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Finite-element programs can beused for designing columns and their bracing systems. It iswell known, however,
that the output obtained from such programs is highly dependent upon the input (such as imperfections and
stiffness properties). In the present study, the effects of imperfections on the predicted strength and stiffness
requirements of steel columns and of their bracing systems are investigated. Two different systems are analyzed:
1) a braced non-sway column and 2) a braced sway column. It was found that a poor choice of the shape of the
initial imperfections can provide unrealistic results in terms of both the buckling load on the columns and the
predicted reactions of the bracings. It was also found that superimposing different imperfection shapes can
contribute to obtaining realistic and trustworthy results. Furthermore, it was shown that the shapes of the initial
imperfections that lead to the lowest buckling load and those that result in the strongest bracing forces, are
generally not the same.
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1. Introduction

Structural imperfections are critical for determining the behavior of
slender structural elements and their bracing systems. These imperfec-
tions include construction tolerances, geometrical deviations, residual
stresses, load eccentricities and material deficiencies. The numerical
modeling of some of the aforementioned imperfections can be cumber-
some in design. For example, the modeling of residual stresses would
likely require the use of either shell or solid elements (resulting in com-
plex models). Moreover, the code does not specify a geometric imperfec-
tion to be used if the residual stresses were to be handled separately.
Accordingly, the geometrical imperfections used in design are normally
larger than the actual (measurable) geometrical deviations, so as to be
able to account for the effect of all imperfections.

The important characteristics of a bracing system include its stiffness
and its strength properties. Different in-plane bracing methods include
discrete (as examined in this study), continuous, relative and lean on
(as defined in Galambos et al. [1]), see Fig. 1.

In 1958,Winter [2] presented a simple yet powerful rigid linkmodel
employed for calculating the strength and stiffness requirements of
bracings. This method can be used in particular for calculating the full-
bracing (ideal stiffness) requirement. This requirement represents a
conservative limit for the required bracing stiffness that is needed in
order to achieve buckling between successive bracings. According to
).
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this model, a column can be braced at one or more points. Winter's
rigid link model was later extended by Yura [3] to allow for cases in
which less than full bracing is provided. The rigid link model can also
account for initial imperfections, making the study of bracing forces
and thus the strength requirements of the bracings possible.While sim-
plified approaches such as the rigid link model are possible, analytical
solutions can in some cases also be derived; see e.g. Timoshenko et al.
[4] regarding the concept of buckling capacity when less than full brac-
ing is provided. For derivation of the full bracing requirement of a sway
prevented column with one intermediate bracing, see e.g. Galambos
et al. [1]. The bracing force for a varying applied load, was derived by
Trahair [5]. Even in simple cases, however, such as that of a column
with only one intermediate bracing, closed-form solutions are rather in-
volved and may not be as practical as ones based on a rigid link model.
In the case ofmore complicated systems, closed-form solutionsmay not
even exist. Since the rigid link model usually assumes equally spaced
bracings, Plaut et al. [6–8] in several studies analyzed the implications
of having unsymmetrically spaced bracings. It was found that no ideal
stiffness could be defined if the bracings are spaced unsymmetrically.
This was due to the fact that the displacements at the bracing points
can be suppressed only if there is perfect symmetry, i.e. equal spans.
Theoretically, this means that there will always be an additional elastic
buckling capacity if the bracing stiffness would be increased (see for
instanceMehri et al. [9] who thouroghly analyzed this case). Practically,
however, a “full bracing requirement” can still be said to exist even for
the unsymmetrical case; i.e. when the stiffness of the bracing tends to
a value that generates a buckling capacity that would be obtained if
infinitely rigid bracings were assumed.
rved.
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Fig. 1. a) Discrete bracing. b) Continuous bracing. c) Relative bracing. d) Lean on bracing.

Fig. 2. System A. A column in which the top bracing can be considered to be rigid in
relation to the middle bracing. It could be a scaffolding strut, connected at its top to the
building.
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In modern design, simplified methods such as those involving
the use of rigid-link models for columns, are uncommon since most
engineers have access to advanced finite element (FE) software.
Such modeling may be comparatively easy and fast, even for users
who lack an adequate physical understanding of the problem involved.
It is well known, however, that the validity of results obtained using FE-
modeling is strongly dependent upon the accuracy of the input andmay
completelymisguide userswho interpret it inaccurately [10]. Thus, as is
also demonstrated in the present study, it is important that the effect of
modeling assumptions, such as imperfections, are consideredwhen de-
sign is based directly on FE -modeling.

For the design of columns aided by nonlinear incremental analysis, it
has been shown in numerous studies that the choice of the imperfection
shape strongly affects the results obtained. For instance,Wang et al. [11]
clearly demonstrated howbracing forces can varywith different choices
of the imperfection shape to employ. Giro Coelho et al. [12] studied a
non-sway column (lacking intermediate support), and determined
that the assumed imperfection shape affects the pre-buckling stiffness
and thus the load-bearing capacity of the column. It should bementioned
that the most critical imperfection shape for the column did not always
correspond to the first elastic bucklingmode of the corresponding perfect
(i.e. without imperfections) system.

The Eurocode 3 [13] design code states that the most unfavorable
combination of initial imperfections should be used in design without
clearly specifying what that combination is. In contrast to what was
said in the previous paragraph the Eurocode tacitly suggests, according
to the authors' interpretation, that imperfections related to buckling
modes of the highest order, i.e. buckling between restraints (bracings)
should be used, possibly in combination with the sway imperfections
inherent in the structure (tolerances that the structure has). In addition,
simplified requirements for bracings are specified by the Eurocode, e.g.
a bracing stiffness requirement simply expressed in terms of the design
load of the column. Overall, the approaches specified by the code do not
adequately describe the true physical nature of the structure in an intu-
itive manner; something further being needed.

The output obtained in the FE-modeling of columns can be used in
basically two different ways:

1. The FE-modeling is used simply for calculating the elastic critical load
of a column, Pe. this value then determines the relative slenderness

ratio, λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f yA=Pe

q
, and design with Eurocode 3 [13] for steel can

be used. An FE-program can usually calculate the elastic critical
load of a column either through an elastic buckling analysis of a per-
fect column, or by incremental analysis of an imperfect column (with
an assumed minor imperfection).

2. Alternatively, an appropriate imperfection can be assigned to the
column followed by an incremental non-linear (inelastic) analysis.
Design is then based directly on these results.

The present study investigates, bymeans of nonlinear finite element
analysis of discretely braced steel columns, what imperfection shapes to
use in order to obtain an over all safe design (2nd alternative above).
Attention is directed at the response of the column and of the entire
bracing system (i.e. the bracing forces).
1.1. Aims

The specific aims of the present study are the following:

1. Determine the ideal stiffness of the bracing systems considered and
the corresponding buckling modes of idealized/perfect columns
(i.e. columns without imperfections). This will be mainly analyzed
analytically, by means of the energy method, to be described more
later on in the method section. The purpose of using the energy
method is twofold: (1) to find suitable imperfections shapes (also
linear buckling analysis could have been used here) for use in design
based on FE-analysis and (2) to serve as a validation of the results
from the incremental analysis.

2. Investigate the full bracing requirements, in terms of both the
column strength and its elastic buckling limit, and the bracing
forces involved when employing different imperfection shapes
in an FE-analysis (i.e. a non-linear incremental analysis) of the
columns in question.

3. Examine what the most unfavorable imperfection shapes would
appear to be for the systems in questionwith respect to both column
strength and the bracing forces.

4. Compare the column strength according to the code, Eurocode 3
chapter 6.3.1.2 [13] (using the relative slenderness ratio (λ)) with
the strength predicted by the non-linear FE analysis for different
imperfection shapes.

5. Investigate if there are any imperfection shapes that lead to unrealistic
results in terms of FE-analysis and should thus be avoided in design.

6. Provide a reference aimed at aiding practicing engineers in the
nonlinear design of columns.
1.2. Limitations

The current study is limited to the investigation of in-plane buckling
of steel columns with symmetrical cross-sections (e.g. I-profiles) and
two different statical systems, namely:

1. The first system, referred to as System A and shown in Fig. 2, is a non-
sway columnwith a single intermediatemid-length bracing. Although
such a system is uncommon among real structures, it appears to be the
most common bracing system referred to in the literature such as in
[14,3,5,15,9]. System A could, for example, be a scaffolding strut such
as that shown in Fig. 2, which is attached at its top to a very rigid
structure.

2. The second system, referred to as System B, is a sway column with
two bracings of equal stiffness, placed at the top and at mid-length
of the column. According to the authors' perception, this system is
more commonly found among real structures than System A. It is
hard to imagine many buildings where the top bracing would be
stiffer than the lower, intermediate, ones. One example of the appli-
cation to which System B can be put is shown in Fig. 3.



Fig. 3. System B, a column inwhich the two bracings can be considered to be equally stiff.
The bracings, in this case cables, are connected to two very rigid walls.

Table 1
Buckling and imperfection shapes used in the study. ηðxÞ ¼ δη sinðc πx

2LÞ is the shape of the
column where δη is the magnitude and c a coefficient defining the shape in question. β
is a correction factor used for the iv:th shape (sway imperfection) so that the actual
maximum displacement at the top assumes the correct magnitude (L/100).
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2. Materials and methods

The methods of investigation applied for study of System A and Sys-
tem B are summarized by the following three steps:

1. Find by means of the energy method an approximate value of the
elastic buckling load and the bracing criteria of the systems.

2. Choose on the basis of the results of the energy method one or more
imperfection shapes to be used in a large displacement incremental
FE-analysis. The imperfection shapes are applied both one-by-one
and combined in different ways (as explained in greater detail later
on in Section 2.3).

3. Evaluate on the basis of FE-analysis the buckling loadwith and with-
out regard to the material yield strength. This buckling load (deter-
mined irrespective of material strength) was then used for strength
prediction, in accordancewith Eurocode 3, on the basis of the relative
slenderness ratio, as described in Section 1.
2.1. Material properties and geometry

The geometries of the two systems studied are shown in Figs. 2 and 3,
respectively. Doubly symmetric cross sections are used in the analysis, i.e.
that I ¼ h

2W where I is the moment of inertia (assumed constant) andW
the section modulus. The columns all have a relative slenderness of

λ ¼
ffiffiffiffiffiffi
f yA
Pe

q
¼ 1 based on the unbraced length L, where Pe ¼ π2EI

L2
, which

is of relevance when the strength of the columns are being discussed.
The young's modulus E=210GPa and yield strength fy=275MPa is
used in the analyses.
2.2. Energy method

The energy method is based on the concept of equilibrium between
the loss of potential energy, ΔT, and the gain of internal (strain)energy,
ΔU, at the point of buckling (bifurcation), i.e. that ΔT=ΔU; see e.g. Ti-
moshenko et al. [4]. In the case of column buckling, the loss of potential
energy is derived from the vertical movement (work) of the load, such
that ΔT=Pδx, where δx is the vertical shortening of the column and
P is the load applied. The gain in internal energy in the case of braced
column buckling consists both of the increase in energy of the bracings
and the strain energy required to deform the column into a given shape
(usually assumed to be sinusoidal). In order for the energymethod to
work, a buckled shape of the column must be assumed. Due to this
fact, the results obtained may be nonconservative or, at the best,
equal to the exact solution dependent on the assumed shape. Gener-
ally, the accuracy of the results are determined by the assumedbuckling
shape.

The buckling loads for both System A and B are derived below. The
solution contains a parameter c, see Table 1, in the assumed shape func-
tion η(x) that will be different for the two systems due to the different
boundary conditions these posses.
The first step is to calculate the loss of potential energy, ΔT:

ΔT ¼ Pδx ¼ P
1
2

Z 2L

0
η xð Þ02dx ¼ η xð Þ ¼ δη sin

cπx
2L

� �h i

¼ Pπc
2πcþ sin 2πcð Þ

16L
δ2η ð1Þ

where P is the buckling load, δx the vertical shortening of the column, 2 L
the column length, η(x) the buckling shape, δη(x) maximum amplitude
of the imperfection and c a shape coefficient.

The second step is to calculate the gain of strain energy in the
column, ΔUcolumn:

ΔUcolumn ¼ EI
1
2

Z 2L

0
η xð Þ002dx ¼ η xð Þ ¼ δη sin

cπx
2L

� �h i

¼ EIπ3c3
2πc− sin 2πcð Þ

64L3
δ2η ð2Þ

where EI is the bending stiffness of the column (assumed constant).
The third step is to calculate the energy gain in the bracings,

ΔUbracings. This step will be different for the two systems in question
since System A has only one bracing (at mid-length for x=L) whereas
System B has two (one at mid-length and one at the top).

ΔUSystemA
bracings ¼

k
2

η Lð Þ2
� �

¼ η xð Þ ¼ δη sin
cπx
2L

� �h i
¼ k

2
sin2 cπ

2

� �
δ2η ð3Þ

ΔUSystemB
bracings ¼

k
2

η Lð Þ2 þ η 2Lð Þ2
� �

¼ η xð Þ ¼ δη sin
cπx
2L

� �h i

¼ k
2

sin2 cπ
2

� �
þ sin2 cπð Þ

� �
δ2η ð4Þ

Where k is the bracing stiffness.
The fourth step is to equate the gained energy to the lost energy such

that ΔT=ΔUcolumn+ΔUbracings and solve for the buckling load, P, which
gives:

PA ¼ 1
4

EIπ3 2πc4− sin 2cπð Þc3� �þ 32L3ksin2
cπ
2

� �

L2πc 2cπ þ sin 2cπð Þð Þ ð5Þ

and

PB ¼ 1
4

EIπ3 2πc4− sin 2cπð Þc3� �þ 32L3k sin2
cπ
2

� �
þ sin2 cπð Þ

� �

L2πc 2cπ þ sin 2cπð Þð Þ ð6Þ

where PA is the buckling load for System A and PB the buckling load for
System B.

Eqs. (5) and (6) are plotted in Figs. 4 and 5, respectively. For System
A, due to its end conditions (no displacement can occur here), only inte-
ger values of the c coefficient are allowedwhereas any (positive) values
of the c coefficient are allowed for System B. It should be emphasized



Fig. 4. The critical load for System A (Eq. (5))for varying bracing stiffness k and

different values of the c-coefficient. P is the current buckling load and Pe ¼ π2EI
L2

, i.e.

that when buckling between successive bracings would occur. The ideal stiffness is
indicated by an arrow.
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that in order to find the lowest anticipated buckling load for varying
bracing stiffness, several different curves for different values of the
c-coefficient have to be plotted.

As can be seen in Fig. 4, themaximum buckling load of System A can
never exceed the value given by the curvemarked c=2, corresponding
to the buckling mode of two half sine waves (or exactly the Euler load).
This is the buckling load for a normalized bracing stiffness of greater
than approximately 2, i.e. kL/PeN2. This value thus defines the ideal stiff-
ness of System A (as indicated by the arrow in Fig. 4). This stiffness can
also be estimated by the rigid link method, as described by Winter [2].
For the simple system involved here, it is possible to derive the ideal
stiffness analytically. Galambos [1] derived the normalized stiffness as
being exactly kL/Pe=2. The ideal stiffness predicted by use of the energy
method (indicated by the arrow in Fig. 4) is slightly less than the exact
value due to the approximate nature of the method. For a normalized
stiffness of b2 (kL/Peb2), the maximum buckling load of the column is
given by the curve marked c=1, which is a buckling of half a sine
wave over the entire length of the column. It is also clear that buckling
in three half sine waves according to the curve marked c=3 can hardly
be of practical interest since it always predicts a higher buckling capacity
than the two previous cases; i.e. c=1 and c=2.

As for System A, the maximum possible buckling load of System B
(Fig. 5) is defined by the curved marked c=2. The normalized ideal
stiffness that enables the column to buckle at this value was found to
Fig. 5. The critical load for System B (Eq. (6)) for varying bracing stiffness k and different valu

between successive bracings would occur. At the left is a zoom of the beginning of the plot,
generate the lowest buckling capacity in the region. The ideal stiffness is indicated by an arrow
be approximately kL/Pe=2.3 which is the point where the curve
marked c=1.18 intersects the curve c=2. It should be emphasized
that the curve c = 1.18 which constituted the highest demand on the
bracing stiffness prior to reaching the buckling mode of c=2, was
determined parametrically by considering many values of c.

2.3. Geometrical imperfections

One or more buckling shapes of a structural element are commonly
used to define its initial (imperfect) shape (in deviating from straight-
ness). In engineering applications, sine-functions are commonly used
for the modeling of the initial shape of a column.

The geometrical imperfections used in this study (i.e. the numerical
modeling)were based on the buckling shapes used to estimate the elastic
buckling loads by means of the energy method. These shapes are used
both one-by-one and combined in different ways. When these shapes
were combined, one is selected as being amajor shape (largemagnitude)
whereas the others (one or more) are considered as being secondary
(small magnitude).

The magnitude of the major imperfection shape is Length/500 for
bow imperfections and the Length/200 for sway imperfections; these
values are based on imperfection magnitudes suggested by Eurocode
3 [13]. The magnitude of the secondary imperfections are considered
as being 1/10 of themagnitude of the major imperfection in the combi-
nation considered. It is assumed that themajor imperfection should de-
fine the appearance and the magnitude of the intended imperfection
shape while the secondary imperfection shape should be regarded as
a minor disturbance. The assumed value of 1/10 turned out to work
ratherwell here, i.e. it did not change themagnitude of the intended im-
perfection shape significantly, nor was it so small as to be “neglected”
numerically by the FE-software. It should be emphasized that the
value could just as well be 1/50, 1/100 or any other value substantially
smaller in size than the major imperfection shape value, as long as the
FE-software is capable of “detecting” it. The principle for how imperfec-
tion shapes were combined is shown by Expression (7). Table 1 presents
all the imperfection shapes and magnitudes used for System A and B.

η xð Þ ¼
Xv
n¼i

anδn sin Cn
πx
2L

� �
ð7Þ

where η(x) is the resulting combined imperfection shape, a a constant
which specifies whether the different shapes in the combination in ques-
tion are either used as a major imperfection shape (a=1), a secondary
one (a=1/10) or not used at all (a=0), and c the shape factor as defined
in Table 1.
es of the c-coefficient. P is the current buckling load and Pe ¼ π2EI
L2

, i.e. that when buckling

the three modes being defined as c=0.001, c=1 and c=1.18, these competing so as to
.



Fig. 7. Nonlinear incremental analysis of System A based on the imperfection shapes of
(i),(ii) and (iii) (see Table 1) when used one-by-one. Eurocode1 refers to the design load
that is obtained in accordance to Eurocode 3 if the relative slenderness ratio was
specified by the elastic capacity predicted by the use of either of imperfection shapes
(i) or (iii). Eurocode2 is the corresponding value if the elastic capacity predicted by the
use of imperfection shape (ii) is used. Otherwise, the solid lines are the buckling loads
irrespective of the material yield strength and the dashed ones the buckling loads when
the material yield strength is accounted for directly in the FE-analysis with Eq. (8) as
Failure criterion.
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2.4. FE modeling and evaluation

The commercial FE software Abaqus 6.13.1 is used for the investiga-
tions here. In order to vary the parameters, such as those of bracing stiff-
ness and of imperfection shapes, use is made of Matlab R2014a for
generating input files for Abaqus. The analyses are carried out in 2D,
use being made of type B21 beam elements. A subdivision of 4000 (ele-
ment mesh) is employed. This was found to be more than adequate for
obtaining convergence in the model, although its use is primarily moti-
vated in terms of its generating a smooth shapewhen the imperfections
are applied. The bracings are modeled as linear elastic springs connect-
ed to the ground with one degree of freedom, which is an engineering
feature in Abaqus.

The incremental analyses is based on 3rd order theory (i.e. large
deformations) with load control. The typical appearance of the
curves obtained in an analysis is shown in Fig. 6.

The definition of elastic “failure”, Pel− fail, used in the study is also
indicated in Fig. 6. This is the value that is later presented for the different
analyses in the result section as the “elastic limit”.

Expression (8), known as Navier's formula, is used as failure criterion
takingmaterial strength into consideration. This is a simplified failure cri-
terion defining failure as occurring when the outermost surface of the
cross section reaches a yielding point. Real steel columns, to be sure, can
develop larger plastic zones prior to failure. However, as soon as yielding
in any part of a column's cross section starts, its stiffness will be reduced
dramatically. Accordingly, the additional load that can be applied after
yielding is usually negligible for slender columns. Thus Eq. (8) is assumed
to provide a reasonable failure criterion.

σ failure ¼ f y ¼
N
A
þ M
W

ð8Þ

where fy is the yield stress of thematerial,N the axial force,M the bending
moment and W the elastic section modulus of the cross section of the
column in question.

3. Results and discussion

3.1. System A

The results of the nonlinear incremental analyses of System A, using
different imperfection shapes one-by-one, are presented in Fig. 7 with
the normalized buckling load, P/Pe, on the vertical axis and the normalized
bracing stiffness, kL/Pe, on the horizontal one. The solid lines constitute the
elastic limit of the maximum capacity irrespective of the material yield-
Fig. 6. The typical appearance of the load displacement curves from the FE analyses
performed. The elastic limit as defined in this study is the point where the first plateau
is reached. This since larger displacements than that would be unrealistic for a real
column.
strength, i.e. when the instability (Pel−fail as described in Section 2) for a
given bracing stiffness has been reached. The dashed lines are the buck-
ling loads obtained when taking the material yield-strength into account
(using Eq. (8) as the failure criterion as explained in Section 2.4). The
capacity determined in accordance with Eurocode 3 on the basis of the
relative slenderness ratio (as explained in the method section), full brac-
ing being assumed, is also indicated in the figure. The line marked
Eurocode1 (P/Pe≈0.9), is the design buckling load obtained in accordance
with Eurocode 3 if the theoretical buckling capacity (neglecting the yield
strength) of P/Pe≈2 (as predicted by the imperfections (i) and (iii)) had
been used to define the relative slenderness ratio. The line marked
Eurocode2 (P/Pe≈0.7) is the Eurocode 3 design load if the elastic capacity
(neglecting the yield strength) of P/Pe=1 had been used to define the

relative slenderness ratio. P is the “actual” buckling load and Pe ¼ π2EI
L2

(used for the normalization) is the Euler load obtained if the column
should buckle between successive restraints.

From Fig. 7 it can be seen that all of the imperfection shapes used for
System A (see Table 1), when used one-by-one, yielded unreasonable
results when employed in a nonlinear incremental analysis. Imperfec-
tions (i) and (iii), respectively, made the column buckle in a shape
similar to 3 half sine waves, corresponding to P/Pe≈2, for full bracing.
At the same time, it is clear from the results of the energy study (shown
in Fig. 4) that the maximum capacity has to be b1, i.e. that P/Pe≤1. The
“unrealistic” behavior in the FE-model can be explained in terms of the
lack of a disturbance (e.g. an additional imperfection shape) that would
trigger the column to snap into the more intuitive and lower buckling
mode, i.e. into the shape of two half sine waves.

The imperfection shape (ii), on the other hand, when the column is
considered fully braced, can be said to yield more accurate results in
terms of the maximum buckling load; although it was found to be
independent of the bracing stiffness, which is obviously wrong.
This can also be explained by a lack of a disturbance, in this case at
the bracing points.

The column strength calculated by means of the Eurocode using the
elastic buckling load predicted by the choice of either imperfection
shape (i) or (iii) is P/Pe=0.9 for full bracing as indicated in (7). This is
an overestimation by almost 30% as compared with that obtained by
the use of the buckling load as predicted by the use of imperfection
shape (ii), i.e. involving a capacity of P/Pe=0.6. The failure criterion of
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Eq. (8)) which takesmaterial yield strength directly into account gener-
ally provides a conservative estimate as comparedwith Eurocode values
based on the relative slenderness ratio. This may be due to the fact that
the empirical formulas in the Eurocode are correlatedwith the results of
laboratory tests [16] that can permit some degree of plasticity to occur
prior to failure or simply that the imperfection magnitudes are
conservative.

The results of the nonlinearmodeling of a selection of combined im-
perfection shapes applied to SystemAare presented in Fig. 8 in the same
manner as the results in Fig. 7. The imperfection shape (see Table 1) that
was selected asmajor in a specific combination ismarkedwith a *which
means that a in Eq. (7) is set to 1 for that imperfection. For the secondary
imperfection shapes a is set to 1/10 and for those that are not considered
a is naturally set to 0.

In Fig. 8 it is clearly shown thatmost of the analyses of SystemA that
made use of combined imperfection shapes yielded reasonable results
in terms of elastic buckling capacity. However, the combination of im-
perfection shapes (i) + (iii) yielded unrealistic results, similar to those
obtained in using the imperfection shapes one-by-one. This indicates
that, even if combined imperfection shapes are employed, unrealistic
results may still be obtained. As shown in Fig. 8, all the other combina-
tions that were tested gave the same elastic response; i.e. a maximum
elastic capacity of P/Pe=1 corresponding to the case of full bracing.
The full bracing stiffness, corresponding to the ideal stiffness of a perfect
system, is kL/Pe≈8, which is greater than kL/Pe=2,whichwas obtained
for the corresponding perfect system (i.e. without imperfections, see
Fig. 4). These results demonstrates clearly how imperfections increase
the bracing requirement.

Although most of the analyses using combined imperfection shapes
yielded the same elastic response, there was an apparent difference in
expected design capacity according to Eq. (8) (the dashed curves in
Fig. 8). It is clear that if the maximum initial displacement of the total
imperfection shapes is located between the restraints (e.g.with imperfec-
tion shape (ii) as the major one), a lower capacity was predicted. This is
due to the larger bending moments found in the column as compared
with the case of themaximum initial displacement of themajor imperfec-
tion shape being located at or close to the bracing point (e.g. imperfection
shape (i)). This also means that a combination of initial imperfection
shapes that results in a maximum initial displacement between the
restraints is needed in order for a conservative estimate of the strength
of the column to be obtained.

For the two different imperfection combinations i* + ii + iii and
i+ ii*+ iii, respectively, the bracing forcewas recorded in thenonlinear
analyses; the results are presented in Fig. 9. The curves shown are a
function of the varying bracing stiffness at different load levels, as
Fig. 8. Nonlinear analysis of System A for a selection of combined imperfection shapes,
where the * indicates which shape is considered as being the major imperfection.
expressed by P/Pe, where Pe is the Euler load for buckling between the
restraints.

From Fig. 9 it is evident that the choice of imperfection shapes affects
the bracing force obtained.When the imperfection shape (i) is considered
as being major (Fig. 9a), the maximum initial displacement is located
close to the bracing. This yields a stronger bracing force than when
mode (ii) is considered as being major (Fig. 9b), in which there is a
small initial imperfection displacement at the bracing point. In fact, the
bracing forces are 6–10 times larger. This indicates clearly that if a conser-
vative estimate of the bracing requirements is to be made, a combination
of imperfection shapes that results in a large initial displacement at
the bracing point should best be employed. In addition, as indicated in
Fig. 9, the bracing forces tend to be very large in the case of high level of
load (i.e. for P/Pe=1 and P/Pe=0.7 in the figure), when the stiffness is
close to or less than the full bracing requirement. This confirms state-
ments by Winter [2] and Yura [3] that a bracing stiffness substantially
greater than the full bracing requirement (sometimes called ideal stiff-
ness) is required in order to keep the bracing forces at reasonable levels.

To summarize the investigation of SystemA, the results indicate that
different combinations of imperfection shapes yields conservative
results both in terms of the bracing system requirements and of the
strength of the column. An imperfection generating an initial displace-
ment that has its maximum between the bracings yielded conservative
results in terms of predicting the strength of the column, whereas an
imperfection shape generating a large displacement at the bracing
point yielded conservative results in terms of the strength required of
thebracings. This suggests that if nonlinearmodeling is used for designing
purposes, more than one combination of imperfection shapes ought to be
considered in order to most effectively obtain an overall safe design.
3.2. System B

The results of the nonlinear incrementalmodeling of SystemB, using
the different imperfection shapes (defined in Table 1) one-by-one, are
presented in Fig. 10. The solid lines represent the elastic buckling load,
disregarding thematerial yield strength. Thedashed lines are the buckling
loads accounting for the material yield strength according to Eq. (8). The
line marked as Eurocode1 (P/Pe≈0.9) is the design load predicted by
Eurocode 3 if the elastic capacity predicted by the use of either imperfec-
tion shape (i), (iii) or (iv) (from the FE-analysis) would be used to define
the relative slenderness ratio. The line marked Eurocode2 (P/Pe≈0.7) is
the design load in accordance with Eurocode 3 if the elastic capacity of

P/Pe=1 would be used instead. P is the actual load and Pe ¼ π2EI
L2

is the

Euler load if the column buckles between the restraints.
Fig. 10 can be interpreted as indicating that imperfection shapes (i),

(ii),(iii) and (iv) for System B all yielded unreasonable results when
used one-by-one in the nonlinear incremental analysis. Imperfections
(i), (iii) and (iv), respectively, made the column buckle in a shape
similar to 3 half sine waves and yielded a buckling load of P/Pe≈2 for
the case of a fully braced system. This result is unrealistic since it should
be b1, i.e. that P/Pe≤1 (as was found and explained for SystemA). It was
also found that imperfection shape (ii) can yield reasonable results in
terms of the maximum buckling load when it is fully braced. However,
this load was independent of the bracing stiffness, which as previously
statet, is unrealistic. The imperfection shape (v), on the other hand,
appears to generate reasonable results. In this case since the maximum
capacity of P/Pe=1 is reached for a bracing stiffness that is greater than
the ideal stiffness predicted for the corresponding perfect system; see
Fig. 5. This can probably be explained by the non-symmetrical nature
of the initial imperfection shape in question.

The results of the nonlinear incremental modeling of System B for a
selection of combined imperfection shapes are presented in Fig. 11. It
should be pointed out that there are a large number of possible combi-
nations beyond that which is presented here. Therefore, the results
presented anddiscussed here, should be regarded as examples of possible



Fig. 9.Thebracing forces of SystemAwhen a combination of imperfections (i)+ (ii)+ (iii) (defined in Table (7))was employed,where in a) the imperfection shape (i) is considered being
the major imperfection, whereas in b) the imperfection shape (ii) is considered being the major imperfection.

41A. Klasson et al. / Structures 8 (2016) 35–43
output when using the non-linear incremental analysis in design, not
necessarily representative of the best design assumptions. As for System
A, the imperfection(s) considered major in a specific combination is/are
marked by a *.

Fig. 11 indicates clearly that most of the System B analyses using
combined imperfection shapes yielded reasonable results in terms of
elastic buckling capacity. In contrast, the combination of imperfection
shapes (i) + (iii) yielded unrealistic results that were similar to those
obtained in using the imperfections separately. This indicates that,
even when combined imperfection shapes are employed, unrealistic
results may still be obtained. All other combinations that were tested
gave the same elastic response as was indicated in Fig. 11, there being
a maximum elastic capacity of P/Pe=1 for full bracing. The full bracing
stiffness is kL/Pe≈8, which is greater than kL/Pe≈2.3 for the corre-
sponding perfect system (shown in Fig. 5). This demonstrates clearly
how imperfections increase the bracing requirement level, as was
shown for System A. Also, as was likewise shown for System A, it is
evident that an imperfection shape generating a maximum initial
displacement between the bracings, such as the combination of
(ii)* + (iv)* in Fig. 11, predicts a lesser degree of strength than com-
binations in which the maximum initial imperfection displacement
is located at (or close) to the bracing point, such as the combination
(iv)* + (v)*.

For the two different imperfection shape combinations of (i)* +
(ii) + (iii) + (v) and (i) + (ii)* + (iii) + (v) the forces in the bracings
were recorded in the nonlinear incremental analyses; see Fig. 12. The
Fig. 10. Nonlinear incremental analyses of System B, using the different imperfection
shapes defined in Table 1 one-by-one.
different curves correspond to varying load levels being applied to the
column, expressed as a fraction of the Euler load, Pe (defined as buckling
between the bracings); values of P/Pe=1,0.7,0.2,0.1 were considered.

In Fig. 12 it is evident that the choice of imperfection shape affects
the bracing forces generated in the bracings. When the imperfection
shape (i) is considered as being the major imperfection shape, such as
in Fig. 12a, the maximum initial imperfection displacement is located
close to the middle bracing. This yielded a greater bracing force than
shape (ii) asmajor did, as shown in Fig. 12b. The resulting bracing forces
were 7.5–10 times larger for the top bracing, and 9–10 times larger for
the middle bracing (in the case of a high level of bracing stiffness).
This indicates clearly that if a conservative estimate of the bracing
requirement in terms of strengthwere to bemade, a combination of im-
perfection shapes resulting in a large initial displacement at the bracing
points should be employed. Also, as seen in Fig. 12, the bracing force
tends to take on a very large value for large loads of P (i.e. for P/Pe=1
and P/Pe=0.7 in the figure) when the level of stiffness is low (close to
the full bracing requirement), in the same manner as was found for
System A.

In designing according to the Eurocode, the sway imperfection
(shape (iv) in Table 1) should likely always be regarded as a major
imperfection when present in combination with a bow mode; since
this is an imperfection shape related to the erection of the structure
rather than to the distortion of the column itself. Fig. 13 was thus
prepared so as to include the two imperfection combinations of
Fig. 11. Nonlinear incremental analyses of System B for a selection of combined
imperfection shapes, where the * indicates which shape/s that was/were considered as
being the major one/s in a specific combination.



Fig. 12. Bracing forces of System B. The * indicates which imperfection shape was considered as being major, where in a) imperfection shape (iii) is the major one, whereas in b) the
imperfection shape (iv) is the major one.

42 A. Klasson et al. / Structures 8 (2016) 35–43
(i)* + (ii) + (iii) + (iv)* + (v) and (i) + (ii)* + (iii) + (iv)* + (v),
respectively.

In Fig. 13 it is shown that the top bracing force is affected more
strongly by the sway imperfection than the middle bracing force.
When the bow shape (i) is employed as the major imperfection shape,
provided it is present together with the sway shape, the top bracing
forcec dropped to 0–0.4%; whereas for the same case the bracing force
in the middle bracing remained unchanged within the interval of 1–
1.4% of the applied load. Shape (ii) as the major bow mode results in a
top bracing force in the range of 0.54–0.56% (an increase), whereas
the bracing force in the middle bracing increases to 0.32–0.38% of the
applied load. This means that a sway imperfection generates a larger,
and more reasonable, bracing force for the middle bracing if mode (ii)
is considered as being the major (bow) imperfection shape. However,
it is still the bow imperfection shape with its maximum initial displace-
ment at themiddle bracing point (mode (i)), that resulted in the largest
bracing forces.

To summarize the results obtained for System B, there is a strong
indication that different combinations of imperfection shapes should
be used for conservative design of the bracing system and the column
itself. An imperfection shape that generated an initial displacement,
the maximum of which was located between the bracings resulted in
conservative results in terms of predicting the strength of the column.
Whereas an imperfection shape that generated a large displacement
at the bracing point resulted in conservative results in terms of the
strength of the bracings. This suggests that if nonlinear modeling is used
Fig. 13. The bracing forces of SystemBwhen imperfection shape (iv), the sway imperfection, is
(iv) are the major imperfection shapes, whereas in b) (ii) and (iv) are the major imperfection
for designing purposes, more than one combination of imperfections
should be considered in order to be as certain as possible of obtaining
safe results.

4. Conclusions

The effects of the imperfection shapes on the strength and stiffness
requirements of two different column systems and their bracings
were investigated. An energy solution to the initially straight and elastic
column was derived for both cases and was used successfully for defin-
ing the imperfection shapes and the elastic limits of the column. The
first column system investigated was that of a sway-prevented column
having one intermediate bracing (System A), the second one being a
sway-permitted column having one bracing at the top and one at
mid-length (System B). The general conclusions of the study, which
were found to hold for both systems, are as follows:

1. A poor choice of an imperfection shape can lead to unrealistic results
when nonlinear FE analyses on slender columns are performed. For
the systems analyzed in the present study, an imperfection choice
predicting an elastic capacity twice as high as the Euler load for the
buckling between the restraints was presented. At least one solution
to this problem was to superimpose different imperfection shapes.

2. A higher degree of stiffness of the bracings was found to be required
in order to force the imperfect column to buckle between the
restraints than was determined to be the case for initially straight
considered as being themajor one together with either shape (i) or (ii), where in a) (i) and
shapes.
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elastic column. This was not possible to detect in the FE-modeling
that was conducted when only an imperfection mode having pivot
points at the bracing points was employed, i.e. an imperfection
mode associated with the highest possible buckling mode (Euler
buckling between the restraints). In order to solve this problem,
the imperfection mode in question would need to be complemented
by at least one secondary imperfection shape of another mode.

3. The approach of classifying one imperfection shape as being the
major one and assuming one or more other shapes to be secondary
turned out to yield reliable results in most cases. However, it was
also demonstrated that there could be combinations of different
two imperfection shapes that yielded unrealistic results. Accordingly,
use of a combination of at least three different imperfection shapes is
recommended.

4. An imperfection shape that generates a large initial displacement
between the bracings led to higher bending moments in the column
at loading than an imperfection shape forwhich themaximum initial
displacementwas at the bracing points. Thismeans that an imperfec-
tion shape of this type is needed in order to obtain a conservative
estimate of the column strength required.

5. An imperfection shape generating a large initial displacement at the
bracing points was found to predict a higher level of forces in the
bracings at loading. Accordingly, such an imperfection shape should
be used so as to obtain a conservative estimate of the required bracing
strength and stiffness.

6. Points 4 and 5 suggest that at least two different sets of combinations
(each consisting of at least 3 sub-shapes according to paragraph 3
above) of imperfection shapes should be used in design so as to
obtain safe results both in terms of the strength of the column and
the stiffness and strength requirements of the bracings.

5. Discussion

The conclusions of this investigation are probably valid for other
column configurations as-well.

It should be emphasized that if larger models containing several
columnswithmultiple bracings are analyzed, an evaluation of the struc-
tural behavior in an intuitive manner may be difficult. The possible
number of combinations of different imperfections shapes will simply
be too large. However, qualified model assumptions on any structures
initial imperfection shapes can hopefully be made, the results of this
study being known. The advise for engineers designing slender structures
bymeans of nonlinear analysis are therefore simply to 1)make sure to try
many different possible imperfection shapes based on engineering
judgement and experience and 2) to use simplifiedmethods to validate
the results from the modeling.

Finally, it should be stated that this investigation does not prove
which theworst imperfection shape is for any structures, further studies
being needed. A case specific evaluation of different imperfection
shapes is always recommended when design is based directly on non-
linear FE-methods.
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