and used as the convergence criterion to indicate static
equilibrium. A time-step of unity was kept constant throughout all
benchmarks. In Section 4.1 a grid-net of ties is described to assess the
performance of cable elements, in Section 4.2 a cylindrical-net sub-
ject to pre-stress and no external load, and in Section 4.3 a series of
parallel simply-supported beam elements is presented.

4.1. Grid-net

An initially flat grid-net is vertically (upwards) loaded via the
nodes with a distributed area load of magnitude 3.0 kN/m2 (Fig. 5).
The grid has outer dimensions of 1 m ×1 m and was discretised
equally in both directions with between 10 and 100 nodes along each
side, with the outer boundary nodes of the grid fixed in all three co-
ordinate directions. This lead to a node count range between 100
and 10000 nodes and between 300 and 30000 degrees-of-freedom
(minus the border boundary constraints). The cable elements are
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Fig. 5. Final deformed grid-net for the 20 × 20 layout with E = 5 GPa, translational
restraints around the blue border.

rectangular solid sections, with width 1 mm and height 1 mm, and
with three different Young’s modulus values investigated, 5 GPa, 70
GPa and 210 GPa, to see the effect of varying the element stiffness.
The six analyses are named as CPU_5, CPU_70 and CPU_210 for the
CPU analyses and GPU_5, GPU_70 and GPU_210 for the GPU analyses.
The cross-section flexural stiffness is not included in this bench-
mark, neither is there any pre-stress. A residual tolerance of 1% was
used for the out-of-balance residual forces normalised by the applied
nodal loads. The grid-nets are initially flat and become taut under the
application of load.

4.2. Pre-stressed cylinder-net

A cylindrical-net with diameter 1.0, height 1.0 and initially
straight vertical sides, was pre-stressed with three values of element
stiffness (Fig. 6). The number of divisions around the circumference
is twice the number of divisions in the vertical direction, of which the
latter varied from 5 to 70 giving 60 to 9730 nodes or 180 to 29190
degrees-of-freedom, minus the fixed nodal degrees-of-freedom at
the top and bottom edges. As there are no externally applied loads at
the nodes, the tolerance chosen was 0.1% of the out-of-balance resid-
ual forces divided by the initial pre-stress force of unity. The axial
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Fig. 6. Final deformed shape of cylinder-net for the 20 × 40 layout with E = 1,
translational restraints around blue borders.

stiffness for the elements was taken as 1, 10 and 100, giving CPU_1,
CPU_10 and CPU_100 as the CPU analyses and GPU_1, GPU_10 and
GPU_100 as the GPU analyses. No flexural stiffness is included in this
benchmark.

4.3. Parallel beams

A grid of equally spaced beams were arranged flat and unstressed
within a 1 m × 1 m area and then vertically (upwards) loaded via the
nodes with a distributed line load of magnitude 0.3 kN/m, as seen in
Fig. 7 for pinned (blue) and roller (red) end conditions. The beam ele-
ments are circular hollow sections with diameter 10 mm, thickness
1 mm, and with a Young’s modulus of 70 GPa. The beams are orien-
tated along the x axis, start with an initial length of 1 m, and in the
first case have a pinned connection at one end and a roller in the x
direction at the other (pin-roller), and in another case pin connec-
tions at both ends (pin-pin). The number of divisions along the length
of the beams is twice the number of beams spaced along the y axis,
of which the latter was varied between 5 and 70, to give between
50 and 9800 nodes. This benchmark tests the flexural stiffness of the
beams in the pin-roller case, and both the flexural and axial stiffness
in the pin-pin case. The tolerance is satisfied when the mean of the
out-of-balance residual forces, which are both the shear forces and
axial forces, are less than 1% of the applied nodal loads.

5. Results

The results from the three benchmark cases are presented here
in terms of absolute run-times in Section 5.1, relative run-times
in Section 5.2, and with an examination on the demand on the
processor and memory resources in Section 5.3.

5.1. Absolute run-times

For all three benchmarks in Fig. 8, Fig. 9 and Fig. 10, the abso-
lute completion time in seconds is plotted against the number of
nodes in each model. These figures plot time logarithmically on the
y-axis to cater for the range and duration of completion times, with
the CPU and GPU curves plotted in red and blue respectively. In
Fig. 8, the stiffer grid-nets with E = 210 GPa and E = 70 GPa took
longer to reach the residual tolerance than the 5 GPa cases. For the
pre-stressed cylinder in Fig. 9, this was again the case, but with no
observable difference in the run-times between the E = 210 GPa and
E = 70 GPa models.
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Fig. 7. Final deformed shape of the pin-roller beams benchmark for the 15 beams ×
30 nodes layout.
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Fig. 8. Results of the grid-net benchmark, absolute completion times versus node
count.
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Fig. 9. Results of the pre-stressed cylinder-net benchmark, absolute completion times
versus node count.

For the GPU and CPU analyses with the grid-net, for node counts
less than 1750, which corresponds to a layout of around 42 × 42
nodes, the GPU calculations are completed overall slower than on the
CPU. Thus for these calculations, which were of the order of a cou-
ple of seconds or minutes, it is disadvantageous to utilise the GPU.
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Fig. 10. Results of the parallel beams benchmark, absolute completion times versus
node count.
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Fig. 11. Results of the grid-net benchmark, relative CPU to GPU completion time
versus node count.

For the pre-stressed cylinder and parallel beams, this interface where
both analysis types take the same time to compute, occurs between
a node count of 1500 and 1750 for the cylinder and around 2500 for
the parallel beams.

5.2. Relative run-times

The performance gains from the GPU are materialised after the
cross-over transition point, which was found to be around 1500,
1750 and 2500 nodes for the three benchmark tests. Fig. 11, Fig. 12
and Fig. 13 divide the CPU time by the GPU time for the grid-net,
pre-stressed cylinder-net and parallel beams respectively. In these
figures, a linear increase in the relative CPU to GPU time can be seen
with respect to increasing node count, across all three models. As the
node count increases, the GPU analysis was up-to 8.5 times faster for
the grid-net and cylinder-net and six times faster for the beam ele-
ments. There appears to be no indication that the speed gains favour
either the stiffer or more flexible models, as all three curves are gen-
erally overlapping throughout the tested node range. There is also no
conclusive evidence that the different boundary conditions for the
beams benchmark was a significant factor, only a slight improvement
for the pin-roller case at node counts above 7000.
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Fig. 12. Results of the pre-stressed cylinder-net benchmark, relative CPU to GPU
completion time versus node count.
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Fig. 13. Results of the parallel beams benchmark, relative CPU to GPU completion
time versus node count.

5.3. Resource demand

Fig. 14 plots the CPU and GPU utilisation with respect to node
count. A node count of zero defines the base-state of the test system
before the start of the analysis. It is seen that the CPU is able to over-
load its four cores for models with a node count below 1500, and
maintains a 100% working load for subsequent increases in the node
count. In contrast, the most complex grid-net model with 10000
nodes and the densest cylinder-net model with 9730 nodes, man-
aged a maximum GPU workload of 80 to 85% over the 2048 shader
cores. For these two net benchmarks, the GPU was at a workload of
less than 25% for when it was found to be slower than the CPU (less
than 1750 nodes). There appears to be no clear distinction in the GPU
utilisation between the cylinder-net and grid-net models.

To utilise the GPU to its full potential, calculations involving
arrays of large size are needed to spread the load over many cores,
to outweigh the lower clock-rate handicap. This condition appears to
have been satisfied less so for the beam elements, as the benchmark
results are slightly lower. This can be observed with the GPU util-
isation staying below 60% for the beams model, and confirms why
this benchmark obtained a maximum improvement over the CPU
of around six times rather than just over eight. The reasons for this
could be in the intermediate steps needed in the beam element anal-
ysis. Some of these steps involved array indexing and array tiling,
and are less intensive on the processor when compared to the cross-
product, dot-product and norm calculations, and so may lower the
average GPU utilisation.
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Fig. 14. CPU and GPU usage versus node count for the three benchmark tests.

Fig. 15 plots the motherboard memory and the graphics card’s on-
board memory utilisation with respect to node count. The change in
the memory utilisation for the CPU analyses is minimal (between 20%
and 30%), given the available supply of DDR3 memory (16 GB). Suffi-
cient memory was available for the GPU analyses, with the utilisation
of the 4 GB memory falling between 10% to 70%, with the beam ele-
ment benchmark taking more memory due to the additional arrays
of vectors needed in intermediate calculations. However, for graph-
ics cards with half of the available memory that was used here, the
utilisation for the dense node counts, would in some instances reach
100%. It is therefore recommended not to compromise on mem-
ory capacity when many large arrays may be used. Solutions would
be to break-down calculations into smaller sub-calculations, clear-
ing memory and/or writing output at intermediate steps, or to use
multiple graphics cards to stack the available memory.

6. Conclusions

Dynamic relaxation can be used to find the equilibrium state of a
structure undergoing large deflections, by finding the rest state after
oscillations have been dampened-out, for instance by kinetic damp-
ing. The method is iterative, with the convergence time depending on
the type of damping, the applied loads and the chosen mass matrix.
This research looked at executing a vectorised dynamic relaxation
regime on both a central processing unit and graphics processing
unit, to assess what benefits to the total analysis time could be
achieved. This was carried out with the scripting language Python
and modules PyCUDA and NumPy, comparing a modern desktop
graphics card with just over two thousand shader cores, to a quad-
core processor.

Constructing vectorised code that can execute on a GPU is not
as straightforward as with running on the CPU. Consideration must
be given beforehand, to the nature of the calculations, as standard
numerical programming functions are not always available. Basic
element-wise operations, linear algebra, standard trigonometric and
mathematical functions can be used, or combined to make other
more complex functions, but sometimes custom kernels may need to
be constructed or alternatives found.

Three benchmarks with different sub-variables were analysed,
examining axial stiffness, flexural stiffness and boundary conditions
for bar and reduced degree-of-freedom beam elements. The grid-
net models that were more axially flexible were quicker to analyse
than their stiffer counter-parts, whilst for the beam models, the pin-
roller case took significantly more time to analyse than the pin-pin
case where axial tie forces acted in addition to the shear forces from
flexure.
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Fig. 15. CPU and GPU memory usage versus node count.
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The relative run-times showed that for the cable-based models
below 1750 nodes, the CPU was faster at analysing the model than
the GPU, and so a GPU analysis cannot be recommended for low node
density models. However for medium to high density net models,
after the 1750 node count, time saving factors of over eight were
achieved with approximately a linear increase in time saved with
increasing node count. For the beam elements, the time savings
appeared after a higher node count of about 2500. Rather than
working with smaller arrays to represent beams individually, the cal-
culations stacked all of the model’s beams into one large array to use
the GPU more effectively. The GPU acceleration for beams lead to run
times that were up to six times faster.

The time-saving benefits are effectively gained when the exe-
cuted code allows the GPU cores to be loaded as much as possible, so
that complex calculations involving large arrays of data can be spread
over the many cores. This factor was evident when investigating the
utilisation of the GPU and CPU, as the load demand on the former
increased steadily, but remained below 100% for all tests, peaking at
about 85% for the densest models. While the CPU was easily activated
to work at maximum load for even simple models. The time-savings
witnessed in this research are of most benefit for complex models
with many thousands of nodes, where a calculation that would take
an hour to analyse on the CPU, has been shown to take only a few
minutes on the GPU, unlocking significant efficiencies in complex
dynamic relaxation models.
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