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Current design codes for steel and steel-concrete composite structures are based on elastic, perfectly plastic ma-
terial behaviour and can lead to overly conservative strength predictions due to the neglect of the beneficial in-
fluence of strain hardening, particularly in the case of stocky, bare steel cross-sections and composite beams
under sagging bending moments. The Continuous Strength Method (CSM) is a deformation based design method
that enables material strain hardening properties to be exploited, thus resulting in more accurate capacity predic-
tions. In this paper, a strain hardening material model, which can closely represent the stress-strain response of
hot-rolled steel, is introduced and incorporated into the CSM design framework. The CSM cross-section resis-
tance functions, incorporating strain hardening, are derived for hot-rolled steel sections in compression and
bending, as well as hot-rolled steel-concrete composite sections where their neutral axes lie within the concrete
slab in bending. Comparisons of the capacity predictions with a range of experimental data from the literature
and finite element data generated herein demonstrate the applicability and benefits of the proposed approach.
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1. Introduction

The concept of cross-section classification is used in current design
codes to determine the appropriate structural design resistance of me-
tallic sections. The method limits the maximum stress in the cross-
section to the yield stress f;, neglecting the beneficial effects of strain
hardening. Experimental results have shown that the current design
methods, based on the idealised elastic, perfectly plastic material behav-
iour, are often conservative in estimating the resistance of stocky hot-
rolled steel cross-sections in both compression and bending [1-3] and
composite beams under sagging bending moments [4-6]. The Continu-
ous Strength Method (CSM) is a newly developed deformation based
approach to steel design that provides an alternative treatment to
cross-section classification, and enables the effective utilization of strain
hardening. The method was originally developed for stainless steel
structural elements [7-9], which exhibit a high degree of strain harden-
ing, and the same concept has since been applied to structural carbon
steel [10-12] and aluminium alloy [13] design.

A bi-linear (elastic-linear hardening) material model has been
employed in the CSM to date, providing consistency and a satisfactory
representation for design purposes of the observed stress-strain re-
sponses of cold-formed steel, stainless steel and aluminium alloys [9,
12,13]. However, due to the existence of a yield plateau, this CSM bi-
linear material model is less suitable for hot-rolled carbon steel. Thus,
a revised CSM material model is proposed for hot-rolled carbon steel
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that exhibits a yield point, a yield plateau and a strain hardening region.
In this paper, the application of the CSM to bare hot-rolled structural
steel elements, focusing primarily on cross-sections in compression
and bending, including recent developments and comparisons with
test results, is outlined. Extension of the method to composite beams
under sagging bending moments is then described.

2. Application of the CSM to hot-rolled steel elements

The key characteristics of the CSM lie in the employment of a base
curve that defines the maximum level of strain €.y €csmthat a cross-
section can endure prior to failure by (inelastic) local buckling and the
adoption of a material model that allows for strain hardening.

2.1. CSM design base curve

The CSM design base curve provides a continuous relationship be-
tween the strain ratio &.m/€y and the cross-section slenderness Ay,
where ¢, is the yield strain of the material equal to f,/E, with f;, being
the material yield strength and E being the Young's modulus. Within
the CSM, the cross-section slenderness A, is defined in non-
dimensional form as the square root of the ratio of the yield stress f,
to the elastic buckling stress O, as given by Eq. (1). The elastic buckling
stress O should be determined for the full cross-section either using
numerical methods, such as the finite strip software CUFSM [14], or ap-
proximate analytical methods [15]. As a conservative alternative, the
elastic buckling stress of the full cross-section may be taken as that of
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its most slender element using the classical plate buckling expression
[16]. The former approach considers plate element interaction effects
within the cross-section, as used in the direct strength method [17],
whereas the classical plate buckling expression assumes simply sup-
ported conditions at the edges of the adjoining plates, which neglects el-
ement interaction and generally results in a conservative prediction of
O More favourable results are obtained when the effects of plate ele-
ment interaction are considered, and this is therefore recommended,
and adopted in the analyses performed herein by calculating o, using
CUFSM [14]. The CSM design base curve is given by Eq. (2), where g,
is the strain corresponding to the ultimate tensile stress f,. Two upper
bounds have been placed on the predicted cross-section deformation
capacity &csm/ey; the first limit of 15 corresponds to the material ductility
requirement expressed in EN 1993-1-1 [18] and prevents excessive de-
formations and the second limit of C;&,/¢,, where C; is a coefficient cor-
responding to the adopted CSM material model as described in the next
section, defines a ‘cut-off’ strain to prevent over-predictions of material
strength. It is noted that the CSM does not currently apply to cross-
sections where A,>0.68, which is the boundary between slender and
non-slender sections [9], though developments are underway in this
area.

XIJ = \/fy/(fcr (1)
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2.2. Material model

An elastic, linear hardening material model has been adopted in the
CSM to represent the strain hardening response of metallic materials,
such as cold-formed steel, stainless steel and aluminium alloys. Despite
the fact that the actual observed stress-strain response of these mate-
rials is rounded, the elastic, linear hardening CSM material model has
been shown to capture the general strain hardening behaviour suffi-
ciently well to enable accurate design capacity predictions [9,12,13].
However, this bi-linear material model is less suitable for hot-rolled car-
bon steel due to the presence of the characteristic yield plateau, with
strain hardening not commencing until the attainment of the strain
hardening strain &,. Thus, a revised quad-linear material model, as il-
lustrated in Fig. 1, is proposed for hot-rolled carbon steel considering
both the length of the yield plateau and the strain hardening behaviour.
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Fig. 1. Typical stress-strain curve for hot-rolled carbon steel and the proposed quad-linear
material model.

The adopted stress-strain model consists of four stages and can be
written over the full range of tensile strains as:

Ee for e<gy
fy for ey<e<eq,
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in which C;&, represents the strain at the intersection point of the third
stage of the model and the actual stress-strain curve, and fc . is the cor-
responding stress, as shown in Fig. 1. Two material coefficients, C; and
C,, are used in the material model. C; represents the interaction point
discussed previously and effectively defines a ‘cut-off’ strain to avoid
over-predictions of material strength and is included in the base curve
(Eq. (2)); Cyis used in Eq. (4) to define the strain hardening slope Egp,.

fu_fy
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Coupon test data on hot-rolled carbon steels from a series of existing
experimental programs [1,3,11,19-31] were collected and analyzed to
establish predictive expressions for &, &, and the material coefficients
G and G

For the strain at the ultimate tensile stress &,, a comparison between
the collected test data and the predictive expression (Eq. (5)) is shown
in Fig. 2. For hot-rolled carbon steels, &, decreases with increasing f,/f,
initially, but once f/f, is greater than a value of about 0.9 (normally
for high strength steels), &, remains almost constant. The expression
for g, provides good average predictions of the test data, with a mean
ratio of the predicted to test values of &, being 0.96, and a moderate co-
efficient of variation (COV) of 0.25. Test data for high strength hot-rolled
carbon steel are fairly scarce and more test data are required to further
verify Eq. (5).
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The collected coupon test data for strain hardening strain &, is plot-
ted against the ratio of f,/f, in Fig. 3, together with the full cross-section
tensile test data reported by Wang et al. [23] and Foster and Gardner
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Fig. 2. Predictive expression for &, for hot-rolled carbon steels.
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Fig. 3. Predictive expression for &, for hot-rolled carbon steels.

[25]. Based on regression analysis, the following equation is proposed to
predict &, for hot-rolled carbon steels:

0.01 for f—y <0.65
fu
Ep =4 0.1 & -0.055 for 0.65<f—y <0.85 (6)
fu fu
0.03 for 0.85<&51

fu

Using the above equation, the mean value and COV for the ratios of
predicted to test values of €, are 1.05 and 0.42, respectively. Similarly,
using least squares regression of the available experimental stress-
strain curves on hot-rolled steel, the material coefficients C; and C,
may be obtained from the following predictive expressions:
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A detailed description of the quad-linear material model and its val-
idation against further collected experimental stress-strain curves is
currently being prepared.

2.3. Cross-section resistance

Within the CSM design framework, cross-section resistance is
determined utilizing the strain ratio &sm/€y from the design base
curve (Eq. (2)), together with the adopted material model. In this
paper, the quad-linear material model for hot-rolled steel, described in
Section 2.2, is employed.

For non-slender cross-sections (A, <0.68), the CSM axial compres-
sive resistance Nesmra iS calculated as the product of the gross cross-
sectional area A and the CSM limiting material stress fesm, as given by
Eq. (9), in which yyo is a partial safety factor for cross-section resistance
with a recommended value of unity for steel elements [ 18] and f.s;, may
be calculated from Eq. (10) based on the proposed material model. Note
that only the second and third stages of the quad-linear model are used
in the CSM, since currently the method applies to non-slender cross-
sections (&csm/gy 2 1), and progression into the fourth stage would cor-
respond to very high strains and lead to overly complicated resistance
functions, particularly in bending.

= Yem )

for &y <&csm<é&qy

for £gh<€csm <Cq€u (10)
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For sections with A, <0.68, the cross-section resistance in bending
M_csm ra depends upon whether or not strain hardening is experienced
(i.e. whether or not &.g,, > &1 ). If €csm < &, then the cross-section bend-
ing resistance Mcsm ra iS given by Egs. (11) and (12) for major and minor
axis bending, respectively, where Wy, is the plastic section modulus, We;
is the elastic section modulus, y and z refer to the major and minor axes,
respectively, and « is a dimensionless coefficient that depends on the
type of section and axis of bending as defined in Table 1. These expres-
sions allow for the increasing resistance with increasing deformation
capacity (i.e. strain ratio &.sm/€y) due to the spread of plasticity.
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For the more stocky cross-sections, where &, > &5, SOme benefit
from strain hardening can also be exploited, and the CSM cross-
section bending resistance is given by Eqs. (13) and (14), for major
axis and minor axis bending, respectively, where 3 is a dimensionless
coefficient, values of which are given in Table 1.
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24. Comparison with test data and design methods

The resulting predictions from the CSM have been compared with
experimental data on 20 hot-rolled carbon steel stub columns [1,2,11]
and 97 beams [1,3,11,32-35]. All comparisons are made on the basis
of the measured geometric and material properties and with all partial
factors set equal to unity. The average ratios of ultimate test loads Nest
and moments Mg to the CSM (Nesm, Mcesm) and EN 1993-1-1 (Ngc,
M) predicted resistances have been determined and are summarized
in Table 2. The coefficients of variation (COV) have also been calculated
to quantify the scatter of the predictions, and are presented in Table 2. It
can be seen that the CSM provides more accurate and consistent predic-
tions compared with those from EN 1993-1-1 [18], especially in the
bending predictions for the Class 3 cross-sections where an average of
9% enhancement in capacity can be obtained using the CSM due to its
accurate consideration of the spread of plasticity. Further research is
currently underway into refining the material model, incorporating a
larger pool of data on hot-rolled carbon steel material and cross-
sections, and reliability analysis.

Table 1
CSM coefficients v and (3 for use in bending resistance functions.
Axis of bending o B
Major Minor Major Minor
I-sections 2 1.2 0.1 0.05
SHS/RHS 2 2 0.1 0.1
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Table 2
Comparison between ultimate test capacities and design (CSM and EC3) predictions for
cross-section in compression or bending.

Compression Bending resistance

resistance
Neest/Nec Niest/Nesm  Miest/Mec Miest/Mesm
Class1&2 Class3 Class1&2  Class3
Mean  1.07 1.06 1.18 1.17 1.16 1.08
cov 0.08 0.07 0.10 0.10 0.09 0.08

3. Application of the CSM to composite beams
3.1. Background

Steel-concrete composite construction seeks to harness the com-
bined merits of the two materials to enable more efficient and econom-
ical structural solutions. The case of simply supported composite beams
under sagging bending moment, whereby the concrete is largely in
compression and the steel in tension, offers the greatest opportunity
to exploit the full capacity of both materials. Composite beams having
a ductile cross-section, defined as one in which the geometrical and ma-
terial properties are such that strain hardening of the lower flange oc-
curs before the collapse moment is reached, are desirable in
engineering applications since the full plastic moment capacity can be
utilized. Current design codes for composite structures, including EN
1994-1-1 [36], employ simple rigid plastic analysis to calculate the
cross-section bending capacity of composite beams and, as for the de-
sign of bare steel beams, strain hardening effects in the steel are usually
neglected. This can be rather conservative, as shown in several experi-
mental and numerical studies [4,6], where substantial benefits from
strain hardening have been observed. Note that the influence of strain
hardening is implicitly included in the determination of the minimum
degree of shear connection required to achieve the plastic bending re-
sistance of composite beams in Eurocode 4 [37], but increases in load-
bearing capacity for beams with full shear connection, beyond those de-
rived from rigid-plastic theory, are not accounted for.

The focus of this section of the paper is on the assessment of
Eurocode 4 and the development of a more efficient method for the de-
sign of composite beams under sagging bending moment, based on the
results of existing experiments and numerical simulations. An analytical
model is developed to calculate the bending capacity of composite
beams with full shear connection, allowing for the influence of strain
hardening through the quad-linear material model introduced in
Section 2.2. Comparisons of the resistances obtained from the proposed
design expressions with test results are made to demonstrate the accu-
racy and benefits of the method. Finally, a two-dimensional finite ele-
ment (FE) model is established and validated against experimental
results reported elsewhere. Upon validation of the FE models, paramet-
ric studies are performed to investigate the response of composite
beams with partial shear connection, considering the effects of the
steel grade and degree of partial shear connection. An indicative design
approach is then proposed.

3.2. Full shear connection

In the case of composite beams with full shear connection, where the
shear connection deformability is small, a single neutral axis exists and
the bending resistance can be derived analytically using simple equilib-
rium considerations in conjunction with suitable material laws. Herein,
an analytical expression for the bending resistance, incorporating strain
hardening, is derived for one scenario, that being where the neutral axis
lies within the concrete. For other scenarios where the neutral axis lies
within the steel cross-section, expressions for bending resistance have
been derived by Kucukler [38], though benefit from strain hardening
is less likely to be achieved with the presented material model. The

analytical model developed in this paper is based on the following
assumptions:

« The slip between the steel section and concrete slab is ignored and the
distribution of strains throughout the depth of the cross-section is lin-
ear, with constant curvature k, as shown in Fig. 4.

» The composite beam has a ductile cross-section, with its neutral axis
lying within the concrete slab and the strain at the bottom outer
fibre of the steel section reaching &g, as shown in Fig. 4, which re-
quires Yesm/(he + ha) £ €ccsm / (Ecesm + Esn), Where yesm is the distance
between the plastic neutral axis and the extreme fibre of the concrete
slab in compression, h. is the depth of the concrete slab, h, is the depth
of the steel section and & s, is the outer fibre concrete strain.

The stress-strain relationship for the structural steel is represented by

the quad-linear material response of Fig. 1, while the concrete mate-

rial behaviour is assumed to be rigid plastic, with plasticity occurring
at a stress level of 0.85f.q, where f.q is the design concrete (cylinder)
compressive strength. The tensile strength of the concrete is ignored.

The stress within the bottom flange of the steel section is assumed to

be constant through the plate thickness, and the stress f.sm,a is deter-

mined using the strain at its mid-thickness &, csm.

* The presence of any reinforcement in the slab is ignored.

For composite beams with full shear connection under sagging
bending moments, deformation capacity will typically be limited by ei-
ther crushing of the concrete slab or the tensile ductility of the structural
steel. In this study, the maximum outer fibre concrete strain is limited
by the crushing strain of the concrete &, (i.e. & csm = &u = 0.0035),
while the maximum outer fibre strain (at the mid-thickness of the bot-
tom flange) in the steel &, csm has been limited to 15g,.

The initial step in the determination of the bending resistance is to
locate the position of the neutral axis at failure. However, the neutral
axis shifts under increasing curvature, and its location at failure will
therefore depend on which of the two failure modes (concrete or
steel) governs. The general relationship, calculated from the equilibrium
of internal forces, between curvature K., and neutral axis position yesm
is given by Eq. (15), in which beg is the effective width of the concrete
slab, A, is the cross-sectional area of the steel section, t,, is the web
thickness of the steel beam and bgand t¢ are the flange width and thick-
ness of the steel beam, respectively.

0'85debEffYCSm = fyAa + (fcsm,a _fy)bftf
€.
+ 0.5ty (fcsm.a _fy) <hC + ha_ycsm_ %) (15)

csm

Based on the governing values of ke, and yesm and the proposed
material model (Fig. 1), the outer fibre stresses in the steel section at
failure can be determined from Eq. (16).

fcsm, a = fy + Esn[Kesm (N 4+ Da—Yegm) —Esn) (16)

For the case where concrete crushing governs, the limiting curvature
Kesm,c fOr concrete failure can be determined from Eq. (17), representing
the limiting strain of concrete &, being reached at the outer concrete
fibre.

€ _ 0.0035

csm YCSm

Kesme = (17)
Substituting Egs. (16) and (17) into Eq. (15), the quadratic Eq. (18)
can be derived to determine the position of the neutral axis Ycsm,c, in

which the coefficients B, C and D are given by Egs. (19), (20) and (21),
respectively.

Bygsm‘c + Cycsm.c +D=0 (18)
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Fig. 4. Strain and stress distributions for a composite beam with full shear connection and the proposed material model.

B ~0.0035 £ \2
B= 0-85fcdbeff 2 tWEsh (1 + m) (19)
&
C = 0.0035Eq, (1 + Wg‘%) [t + tw(he + ha)]—f, A (20)
D = —0.0035Eq, (hc + h,) [bftf + %W (he + ha)] (21)

When steel failure governs the deformation capacity (i.e. when the
strain at the outer steel fibre reaches the limiting strain of 15¢,), the lim-
iting curvature Kesm,a can be determined from Eq. (22):

15¢y

K, = 22

o hc + ha —Yesma ( )
Similarly, substituting Eqs. (16) and (22) into Eq. (15) results in

Eq. (23), which can be used to determine the neutral axis position

Vesm,a At the point of failure in the steel section.

Yesma = [fyAa + Esh(]sgyfssh)bftf
Esh _ _ Esh Esh _ _ Esh
+ 5 (158 ) tw(he + ha)(l 155, 1/]0.85f caberr + =5 (158y—ésn) tw ( 1 156,
(23)

The lower of Kesm ¢ and Kesm 2 defines the governing failure mode. The
relationship between the neutral axis position yc, and its correspond-
ing curvature Ky, for a typical composite beam, given by Eq. (15), is
plotted in Fig. 5 as an example to illustrate the above calculation pro-
cess. The geometric and material properties employed are: beg =
1500 mm, he = 120 mm, f,q = 35 N/mm?, f, = 355 N/mm? E =
210,000 N/mm? and the steel section is a UB 475 x 152 x 60. The strain

60 T
]
1
50 ;/chm.c : Concrete crushing
1
1
40 \
1
—_ Yesma . 1 .
£ 30 | Steel section ;  Steel failure
E fully yields 1
e 1
L 1
20 L !
Onset of yielding 1
in steel : —Eqn. (15)
10 I . . - =Eqn. (22)
1 csm.a CSME  ae. E:
qn. (17)
0 : L7 N ;
0 0.2 04 0.6 0.8 1 1.2 1.4

Kesm (Mm1x107)

Fig. 5. Relationship between neutral axis position y s, and curvature Kegm.

hardening strain &, and modulus Eg, were determined from
Egs. (6) and (4), respectively. In this case, at failure, the neutral axis po-
sition lies within the concrete slab and the steel section is fully yielded.
Fig. 5 shows how the position of the neutral axis moves downwards
with increasing curvature, and there is a change in slope as the deforma-
tion progresses through the elastic region, outer fibre yielding of the
steel and strain hardening of the steel. The points at which the concrete
failure criterion (Eq. (17)) and the steel failure criterion (Eq. (22)) inter-
sect with Eq. (15) define the corresponding neutral axis positions and
curvatures at failure. For the case illustrated, steel failure is the
governing mode.

Finally, the moment capacity of the composite section, considering
the first three stages of the quad-linear material model, featuring both
the yield plateau and strain hardening, can be calculated from Eq. (24).

h
Mcsm,c = (fcsm 7fy>bftf (hc + haf yc25m> + fyAa <hc + 73 - Ytt25m>

t,
+ % <fcsm_fy) (hc + ha_ % _ycsm> [4(hc + ha) +2

Esh
Kesm

_ym]
(24)

The resistances obtained from the proposed analytical method have
been compared against a series of experimental results collected from
the literature [4,6] on composite beams with full shear connection.
The comparisons, shown in Table 3, have been made on the basis of
the measured geometric and material properties, with all partial factors
set to unity. The proposed method, accounting for strain hardening, may
be seen to provide a more accurate prediction of test capacity than the
current approach given in Eurocode 4.

3.3. Partial shear connection

In the case of composite beams with partial shear connection, the
contribution of strain hardening to the cross-section moment capacity
cannot be calculated using the analytical method described in
Section 3.2. The deformability and finite resistance of the shear connec-
tion leads to a more complex arrangement of internal forces in the com-
posite section, with two distinct neutral axes lying within the concrete
slab and the steel section. A numerical approach, using the finite ele-
ment (FE) package ABAQUS [39], was adopted herein to predict the col-
lapse load of composite beams with partial shear connection. The
numerical models were initially validated against a series of

Table 3
Comparison between ultimate test moment capacities and design predictions (CSM and

EC4) for composite beams.

Mec/Mest Mesm,o/Mtest Mesm,o/Mec
Mean 0.92 0.97 1.05
cov 0.05 0.06 -
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experimental results and then used to perform parametric studies to
generate additional data over a range of steel grades and shear connec-
tion ratios.

3.3.1. FE model and validation

The FE method has been used in a number of studies to investigate
the behaviour of composite beams [40-43]. Among the previous re-
search, a two-dimensional FE model for composite beams has been de-
veloped and validated by Queiroz et al. [42]. This two-dimensional
model was shown to provide accurate results and was far more efficient
than equivalent three-dimensional representations in terms of reduced
numerical convergence issues and processing times. A similar approach
was adopted in this paper. Geometric and material nonlinearities were
considered in the model. The steel beam and concrete slab were
modelled using quadratic beam elements (B22), while the mechanical
shear connectors were simulated using rigid links (CONN2D2) and non-
linear spring elements (SPRINGA), as shown in Fig. 6.

The material properties of the steel beam were represented using
the stress-strain curve shown in Fig. 1. In the validation of the two-
dimensional FE models against existing tests, the steel reinforcement
in the concrete slab was simulated using the *REBAR keyword in
ABAQUS, which can be used to add discrete axial reinforcement to
beam elements. Note that only longitudinal reinforcement was consid-
ered in the FE models for simplicity. An elastic perfectly plastic material
model was used for the reinforcement. The nonlinear stress-strain rela-
tionship of concrete in compression was described using Eq. (25), ac-
cording to EN 1992-1-1 (2004) [44] as:

Oc/fan = + (k—=2)(&c/€q) .

where o is the compressive stress (in MPa), fcr, is mean value of con-
crete cylinder compressive strength (in MPa), & is the compressive
strain, & is the compressive strain at the peak stress f.,, and taken as
&q = min(0.7/%31, 2.8)%o, k = 1.05Ecméa/fem, Where the mean value of
the secant modulus of elasticity of concrete E., (in GPa) is obtained
from Ecmn = 22 X (fem / 10)%3, &ey is the ultimate compressive strain
and is taken as g = min[2.8 + 27 x (98 — fim / 100)?, 3.5]%., and
feem is the mean value of the axial tensile strength (in MPa) and may
be determined through fem = 0.3 X (fom — 8)%° when f., < 58 MPa,
otherwise foym = 2.12 x In(1 + f. / 10). The concrete strain at cracking
is taken as 0.01, beyond which the concrete carries zero stress. The
stress-strain model for the concrete is illustrated in Fig. 7.

The approach taken to the modelling of the shear connectors is indi-
cated in Fig. 6. The load-slip relationship proposed by Johnson and
Molenstra [37] was used to simulate the shear stud connectors, where
curve A and a maximum slip sp,.x = 6 mm was adopted in the present
study. Failure was signified when the designated maximum strains in
either of the materials were reached: &., = 0.0035 for the concrete
and &, sm = 15¢, for the steel, or when the maximum allowable slip
in the shear connectors, defined as sy.,x = 6 mm, was reached. The
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Fig. 7. Stress-strain relationship of concrete material employed in the FE model.

Riks solution method was used to trace the nonlinear equilibrium
paths of the models and to obtain the peak loading magnitude.

The FE model developed in this sub-section was employed to ana-
lyze a series of simply supported composite beams reported in the liter-
ature [4,5,45,46]. Experimental investigations with a total of 14
composite beams with full shear connection and 5 with partial shear
connection were employed herein to validate the FE model. Two typical
load versus mid-span deflection curves obtained from the FE model are
compared with those obtained experimentally and numerically with a
3D FE model [43], as shown in Fig. 8.

The results indicate that the FE models developed herein are capable
of accurately simulating the load-deformation response and ultimate
capacity of composite beams with both full shear connection and partial
shear connection, with the mean value of the ratio of FE ultimate capac-
ity to test ultimate capacity (Ngg/Neest) being 0.99 and the COV being
0.054.

3.3.2. Parametric analysis and design approach

To evaluate the influence of the steel grade and the degree of shear
connection m, which is defined as the ratio of the design value of the
compressive normal force within the concrete flange N, to the design
value of the compressive normal force within the concrete flange with
full shear connection N, 36 simply supported composite beams loaded
by a point load at mid-span were analyzed using the validated FE model.
Note that the occurrence of strain hardening is dependent on the neu-
tral axis location and for higher degrees of shear connection, strain
hardening was more prevalent, while for lower degrees of shear con-
nection, failure by concrete crushing or shear stud ductility often
prevented strain hardening from being achieved. The considered steel
grades were S275, S355, S420 and S460, and the degrees of shear con-
nection 1 ranged from 0.4 to 1.2. The beam cross-section dimensions
(UB305 x 165 x 40) and the span length of 6 m were kept constant,
while different steel grades, concrete slabs and grades and levels of
shear connections were considered. The basic material parameters

Concrete slab

Steel beam Rigid links

Shear stud (SPRING)

HEEEEESEEEEEEE

o

Steel beam (B22)
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Fig. 6. Finite element types used in composite beam model.
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Fig. 8. Comparison of load-deflection curves from FE models and experiments.

and dimensions of the concrete slab are summarized in Table 4. The ma-
terial models introduced into the FE model are determined according to
the proposed equations described in sub-Section 2.2 for the steel and to
Eurocode 2 for the concrete. The shear connectors were located uni-
formly along the entire span of the composite beams and their ultimate
shear capacity was taken as 119 kN [5]. In the parametric studies, the
number of the shear connectors was determined based on the pre-
scribed values of 1 and the computed values of N.. The reinforcement
was not considered in the parametric studies; hence conservative pre-
dicted capacities may be obtained. Note that the amount of reinforce-
ment provided can have a significant influence on composite beam
behaviour [47], in terms of both the ductility and strength, and the rein-
forcement should be considered in future studies.

Eurocode 4 provides two alternative approaches, namely the equi-
librium and the interpolation method, for the design of composite
beams with partial shear connection. The former approach uses equilib-
rium equations and, considering the maximum force that can be trans-
ferred by the shear connection, determines the position of neutral axis
within the cross-section and hence the plastic moment resistance,
while the interpolation method simply adopts a linear interpolation

Table 4
Concrete slab dimensions and material properties for parametric studies.

befr (mm) h. (mm) fy (N/mm?) fu (N/mm?) fem (N/mm?)
1500 120 275 390 30
1500 120 355 490 35
1500 120 420 520 35
1500 150 460 540 40

115
8275
5355
110+ 5420
-+-5460
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1.
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- ‘ ‘ ‘ ‘ ‘
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Fig. 9. Comparison of bending strength of composite beams from FE model and EC4.

between the plastic moment resistance of the bare steel section for
1 = 0 and the full plastic moment resistance of the composite beam
for m = 1. Fig. 9 shows a comparison of the maximum moment capacity
(Mgga) of the 36 beams obtained from the FE model with the results
(Mgc4) determined using the Eurocode 4 equilibrium method.

It can be seen that, for composite beams with partial shear connec-
tion, the ratio of Mrga/Mgc4 decreases with an increase of the degree of
shear connection and the grade. The equilibrium method predicts accu-
rate results when > 0.8, and conservative ones when 1 < 0.8. However,
the equilibrium method may overestimate the bending capacity of com-
posite beams with high strength steel (S460) because the assumed rigid
plastic model overestimates the development of plasticity.

On the basis of the numerical results generated, a tentative approach
to calculate the bending capacity of composite beams with partial shear
connection, but accounting for strain hardening, is proposed. The
adopted approach utilizes the CSM bending resistance of the bare steel
section M¢sm described in Section 2 for 1) = 0 and the proposed bending
resistance for the composite beams with full shear connection Mcsm ¢
derived in Section 3.2 for ) = 1, in conjunction with an interpolation
function for intermediate degrees of shear connection. In Fig. 10, the
ratio between Mgga and Mcsm ¢ is plotted on the vertical axis and the de-
gree of shear connection 1) is given on the horizontal axis. It can be seen
that the composite beams with conventional mild steel (f, <460 MPa)
exhibit a similar linear trend between 1 = 0.4 and n = 1, indicating
that a bi-linear interpolation function may be used to predict the ulti-
mate capacity of composite beams with partial shear connection
allowing for strain hardening, as shown in Fig. 10, where an indicative
interpolation line is presented. For composite beams with high strength
steel, lower reduction factors may be needed. Clearly a wide range of

1.2
1.0 |
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04 ~e-8335
-&- 8420
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——Indicative interpolation line
0.0 L . L . L L
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Shear connection ratio

Fig. 10. Indicative interpolation function for composite beams with partial shear
connection.
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parameters including different cross-sectional geometries, reinforce-
ment ratios and steel grades need to be considered before the method
is suitable for use in practical design; the present study demonstrates
the validity of the proposed approach.

4. Conclusions

Developments to the Continuous Strength Method (CSM) for hot-
rolled carbon steel, covering recent refinements, have been described.
A quad-linear material model, enabling representation of both the
yield plateau and strain hardening, has been proposed and used for
the derivation of CSM resistance equations for the compression and
bending of hot-rolled carbon steel members. Test data on hot-rolled car-
bon steel stub columns and beams were used to make comparisons with
the CSM and EN 1993-1-1 design provisions. It was shown that the CSM
offers improved mean resistance predictions and lower scatter com-
pared with EN 1993-1-1. The method was then extended to composite
beams under sagging bending moment, where the influence of strain
hardening has been found previously to be significant. For composite
beams with full shear connection, a new analytical model has been de-
veloped accounting for strain hardening through the proposed material
model, and explicit resistance functions have been derived. Comparison
of the predictions with 14 test results on composite beams from the lit-
erature showed that the proposed analytical equations may be more ac-
curate than the current codified approaches. A two-dimensional FE
model was then developed and validated against test results reported
in existing studies. Based on subsequently generated numerical para-
metric results, a new design approach was outlined for composite
beams with partial shear connection. Additional analyses considering
various geometric properties and different reinforcement ratios for
composite beams are needed to confirm the wider applicability of the
proposed design method to steel-concrete composite beams.
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