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This paper proposes an efficient numerical simulation technique for dynamic time-history analysis of space steel
frames by one-element-per-member model, considering geometric nonlinearity including P-Δ-δ effects, large
global deflections andmember deformations. The curved arbitrarily-located-hinge (ALH) beam-column element
is employed for capturing members' behaviors and simulating initial imperfections, where the internal degree-
of-freedoms (DOFs) are condensed for improving the computational efficiency. The consistent element mass
matrix is derived based on the Hermite interpolation function, and the Rayleigh damping model is adopted for
representing the system viscosity. To solve the equation of the time-history motion, a direct time-integration
method via Newmark's algorithm is utilized for the step-by-step solution. A robust numerical procedure using
the incremental secant stiffness method is introduced for the large deflection analysis of space frames, allowing
arbitrary rotations in a three-dimensional space. Verification examples are given to validate the presentmodel in
handling dynamic behaviors of the steel frames andmembers under the transient actions. The distinct feature of
the research is to propose an effective analytical framework using high-performance elements, dramatically
improving the numerical efficiency and making the method being practical.
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1. Introduction

Time-history analysis is an effective simulation-based method for
evaluating the structural behaviors under the transient actions, such
as earthquake attacks, accidental impacts, and progressive collapse.
This method is a step-by-step integration in a time domain, bringing a
rational simulation of the structure subjected to the dynamic excitations.
However, this procedure is usually computationally costly, mainly since a
small size of time step needs to be adopted for the precision and stability
in the analysis. As reported by Nguyen [1], the most time-consuming
portion in the finite element analysis (FEA) algorithm is to solve the
sparse, linear equations containing the tangent stiffness matrix, incre-
mental degree-of-freedoms (DOFs) and the external force vector. For
example, if a structure is modeled by two schemes, e.g. N elements with
M nodes and 4N elements with 2M nodes, the size of the stiffness matrix
of the latter will be four times as large as that in the former, and the
calculation time increases in line with the matrix's size. Therefore, a
dramatic saving on the computational expense can be achieved when
fewer elements are used in a structural system.

Some researchers have utilized the nonlinear dynamic analysis
method for studying the response of steel frames under the transient
motions, such as Nader and Astaneh [2], Chui and Chan [3], Awkar and
Lui [4], Chan and Chui [5], Gupta and Krawinkler [6], Foutch and Yun
[7], Ohtori et al. [8], Silva et al. [9] and Nguyen and Kim [10] and so
on. Nowadays, the time-history analysis method has already become
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one of the effective tools for seismic design of structures, and is codified
in the modern seismic design standards, such as Eurocode 8 [11].

The prominent emphasis in designing steel members and structures
is the consideration of stability problems, and thereby, second-order
effects in terms of P-Δ and P-δ effects should be properly captured in
analysis. Global frame and localmember imperfections should be neces-
sarily taken into account, otherwise, the factors of instability lying in the
structural system and the members cannot be effectively detected.
Frame imperfection is usually applied according to the Eigen-buckling
mode shapes [12], while the local member imperfection is simulated
using a sine curve (see Fig. 1). The conventional method adopts several
straight elements to represent the imperfection, and it causes extra
manipulating efforts in offsetting the nodes. To this end, one-element-
per-member model is employed in the present study, not only the
computer time can be dramatically reduced, but also does it bring con-
venience inmodeling the initialmember imperfections according to the
requirements in the modern design codes. This research aims to extend
the application of this analytical model to the dynamic time-history
analysis for seismic design.

Therefore, the selection of a beam-column element, which should be
initially curved and can simulate large deformation in an element, is
vital and essential for a successful analysis using a one-element-per-
member model. Therefore, several sophisticated elements have been
developed in the recent decade, especially aiming for simulating slender
members with imperfections. The Pointwise-Equilibrium-Polygonal
(PEP) beam-column element with the high-order shape function is
derived by Chan and Zhou [13], and has been extensively adopted in
the practice over the past 16 years. Subsequently, Chan and Gu [14]
reserved.
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Fig. 1.Modeling of initial member imperfections.
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refined the classical stability function element by incorporating the
member imperfections to the formulations, which is suitable for an-
alyzing the extremely-slender columns. Recently, the Arbitrarily-
Located-Hinge (ALH) element with initial curvatures has been devel-
oped by Liu et al. [15,16], being possessed of an internal node to re-
flect inelastic behavior and the large deformation along the
member length. In the present study, the ALH element is employed
and extended its application to the dynamic time-history elastic
analysis of steel frames.

Twomain approaches are popularly utilized for solving the structural
dynamic problems [17], e.g. response spectrum and time-history analy-
sis methods. The former approach provides an approximated solution to
estimate the peak values of displacements and forces for a system, ignor-
ing all the nonlinear effects, e.g. geometric and material nonlinearities.
This method is usually adopted in the conventional design with a
small-scale excitation due to its simplicity. However, in order to
obtain the ‘exact’ time-history response of the structure at a specified
moment, time history analysis method seems to be the only option. In
the current study, a time integration approach using Newmark's algo-
rithm is introduced,which is unconditionally stable numerical integration
method [18] andwidely adopted for solving structural dynamic problems
to show its reliability and validity. For an accurate reflection of accelerated
motions within members, the consistent mass matrix [17] is derived
based on the Hermite interpolation function. To represent the system
viscosity, an approximated method using the Rayleigh [19] damping
model is adopted.

Structural members might exhibit large deformations in a nonlinear
dynamic analysis. In this paper, the incremental secant stiffnessmethod
[20] based on the co-rotational description is employed for achieving
arbitrarily nodal rotations during the numerical procedure. In this
method, each element has its own local axes system. The element defor-
mations and axes' rigid-body movements are separately considered,
and the final nodal rotations are calculated by a gradual transformation
process instead of a summation. The method has been proven to be
accurate and efficient by extensive research, e.g. So and Chan [21], Ho
and Chan [22], and Liu et al. [23,24].
Please cite this article as: Liu S-W, et al, Dynamic Time-history Elastic Analy
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In this paper, the element formulations, e.g. tangent stiffness, mass
and dampingmatrixes, are derived and presentedwith details, and direct
time-integration method using the Newmark's method is elaborated. For
describing the kinematic motion of elements during the incremental-
iterative procedure, the incremental secant stiffness approach is
introduced. Finally, several examples are given for the verifications and
validations.
2. Assumptions

The following assumptions are taken in the deriving the element
formulations and given as: (1) the Euler–Bernoulli's assumption is
made, where the plan section before and after deformations are kept
being normal to the centroid axes; (2) strains assume to be small,
while the displacements and rotations can be arbitrarily large, using
the incremental secant stiffness method [25]; (3) material's behavior
is assumed to be elastic throughout the whole analysis procedure;
(4) warping and shear deformations are not included in the element
formulations; and (5) the applied forces are conservative and added
to the nodes, remaining to be independent of the loading history.
3. Element formulations

To capture reliably the structural behavior under loads, the influen-
tial effects inherent to the beam-column members are considered, and
namely they are the initial imperfections, large deflection and P-δ effect
and so on. The arbitrarily-located-hinge (ALH) element proposed by Liu
et al. [15,16] is used in the present study. This element explicitly simu-
lates the initial member curvatures, and it is also capable of modeling
the large member deformation by one element. A review of the ALH
element is presented herein, and detailed formulations should be
referred to the original paper proposed by Liu et al. [15,16]. Further-
more, the mass and damping matrixes for the ALH element are derived
in this section.
sis of Steel Frames UsingOne Element perMember, Structures (2016),
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3.1. Shape functions with the initial member imperfections

There are twelve degrees of freedoms (DOFs) in an element as
shown in Fig. 2. Expressing the relations to the lateral displacement,
we have,

vy ¼ N11 N12 N13f g � θ11y θ12y δz
� �T

N21 N22 N23f g � θ21y θ22y δz
� �T

(
and −L=2 ≤ x ≤ ξL

ξL ≤ x ≤ L=2
ð1Þ

vz ¼ N11 N12 N13f g � θ11z θ12z δy
� �T

N21 N22 N23f g � θ21z θ22z δy
� �T

(
and−L=2 ≤ x ≤ ξL

ξL ≤ x ≤ L=2
ð2Þ

where, L is the length of themember; x is coordinates in the local element
axes; ξ is the non-dimensional coordinates of the internal hinge; vy and vz
are the lateral displacement functions along y-axis and z-axis, respective-
ly; θ11y, θ11z, θ22y and θ22z are the external rotations at ends about two
principal axes; δy, δz, θ12y, θ12z, θ21y and θ21z are the internal lateral
deflections and rotations at two principal axes; and N11, N12, N13, N21,
N22 and N23 are shape parameters for the shape functions writing as:

N11 ¼ 2 Lþ 2xð Þ x−Lξð Þ2

L2 1þ 2ξð Þ2
ð3Þ

N12 ¼ Lþ 2xð Þ2 x−Lξð Þ
L2 1þ 2ξð Þ2

ð4Þ

N13 ¼ Lþ 2xð Þ2 L−4xþ 6Lξð Þ
L3 1þ 2ξð Þ3

ð5Þ
Fig. 2. Local member basic fo
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N21 ¼ L−2xð Þ2 x−Lξð Þ
L2 1−2ξð Þ2

ð6Þ

N22 ¼ −
2 L−2xð Þ x−Lξð Þ2

L2 1−2ξð Þ2
ð7Þ

N23 ¼ L−2xð Þ2 Lþ 4xþ 6Lξð Þ
L3 1−2ξð Þ3

ð8Þ

The initial member imperfection is explicitly modeled by a parabolic
equation as,

v0y ¼ vmoy L2−4x2
� �

=L2 −L=2 ≤ x ≤ L=2 ð9Þ

v0z ¼ vmoz L2−4x2
� �

=L2 −L=2 ≤ x ≤ L=2 ð10Þ

where v0 is the shape function of initialmember imperfection; vmo is the
amplitude of initial member curvature at the mid-span and usually set
to be the values given in the modern design codes like Eurocode 3 [12].

Reflecting the bowing effect due to bending is crucial for the analysis
method by one element per member and this can be computed as,

ub ¼ 1
2

Z
L

_vy
2 þ 2v _oy _vy

� �
dxþ 1

2

Z
L

_vz
2 þ 2v _oz _vz

� �
dx ð11Þ
rces and deformations.

sis of Steel Frames UsingOne Element perMember, Structures (2016),

http://dx.doi.org/10.1016/j.istruc.2016.05.006


4 S.-W. Liu et al. / Structures xxx (2016) xxx–xxx
3.2. Secant relations for resisting forces

In order to obtain the resisting forces in the incremental-iterative
procedure, the secant relations are required and can be obtained by
formulating the total potential energy of an element written as,

U ¼ 1
2

Z
L
EA _u2dxþ 1

2

Z
L
EIy€vy

2dxþ 1
2

Z
L
EIy€vz

2dxþ 1
2

Z
L
GJ _t

2
dx

þ1
2

Z
L
P _vy

2 þ 2 _voy _vy
� �

dxþ 1
2

Z
L
P _vz

2 þ 2 _v0z _vz
� �

dxþ
Z

θmy

Smydθþ
Z

θmz

Smzdθ

ð12Þ

where, EA is the axial rigidity along x axis; EIy and EIz are the flexural
rigidities about y- and z- axes respectively; GJ is the torsional rigidity;
θmy, θmz, Smy and Smz are the hinge rotations and stiffness at middle
hinge about the y- and the z- axes respectively.

Since the present study focuses on the elastic response of the
structure, the plastic deformations of the element are fully restrained by
assuming the stiffness of the hinge to be infinitely large. Furthermore, to
simplify the element formulations for the use in an elastic analysis, the
internal node is fixed at the mid-span. Thus, the secant relations can be
rewritten and given in the Appendix I.

3.3. Tangent stiffness matrix

To predict incremental displacements due to applied an incremental
forces, the tangent stiffness is required and calculated as the follows.

δ2Π ¼ ∂2Π
∂ui∂uj

δuiδuj ¼
∂Fi
∂uj

þ ∂Fi
∂q

∂q
∂uj

" #
δuiδuj ð13Þ

Therefore, the tangent stiffnessmatrix is output andwritten in terms
of two parts as,

k½ �e ¼ k½ �L þ k½ �G ð14Þ

where, [k]e is the element tangent stiffness; [k]L is the linear stiffness
matrix of an element; and [k]G is the geometric stiffness matrix of an
element.

The element stiffness matrix is to be condensed to six degrees of
freedom for compatibility to the common finite-element program as
well as improving the numerical efficiency. The relation between the
condensed stiffness matrix [k]⁎ and the generalized force { f} are given
as,

ff g ¼ k½ �� uf ge ð15Þ

and,

k½ �� ¼ k½ �ee− k½ �ieT k½ �−1
ii k½ �ie ð16Þ

ff g ¼ Ff ge− k½ �Tie k½ �−1
ii Ff gi ð17Þ

also, the internal DOFs can be computed as,

uf gi ¼ k½ �−1
ii Ff gi− k½ �ie uf ge

� � ð18Þ

where, {u}e is the externalDOFs andexpressed as e θ11y θ11z θx
�

θ22y
θ22zgT ; {u}i is the internal DOFs as θ12y θ12z δz δy

�
θ21yθ21zgT ; {F}e

is the force vector applied at external nodes as Pf M11yM11zMxM22y

M22zgT ; and {F}i is the internal force vector written as M12y
�

M12z Fz
FyM21yM21zgT .
Please cite this article as: Liu S-W, et al, Dynamic Time-history Elastic Analy
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When the element tangent stiffness is formulated by referring to the
local axes, the global 12 by 12 element tangent stiffness matrix can be
obtained using the transferring matrixes. The process is given as:

K½ �e ¼ L½ � T½ � k½ �� T½ �T þ N½ �
� �

L½ �T ð19Þ

where, [L] is the transformation matrix from the member intermediate
axes to global axes; [T] is the transformation matrix from the member
local axes to the member intermediate axes; and [N] is the rigid-body
movement matrix. All these matrixes can be found in the papers by
Liu et al. [15,16].

Thus, the global stiffness matrix can be assembled as,

K½ �g ¼
XNELE

1
K½ �ie ð20Þ

inwhich, NELE notes for the total element number; and [K]g is the global
stiffness matrix.

3.4. Consistent mass matrix

Dynamic excitation force acts on themass in a structural system, and
its accuracy in a simulation is directly affected by themodelingmethod
for the mass sources. To properly reflect the distributed mass of a
member, the consistent mass matrix is derived based on the Hermite
shape function given by Bathe [17], and determined as:

M½ �e ¼
Z

L
vTρAv
� �

dx ð21Þ

where, v is a vector of parameters in the shape function; and [M]e is the
massmatrix of the element; ρ is the density of thematerial; and A is the
cross section area.

Therefore, the consistent mass matrix for an element can be
formulated as below:

M½ �e ¼
ρAL
420

140 0 0 0 0 0 70 0 0 0 0 0
156 0 0 0 22L 0 54 0 0 0 −13L

156 0 −22L 0 0 0 54 0 13L 0
0 0 0 0 0 0 0 0 0

4L2 0 0 0 −13L 0 −3L2 0
S: 4L2 0 13L 0 0 0 −3L2

140 0 0 0 0 0
Y : 156 0 0 0 −22L

156 0 22L 0
M: 0 0 0

4L2 0
4L2

2
6666666666666666664

3
7777777777777777775

ð22Þ

And the global mass matrix can be correspondingly assembled as:

M½ �g ¼
XNELE

1
L½ � M½ �ie L½ �T

� �
ð23Þ

in which, [M]g is the global mass matrix.

3.5. Rayleigh damping matrix

An accurate simulation on the system viscosity is difficult, due to
the complexity in evaluating the distributed damping coefficient per
member length. In the current study, an approximated method using
Rayleigh damping model [19] is adopted as expressed as below:

C½ �g ¼ a M½ �g þ b K½ �g ð24Þ

herein, [C]g is the global dampingmatrix; and a and b are the proportional
coefficients for the mass and stiffness, respectively, and given as,

a ¼ 4π μ1T1−μ2T2ð Þ
T2
1−T2

2

� � ð25Þ
sis of Steel Frames UsingOne Element perMember, Structures (2016),
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b ¼ T1T2 μ1T1−μ2T2ð Þ
π T2−T2
� � ð26Þ
1 2

where, T1 and T2 are the natural periods at the first and second modes,
respectively; and μ1 and μ2 are the damping ratios at the first and second
natural modes, respectively.

4. Numerical algorithm using the Newmark's method

In order to solve the equations ofmotions in the dynamic time-history
analysis, the update Lagrangian description is adopted in an incremental-
iterative procedure as illustrated in Fig. 3. The numerical procedure with
respect to time is in the time-domain, where the whole time history is
split into many small steps with an equal time-interval Δt. And the solu-
tion for the t + Δt moment is conducted by referring to the last-known
equilibrium condition at the t moment. For the step-by-step integration
of the time steps, the Newmark's [18] algorithm is introduced, which is
an unconditionally stable computer method with the constant-average-
acceleration assumption. This method is stable, extensively accepted for
solving the structural dynamic problems.

The equation of motion at the time t + Δt is conducted on the basis
of the last-known confirmation at the time t, and the incremental form
of the equation can be expressed as,

M½ �g Δ€uf g þ C½ �g Δ _uf g þ K½ �g Δuf g ¼ ΔFf g ð27Þ

where, {Δu}, fΔ _ug and fΔ€ug are the vectors of the nodal displacement,
velocity and acceleration at a time increment; and {ΔF} is the incremen-
tal force vector at a time increment.

For simulating the seismic motion, the incremental force vector is
written as,

ΔFf g ¼ − M½ �g E½ � Δ€xg
� � ð28Þ
Fig. 3. Updated Lagrangian description in

Please cite this article as: Liu S-W, et al, Dynamic Time-history Elastic Analy
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in which, [E] is an index vector for representing the directions of the
seismic motion; and fΔ€xgg is the increment of the ground acceleration.

Using the Newmark's [18] algorithm the velocity and the acceleration
at the time t + Δt can be calculated as,

tþΔt _u
� � ¼ t _u

� �þ 1þ γð ÞΔt t€u
� �þ γΔt tþΔt€u

� � ð29Þ

tþΔtu
� � ¼ tu

� �þ Δt t€u
� �þ 1=2−βð ÞΔt2 t€u

� �þ βΔt2 tþΔt€u
� � ð30Þ

where, {tu}, ft _ug and ft€ug are the displacement, the velocity and the
acceleration at the previous time t; Δt is the constant time-interval; and
γ and β are the Newmark factors, usually taken as 0.25 and 0.5, respec-
tively, affect the stability and reliability in the integration method.

Therefore, the incremental equilibrium equation for calculating the
displacement increment are written as,

K½ �eff tΔu
� � ¼ ΔF½ �eff ð31Þ

in which, [K]eff is the effective stiffnessmatrix at the time t; and [ΔF]eff is
the effective external force vector. They are expressed as,

K½ �eff ¼ c1 M½ �g þ c4 C½ �g þ K½ �g ð32Þ

ΔF½ �eff ¼ tΔF
� �

− c2 M½ � þ c5 C½ �ð Þ t u ̇� �
− c3 M½ � þ c6 C½ �ð Þ t€u

� � ð33Þ

where, c1 to c6 are the factors related to the Newmark's parameters and
given as,

c1 ¼ 1

β Δtð Þ2
ð34Þ

c2 ¼ 1
βΔt

ð35Þ
an incremental-iterative procedure.
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Fig. 5. Configuration of the seven-story frame.

Fig. 4. The comparison results of the cantilever column.
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c3 ¼ −
1
2β

ð36Þ

c4 ¼ γ
βΔt

ð37Þ

c5 ¼ −
γ
β

ð38Þ
Please cite this article as: Liu S-W, et al, Dynamic Time-history Elastic Analy
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c6 ¼ −
γ
2β

−1
� 	

Δt ð39Þ

After obtaining the displacement increment {tΔu} at the time t + Δt,
the increments of velocity and acceleration can be calculated as following,

tΔ _u
� � ¼ c4 tΔu

� �þ c5 t _u
� �þ c6 t€u

� � ð40Þ
sis of Steel Frames UsingOne Element perMember, Structures (2016),
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Table 1
Section ID and properties in the planar frame.

ID Section name Width Depth Web thickness Flange thickness

mm mm mm mm

1 W14x176 398.78 386.08 21.08 33.27
2 W14x211 401.32 398.78 24.89 39.62
3 W14x257 406.40 416.56 29.97 48.01
4 W14x283 408.94 424.18 32.77 52.58
5 W14x117 325.12 617.22 13.97 21.59
6 W14x131 327.66 622.30 15.37 24.38
7 W14x126 330.20 635.00 17.91 30.99
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tΔ€u
� � ¼ c1 tΔu

� �þ c1 t _u
� �þ c3 t€u

� � ð41Þ

Therefore, the models are updated, including the geometry,
displacement, velocity, acceleration and total applied forces, using
the following equations,

tþΔtx
� � ¼ tx

� �þ tΔu
� � ð42Þ

tþΔtu
� � ¼ tu

� �þ tΔu
� � ð43Þ

tþΔt _u
� � ¼ t _u

� �þ tΔ _u
� � ð44Þ

tþΔt€u
� � ¼ t€u

� �þ tΔ€u
� � ð45Þ

tþΔt F
� � ¼ t F

� �þ tΔF
� � ð46Þ

To check the equilibrium condition, the unbalanced forces are
computed as,

tΔF�
� � ¼ tþΔt F

� �
− M½ �g tþΔt€u

� �þ C½ �g tþΔt _u
� �þ tþΔtR

� �� �
ð47Þ

Accordingly, an residual displacement due to the unbalanced forces
is calculated as,

tΔu
� �

i ¼ K½ �−1
eff

tΔF�
� � ð48Þ

And the convergence criterions in terms of residual displacement
and forces are determined as below,

tΔuf gTi tΔuf gi
tþΔtuf gTi tþΔtuf gi

b TOL ð49Þ
Fig. 6. The comparisons results of the seven-story frame.

Please cite this article as: Liu S-W, et al, Dynamic Time-history Elastic Analy
http://dx.doi.org/10.1016/j.istruc.2016.05.006
tΔF�f gTi tΔF�f gi
tþΔt Ff gTi tþΔt Ff gi

b TOL ð50Þ

in which, TOL is the tolerance for the numerical iteration, and usually
taken as 0.1%.

If the convergence criterions are not satisfied, the residual displace-
ment is used to update the model as,

tþΔtx
� �

iþ1 ¼ tþΔtx
� �

i þ tΔu
� �

i ð51Þ

tþΔtu
� �

iþ1 ¼ tþΔtu
� �

i þ tΔu
� �

i ð52Þ

tþΔt u
:� �

iþ1 ¼ tþΔt _u
� �

i þ c4 tΔu
� �

i ð53Þ
Fig. 7. The configuration and dimensions of the 3D frame.
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Table 2
Section ID and properties in the spatial frame.

ID Section name Width Depth Web thickness Flange thickness

mm mm mm mm

1 W12x16 101.35 304.80 5.59 6.73
2 W12x30 165.61 312.42 6.60 11.18
3 W14x30 170.94 350.52 6.86 9.78
4 W14x53 204.72 353.06 9.40 16.76
5 W14x82 256.54 363.22 12.95 21.72
6 W16x67 259.08 414.02 10.03 16.89
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tþΔt€u
� �

iþ1 ¼ tþΔt€u
� �

i þ c1 tΔu
� �

i ð54Þ

The above iterative procedure is repeated till the convergence
criterions are satisfied.

5. Incremental secant stiffness method

The incremental stiffness method on the basis of the updated
Lagrangian description is adopted for updating the model in the
incremental-iterative procedure. In this method, the equilibrium
conditions are determined by referring to the last-known configuration.
The method has been proven to be efficient and effective by many
researchers. For example, Chan [26] used this method for inelastic analy-
sis of the tubular member. Yang and Chiou [27] adopted the method to
analyze the planer frame. Argyris [28] used this approach to study the
three-dimensional frame.
Fig. 8. Dynamic response analy
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At each load increment, the analysis is to calculate the resisting forces
at the i+1th position by referring to the last-known configuration at the
ith position (see Fig. 3). The incremental rotations are formulated as,

Δθy1i ¼ Δαy1i þ Δβyi ð55Þ

Δθy2i ¼ Δαy2i þ Δβyi ð56Þ

Δθz1i ¼ Δαz1i−Δβzi ð57Þ

Δθz2i ¼ Δαz2i−Δβzi ð58Þ

in which,Δαy1i,Δαy2i,Δαz1i andΔαz2i are the incremental rotations about
the last known configuration; andΔβyi andΔβzi are the incremental rigid
body rotations given by,

Δβyi ¼
Δw2i−Δw1i

Li
ð59Þ

Δβzi ¼
Δv2i−Δv1i

Li
ð60Þ

where, Li is the member length at the last known configuration; Δw1i,
Δw2i, Δv1i and Δv2i are the displacements at member along local z- and
y- axes respectively.

The relative incremental twist about the shear center can be simply
evaluated as,

Δθxi ¼ Δθx2i−Δθx1i ð61Þ
sis results of the 3D frame.
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The incremental axial lengthening can be determined as,

Δei ¼ Δub−Δuni ð62Þ

where,

Δuni ¼ Liþ1−Li ð63Þ

and theΔub can be obtained by the first deviation of the expressions of ub.

6. Verification examples

Three examples are selected and presented in this section to validate
the present numerical framework in simulating the dynamic responses
of steel frames and members under the transient actions.

6.1. Example 1: dynamic response of a cantilever column

In order to verify and validate the accuracy of the numericalmethod,
a cantilever steel column is introduced and analyzed by the proposed
one-element-per-member model. The column is 10 meter height with
one end fixed and one end free. Rectangular box section is assigned to
the column, where the section width, height and wall thickness are
500 mm, 500 mm and 50 mm, respectively. The column is made by
steel, and the Young's modulus and density are 205,000 MPa and
77 kN/m3. The dynamic excitation is applied at the first 0.14 s, and
given as below:

a tð Þ
g

¼
1þ 50t
3−50t

−7þ 50t
0

8>><
>>:

t ≤ 0:02s
0:02s ≤ st ≤ 0:10s
0:10s ≤ st ≤ 0:14s

t ≥ 0:14s

ð64Þ

in which, a(t) is the ground acceleration; g is the gravity acceleration;
and t is the time.

The time increment for the analysis is 0.02 s, and the total time is set to
be 10 s to examine the freely vibrated behaviors of the column after the
excitation is withdrawn. The Newmark's coefficients γ and β are taken
as 0.5 and 0.25, respectively. Also, the parameters from the Eqs (34) to
(39) are calculated accordingly as: c1 = 10,000, c2 = −200, c3 = −2,
c4 = 100, c5 =−2 and c6 = 0.

The conventional methods, using one, two or four elements to sim-
ulate a single member, are employed for comparisons, plotting in
Fig. 4(a) to (c). The results from the proposed algorithm are closed to
those from the models using 2 and 4 cubic elements per member. Fur-
ther, the errors are apparent when using one cubic element to simulate
a member. However, the results from those generated by 2 and 4 cubic
elements per member models are closed, indicating at least 2 or more
elements are required tomodel onemember in the conventional method
using the cubic element. Consequentially, the results verify the analysis
accuracy of the proposed method in handling the highly nonlinear
dynamic problem.

6.2. Example 2: time-history analysis of the seven-story frame

In this example, the seven-story planar frame is selected, and an-
alyzed by applying the dynamic excitation to the structure.
Section assignments and dimensions of the frame are presented in
Fig. 5, where the details for the section properties are tabulated in
Table 1. The N–S component of El-Centro earthquake [29] wave is
employed for the current study and applied at the +X direction as the
transient motion. The Young's modulus and density are 205 GPa and
77 kN/m3, respectively. The dynamic coefficients a and b are taken as
0.117 and 0.005, respectively. The Newmark's parameters are c1 =
160,000, c2=−800, c3=−2, c4=400, c5=−2 and c6=0. The deflec-
tion of the nodenumber as 24 (see Fig. 5(b)) in theXdirection is recorded
and plotted in Fig. 6.
Please cite this article as: Liu S-W, et al, Dynamic Time-history Elastic Analy
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The conventional approach using the two cubic elements permember
modeling method is introduced for comparisons, and those results are
shown in Fig. 6. The results clearly indicate the satisfactory performance
of the proposed numerical framework, where the curves from the two
approaches are mostly identical. It also shows the significant reduction
on computation expense and memory storage. For example, the matrix
sizes for the proposed and the conventional models are 144 × 144 and
324 × 324, respectively, and therefore, the saving in the calculation time
can be approximately up to 80% when the current method is used.

6.3. Example 3: four-story 3D frame subjected to seismic excitations

This example employs a 3D multi-story steel frame with irregular
layout for the current study, which is illustrated in Fig. 7. The section
properties are given in Table 2. Four seismic waves are selected, e.g.
the El-Centro (1940), the San Fernando waves (1971), the Loma Prieta
(1989), and the Northridge (1994) [29]. The dynamic coefficients a and
b are 0.092 and 0.0075, respectively, while the Newmark's parameters
are given as: c1 = 40,000, c2 = −400, c3 = −2, c4 = 200, c5 = −2
and c6 = 0. The displacement at the node no. 30 at the X-direction is
monitored and plotted from Fig. 8(a) to (d) for the different seismic
waves.

From the analysis results, it shows that the structure exhibits highly
nonlinear behaviors under the seismic excitations, where large global
deflections and member deformations are observed. The example con-
firms the validity of the present method in investigating the dynamic
behaviors of the steel space frames and members under the transient
actions.

7. Conclusions

This paper presents an efficient numerical analysis framework for
the dynamic time-history elastic analysis of three-dimensional steel
frames using one-element-per-member model. The curved arbitrarily-
located-hinge (ALH) beam-column element is employed for simulating
structuralmembers, which is especially developed for the second-order
design of steel frames fulfilled to the requirements in modern design
codes like Eurocode 3 [12] and AISC 2010 [30] and so on. For improving
the numerical efficiency, the internal DOFs are condensed. The present
research focuses on studying the elastic behaviors of the system, while
geometric nonlinearly, e.g. P-Δ-δ effects, large global deflections and
local member deformations, are considered in the analysis. Consistent
element mass matrix utilizing the Hemite interpolation function is
proposed, and the Rayleigh damping model is employed. To solve the
step-by-step equation to the dynamic motions, a direct time-integration
method by the Newmark's algorithm is chosen. In describing the
kinematic motion, the incremental secant stiffness method is introduced
for allowing arbitrarily large rotations. Finally, several verification exam-
ples are given to verify and validate the presented numerical framework
for solving dynamic time-integration problems. This research integrates
the high-performance element into a robust numerical framework, and
therefore, saving in the computational expense is apparent to make the
current method being practical for practice.
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Appendix I. Secant relations

The secant relations for the curved ALH element without plastic
deformations are given as below:

P ¼ EA
L
eþ 12EA

5L2
δy2 þ 12EA

5L2
δz2 þ EA

30
θ11y2 þ EA

30
θ11z2 þ −

EA
6L

vm0y−
EA
10L

δz
� 	

θ12y

þ EA
30

θ12y2 þ θ11y
EA
6L

vm0y−
EA
10L

δz−
EA
60

θ12y
� 	

þ −
EA
6L

vm0z−
EA
10L

δy
� 	

θ12z

þ EA
30

θ12z2 þ θ11z
EA
6L

vm0z−
EA
10L

δy−
EA
60

θ12z
� 	

þ EA
30

θ21y2 þ EA
30

θ21z2

−
EA
6L

vm0yθ22y þ EA
30

θ22y2 þ θ21y
EA
6L

vm0y−
EA
60

θ22y
� 	

þδz
4EA

L2
vm0y þ EA

10L
θ21y þ EA

10L
θ22y

� 	
−

EA
6L

vm0zθ22z þ EA
30

θ22z2

þθ21z
EA
6L

vm0z−
EA
60

θ22z
� 	

þ δy
4EA

L2
vm0z þ EA

10L
θ21z þ EA

10L
θ22z

� 	

ð65Þ

M11y ¼ 8EIy
L

θ11y þ 4EIy
L

θ12y−
24EIy
L2

δz þ LP
15

θ11y−
LP
60

θ12y−
P
10

δz

þ P
6
vm0y ð66Þ

M11z ¼ 8EIz
L

θ11z þ 4EIz
L

θ12z−
24EIz
L2

δy þ LP
15

θ11z−
LP
60

θ12z−
P
10

δy

þ P
6
vm0z ð67Þ

M12y ¼ 4EIy
L

θ11y þ 8EIy
L

θ12y−
24EIy
L2

δz−
LP
60

θ11y

þ LP
15

θ12y−
P
10

δz−
P
6
vm0y ð68Þ

M12z ¼ 4EIz
L

θ11z þ 8EIz
L

θ12z−
24EIz
L2

δy−
LP
60

θ11z

þ LP
15

θ12z−
P
10

δy−
P
6
vm0z ð69Þ

Fz ¼ 24EIy
L3

8δz þ L −θ11y−θ12y þ θ21y þ θ22y
� �
 �

þ P
10L

48δz þ L −θ11y−θ12y þ θ21y þ θ22y
� �þ 40vm0y


 � ð70Þ

Fy ¼ 24EIz
L3

8δy þ L −θ11z−θ12z þ θ21z þ θ22zð Þ
 �
þ P
10L

48δy þ L −θ11z−θ12z þ θ21z þ θ22zð Þ þ 40vm0z

 � ð71Þ

M21y ¼ 8EIy
L

θ21y þ 4EIy
L

θ22y þ 24EIy
L2

δz þ LP
15

θ21y−
LP
60

θ22y þ P
10

δz

þ P
6
vm0y ð72Þ

M21z ¼ 8EIz
L

θ21z þ 4EIz
L

θ22z þ 24EIz
L2

δy þ LP
15

θ21z−
LP
60

θ22z þ P
10

δy

þ P
6
vm0z ð73Þ

M22y ¼ 4EIy
L

θ21y þ 8EIy
L

θ22y þ 24EIy
L2

δz−
LP
60

θ21y þ LP
15

θ22y

þ P
10

δz−
P
6
vm0y ð74Þ

M22z ¼ 4EIz
L

θ21z þ 8EIz
L

θ22z þ 24EIz
L2

δy−
LP
60

θ21z þ LP
15

θ22z

þ P
10

δy−
P
6
vm0z ð75Þ

Mt ¼ GJ
L
θx ð76Þ
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