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The full plastic resistance under a combination of bending and axial force of tubes of all possiblewall thicknesses,
from thin cylinders to circular solid sections, does not ever seem to have been thoroughly studied, despite the fact
that this is a relatively simple analysis. The first part of this paper presents a formal analysis of the state of full
plasticity under longitudinal stresses in a right circular tube of any thickness free of cross-section distortions.
The derivation leads to relatively complicated algebraic expressions which are unsuitable for design guides
and standards, so the chief purpose of this paper is to devise suitably accurate but simple empirical descriptions
that give quite precise values for the state of full plasticity whilst avoiding the complexity of a formal exact anal-
ysis. The accuracy of each approximation is demonstrated. The two limiting cases of a thin tube (cylindrical shell)
and circular solid section are shown to be simple special cases.
The approximate expressions are particularly useful for the definition of the full plastic condition in tension
members subject to small bending actions, but also applicable to all structural members and steel building struc-
tures standards, as well as to standards on thin shells where they provide the full plastic reference resistance.
These expressions are also useful because they give simple definitions of the orientation of the plastic strain vec-
tor, which can assist in the development of analyses of the plastic collapse of arches and axially restrainedmem-
bers under bending.
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1. Introduction

The full plastic resistance of tubes of all possiblewall thicknesses and
under all combinations of bending and axial forces does not ever seem
to have been thoroughly studied, despite the fact that this is a well-
defined problem that requires only a fairly simple analysis. However,
the derivation leads to relatively complicated algebraic expressions
which are unsuitable for design guides and standards, so the main pur-
pose of this paper is to devise suitably accurate but simple descriptions
that give quite precise values for the state of full plasticity whilst
avoiding the complexity of a formal exact analysis. Because the condi-
tion of full plasticity of the perfect undeformed structure using ideal
elastic-plastic material properties is one of the key reference states
used in design rules [8,9,16,17], it is important that this state should
be accurately defined.

It seems very likely that othersmay have performed the formal exact
analysis for the full plastic condition under both bending and axial force
long ago, but the authors have only traced the work of [21] after the re-
view of this paper. Written in French and in a special revue, it was
ski).
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somewhat inaccessible. There consequently seems to be no identifiable
basis for the rather varied full plastic interaction expressions used in
current standards (e.g. [1–3,8,15]). The focus of this paper is on the de-
velopment of suitable approximations for application in design guides
and standards, as some of the existing approximate rules in standards
are shown to be surprisingly inaccurate for such a formally precisely-
defined problem.

The formal algebraic analysis of the state of full plasticity in a tube of
any thickness is presented here, with the two limiting cases of a thin
tube (cylindrical shell) and circular solid section shown as special
cases of the full relationship. Because the general equations are too com-
plicated for use in design calculations, two different sets of approximate
formulas are presented togetherwith a demonstration of the level of ap-
proximation associated with each. Simpler approximations produce
greater errors.

These expressions are useful for the definition of the full plastic con-
dition in tubular structural members, with special application for ten-
sion members subject to small bending actions, but also applicable to
steel building structures standards and standards on thin shells where
they provide the full plastic small displacement theory reference resis-
tance. These expressions are also useful because they give simple defini-
tions of the orientation of the plastic strain vector, which can assist in
the development of plastic analyses of a particular class of redundant
rved.
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structures, including arches and axially restrained members under
bending.

It should be recognised that the ultimate resistance of tubular mem-
bers is affected by many other phenomena: elastic and elastic-plastic
stability [7,11,19], ovalisation in long members under bending [4–6,
12,13,18], nonlinearity of the stress-strain relationship in metals other
than mild steel [14] and geometric imperfections [10]. All these effects
modify the resistance significantly, but the reference resistance against
which all these modifications are made is the fully plastic state using
an ideal elastic-plastic constitutive law and the undeformed perfect ge-
ometry [20]. For this reason, the analysis presented here gives the basic
reference case, and it is important that it should be defined with
precision.

2. Full plastic cross-section analysis

2.1. Introduction

In line with the terminology used in the Eurocode standard [8], the
geometry of a tubular cross-section is here characterised by an external
diameter d and a wall thickness t, as shown in Fig. 1. The analysis here
treats thematerial as ideally plastic, with a simple linear yield boundary
between the tension and compression zones. The yield boundary is
deemed to satisfy the condition of plane sections remaining plane, lead-
ing to a straight linear boundary. Because the circular tube is symmetri-
cal about its longitudinal axis, all orientations are identical and only a
single orientation needs to be considered for conditions that might be
regarded as biaxial bending in a different axis system.

2.2. Reference full plastic resistances under the action of individual stress
resultants

The full plastic axial force Npl for a circular tubular cross-section of
external diameter d, thickness t and yield stress fy is simply given by:

Npl ¼
1
4
π d2− d−2tð Þ2
� �

f y ¼ πdt 1−
t
d

� �
f y ð1Þ

For the limiting case of a circular solid rod (d/t→ 2 or t/d→ 1/2), this
simplifies to:

Npl ¼
π
4
d2 f y ð2Þ

For the limiting case of a thin tube (d/t→∞ or t/d→ 0), the (t/d) term
becomes negligible and Eq. (1) simplifies to:

Npl ¼ πdtf y ð3Þ
Fig. 1. Dimensions of the cross-section.
Similarly, the full plastic moment Mpl for a finite-thickness tube is
given by:

Mpl ¼
1
6

d3− d−2tð Þ3
� �

f y ¼
4
3
d3

3
4

t
d

� �
−

3
2

t
d

� �2

þ t
d

� �3
 !

f y ð4Þ

For a solid rod, the limiting case is:

Mpl ¼
1
6
d3 f y ð5Þ

For a thin tube, the terms (t/d)2 and (t/d)3 become negligible as
t/d → 0 and the limiting case is:

Mpl ¼ d2tf y ð6Þ

2.3. Reduced plastic moment in the presence of axial force for the two
limiting cases of a solid rod and thin tube

It is appropriate to present briefly the interaction relationship of the
plastic moment capacity under the effect of an axial force for the two
simpler cases of a solid rod (d/t → 2 or t/d → 1/2) and a thin tube
(d/t → ∞ or t/d → 0), as these form the two limiting reference cases
against which the more complex relationship of the finite-thickness
tube may be verified.

A fully-plastified circular cross-section under amomentM about the
centroid and axial force N acting through the centroid undergoes yield-
ing in different proportions in tension and compression depending on
the relative magnitudes of these stress resultants (Fig. 2). The Yield
Boundary (YB) between tension and compression intersects the exteri-
or surface of the tube at an angle α from the vertical. For the case of pure
bending (N= 0), α = π/2 and the YB is coincident with the Centroidal
Axis (CA) parallel to the YB.

Due to the doubly-symmetric nature of circular geometries, only the
interaction between an axial force in one sense (either tension or com-
pression) (0 ≤α b π/2) and amoment acting in one sense (either sagging
or hogging) needs to be considered to obtain the full relationship. For
clarity, the image in Fig. 2 shows a section with a larger zone in com-
pression and a smaller zone in tension, but this choice is arbitrary.
With this state of plasticity, the yield boundary YB in Fig. 2 moves
from lying through the centroid and partitions the lower half of the
cross-section into areas under tension AT1 and compression AC1. These
areas support net forces FC1 and FT1 acting through the respective cen-
troids of those areas located at distances of yC1 and yT1 respectively
from the CA. The area components and their centroidal distances from
the CA may be determined from elementary geometry.

For a solid rod, these are:

AT1 ¼ 1
8
d2 2α− sin2αð Þ yT1 ¼ 2

3
d

sin3α
2α− sin2α

 !
ð7a;bÞ

AC1 ¼ 1
8
d2 π− 2α− sin2αð Þð Þ yC1 ¼ 2

3
d

1−sin3α
π− 2α− sin2αð Þ

 !
ð7c;dÞ

AC2 ¼ 1
8
πd2 yC2 ¼ 2

3
d
π

ð7e; fÞ

For a thin tube, these are:

AT1 ¼ αdt yT1 ¼ 1
2
d
sinα
α

ð8a;bÞ

AC1 ¼ π
2
−α

� �
dt yC1 ¼ d

1− sinα
π−2α

� �
ð8c;dÞ



Fig. 2. Circular solid and thin tubular cross-sections at full plasticity under the action of a moment M and compressive force N.
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AC2 ¼ 1
2
πdt yC2 ¼ d

π
ð8e; fÞ

The axial forcemay be determined from equilibrium for either cross-
section as:

N αð Þ ¼ FC1 þ FC2−FT1 ¼ σy AC1 þ AC2−AT1ð Þ ð9Þ

Similarly, takingmoments about the CA gives themoment on either
cross-section:

M αð Þ ¼ FT1yT1−FC1yC1 þ FC2yC2 ¼ σy AT1yT1−AC1yC1 þ AC2yC2ð Þ ð10Þ

Substituting and simplifying, the normalised parametric interaction
relationships can be written as:

n ¼ Nu

Npl
¼ 1−

2α− sin2αð Þ
π

and m ¼ Mu

Mpl
¼ sin3α for a solid rod ð11a;bÞ

n ¼ Nu

Npl
¼ 1−

2α
π

and m ¼ Mu

Mpl
¼ sinα for a thin tube ð12a;bÞ

in which the notation Nu and Mu is used to define respectively an ulti-
mate force andmoment in the interaction, lying between the fully plas-
tic values of each, Npl and Mpl, and the notation n and m is used to
identify the dimensionless quantities. The above interaction relation-
ships may also be expressed in closed form as [21]:

n ¼ 2
π

m1=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2=3

p
þ sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2=3

p� �h i
for a solid rod ð11cÞ
Fig. 3. Thick tubular cross-section at full plasticity under the action of a mome
n ¼ 2
π
cos−1 mð Þ for a thin tube ð12cÞ

Eqs. (11a,b), (11c), (12a), (12b) and (12c) are valid for both tensile
and compressive axial forces (π/2 b α ≤ π) and for bending moments
in either sense (replace Mu by –Mu).

2.4. Reduced plastic moment for a finite-thickness tube

2.4.1. Derivation
The derivation of the corresponding relationships for a thick tube is

complicated by the fact that the yield boundary YB may be located ei-
ther fully within the tube material at high axial forces (called ‘Region
1’ in Fig. 3) or only partially for moderate axial forces (called ‘Region
2’ in Fig. 4). The limiting boundary between these two regimes is here
defined as intersecting the outer surface of the tube at a point that sub-
tends an angle αB to the vertical. At this boundary the two sets of equa-
tions naturally give the same outcome.

αB ¼ cos−1 1−2t=dð Þ ð13Þ

2.4.1.1. Region 1) Yield boundary fully inside the tubematerial (0 ≤ α ≤ αB).
Under the action of a large compressive or tensile N and accompanying
momentM, the yield boundary YB may be located fully inside the tube
material. Taking the axial force as compressive (Fig. 3), the cross-
section is partitioned into fully-yielded areas AC1, AC2 and AC3 in com-
pression and AT1 tension with corresponding centroidal lever arms
and axial forces (Fig. 3).
nt M and compressive force N where the YB lies fully within the material.



Fig. 4. Thick tubular cross-section at full plasticity under the action of a moment M and compressive force N where the YB lies partly inside the tube.
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In compact form, elementary geometry leads to the following:

AT1 ¼ 1
8
d2 2α− sin2αð Þ yT1

1
12AT1

d3sin3α ð14a;bÞ

AC1 ¼ 1
8
d2 2 αB−αð Þ− sin2αB− sin2αð Þð Þ

yC1 ¼ 1
12AC1

d3 sin3αB−sin3α
� � ð14c;dÞ

AC2 ¼ 1
8

d2 π− 2αB− sin2αBð Þð Þ−π d−2tð Þ2
h i

yC2 ¼ 1
12AC2

d3 1−sin3αB

� �
− d−2tð Þ3

h i ð14e; fÞ

AC3 ¼ 1
8
π d2− d−2tð Þ2
� �

yC3 ¼ 1
12AC3

d3− d−2tð Þ3
� �

ð14g;hÞ

The net axial force and moment may be obtained from equilibrium:

N αð Þ ¼ FC1 þ FC2 þ FC3−FT1 ¼ σy AC1 þ AC2 þ AC3−AT1ð Þ ð15aÞ

M αð Þ ¼ FT1yT1−FC1yC1−FC2yC2 þ FC3yC3
¼ σy AT1yT1−AC1yC1−AC2yC2 þ AC3yC3ð Þ ð15bÞ

Substituting and simplifying, the normalised parametric interaction
relationships for Region 1 become:

n ¼ Nu

Npl
¼

π d2− d−2tð Þ2
� �

−d2 2α− sin2αð Þ
π d2− d−2tð Þ2
� � ð16aÞ

m ¼ Mu

Mpl
¼ d3sin3α

d3− d−2tð Þ3
ð16bÞ

in which the notation Nu andMu is again used to define respectively an
ultimate force and moment in the interaction between the fully plastic
values of each, Npl and Mpl.

2.4.1.2. Region 2) Yield boundary partially inside the tube material
(αB ≤ α ≤ π/2).Under the action of a moderate axial force N and bending
momentM, the yield boundary YB may be located only partially inside
the tube material, partitioning the cross-section into two fully-yielded
areas AC1 and AC2 in compression and AT1 and AT2 in tension with corre-
sponding centroidal lever arms and axial forces as illustrated in Fig. 4. A
further parameter αI is introduced here to account for the fact that, for a
thick tube, the inner and outer tube fibres on the YB occur at different
angular positions relative to the vertical axis.

αI ¼ cos−1 cosα
1−2t=d

� �
ð17Þ

In compact form, the geometric parameters are as follows:

AT1 ¼ 1
8
d2 2αB− sin2αBð Þ yT1 ¼ 1

12AT1
d3sin3αB ð18a;bÞ

AT2 ¼ 1
8

d2 2 α−αBð Þ− sin2α− sin2αBð Þð Þ− d−2tð Þ2 2αI− sin2αIð Þ
h i

ð18cÞ

yT2 ¼ 1
12AT2

d3 sin3α−sin3αB

� �
− d−2tð Þ3sin3αI

h i
ð18dÞ

AC1 ¼ 1
8

d2 π− 2α− sin2αð Þð Þ− d−2tð Þ2 π− 2αI− sin2αIð Þð Þ
h i

ð18eÞ

yC1 ¼ 1
12AC1

d3 1−sin3α
� �

− d−2tð Þ3 1−sin3αI

� �h i
ð18fÞ

AC2 ¼ 1
8
π d2− d−2tð Þ2
� �

yC2 ¼ 1
12AC2

d3− d−2tð Þ3
� �

ð18g;hÞ

The net axial force and moment may be obtained from equilibrium:

N αð Þ ¼ FC1 þ FC2−FT1−FT2 ¼ σy AC1 þ AC2−AT1−AT2ð Þ ð19aÞ

M αð Þ ¼ FT1yT1 þ FT2yT2−FC1yC1 þ FC2yC2
¼ σy AT1yT1 þ AT2yT2−AC1yC1 þ AC2yC2ð Þ ð19bÞ

Substituting and simplifying, the normalised parametric interaction
relationships for Region 2 become:

n ¼ Nu

Npl
¼

π d2− d−2tð Þ2
� �

−d2 2α− sin2αð Þ þ d−2tð Þ2 2αI− sin2αIð Þ
π d2− d−2tð Þ2
� � ð20aÞ

m ¼ Mu

Mpl
¼ d3sin3α− d−2tð Þ3sin3αI

d3− d−2tð Þ3
ð20bÞ

2.4.2. Limiting cases and verifications
As α → αB within either region, the two pairs of Eqs. (16a), (16b),

(20a) and (20b) naturally tend to the same result, ensuring compatibil-
ity, andαI→ 0within Region 2. Further, in Region 1 Eqs. (16a) and (16b)
satisfyNu(0)= Npl, (n=1) andMu(0)= 0, (m=0), whilst in Region 2
Eqs. (20a) and (20b) satisfy Nu(π/2) = 0, (n = 0) and Mu(π/2) = Mpl,
(m = 1). For the limiting case of a circular solid rod (t/d → 1/2), αB →



Fig. 6. Ratio of the solid to thin shell tube ultimate moments relative to their full plastic
moment, each at the same proportion of the full plastic axial capacity.
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cos−1(0) = π/2 and Region 2 ceases to exist, whilst in Region 1
Eqs. (16a) and (16b) reduce to the previous simplified relationship in
Eq. (11a,b).

For the limiting case of a thin tube (t/d → 0), αB → cos−1(1) = 0,
αI → α and Region 1 ceases to exist, whilst in Region 2 Eqs. (20a) and
(20b) similarly reduce to the previous simplified relationship in
Eqs. (12a) and (12b). However, this reduction is not obvious, and
must be clarified as follows. Ignoring terms of order (t/d)2, Eq. (20a)
may be rewritten:

n ¼ Nu

Npl
≈ 1−

1
4
d
t

2α− sin2α
π

� �
þ 1

4
d
t
−1

� �
2αI− sin2αI

π

� �
ð21Þ

Using Eq. (17), a Taylor series expansion in t/d yields:

2αI− sin2αI ¼ 2α− sin2α−8 sinα cosα
t
d
þ O

t
d

� �2
 !

ð22Þ

Substituting and simplifying:

n ¼ Nu

Npl
≈

π−2α
π

þ 8 sinα cosα
π

� �
t
d
→

π−2α
π

as
t
d
→0 ð23Þ

which is the result in Eq. (12a).
Similarly, Eq. (20b) may be rewritten by ignoring terms of order

(t/d)2 or higher:

m ¼ Mu

Mpl
≈

1
6
d
t
sin3α−

1
6
d
t
−1

� �
sin3αI ð24Þ

Using Eq. (17) and a trigonometric identity, a Taylor series expan-
sion in t/d yields:

sin3αI ≈
sin2α−4t=d
1−4t=d

 !3
2

≈ sin3α−6 sinα−sin3α
� � t

d
þ O

t
d

� �2
 !

ð25Þ

Substituting and simplifying:

m ¼ Mu

Mpl
≈ sinα−6 sinα−sin3α

� � t
d
→ sinα as

t
d
→0 ð26Þ

which is the result in Eq. (12b).
Fig. 5. Limiting interaction diagrams for a thin tube and a circular solid section.
3. Predictions of the analysis

The exact solution presented above agrees with the bending mo-
ment – axial force interaction relationships for the limiting cases of a
solid rod (t/d→ 1/2) and thin shell (t/d→ 0) as shown in Fig. 5. It is ev-
ident that there are differences between the relationships for the thin
tube and the solid rod, and there is consequently a progressive transi-
tion between these two limits for tubes with a finite thickness. Further,
since thin shells and slightly thicker tubes are the principal forms of tu-
bular members used in structural design, it is clear that any approxima-
tions to bemade for design purposes should strive to accurately capture
the behaviour close to that of the thin shell, whilst solid sections with
small internal holes are probably of lesser practical interest.

The ratio between the bendingmoment for the circular solid section
and the thin shell at a given proportion of their plastic axial forces is
shown in Fig. 6. The substantial difference in bending resistance, rising
to 50% as the full plastic axial force is approached, shows that any repre-
sentation of thick tubes that captures the greater resistance at higher
axial forces could be very useful in design, especially for tension
members.

The full diagram of the plastic limit for tension-compression and
sagging-hogging bending is shown in Fig. 7. This marks the bounds of
Fig. 7. Complete interaction diagrams for a thin tube and a circular solid section.



Fig. 8. Errors in estimation of the plastic moment at different axial force using the simple
expression in Eq. (27).
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all possible states for the cross-section if strain hardening is not included
in the analysis, and is useful for those who trace the path of cross-
section stress resultant combinations in their finite element calcula-
tions, sometimes needed to understand the effects of the normal flow
condition.

The interaction for fully plastic cross-section resistances has often
been expressed using the simple relationship of the form

Mu

Mpl
¼ 1−

Nu

Npl

� �p

or m ¼ 1−np ð27Þ

which derives from the exact result for a rectangular cross-section
where the power p is exactly 2. The statistical best fits described
throughout this study have been undertaken using least squares
minimisation of the errors. The best fit simple values of the power p
for the thin tube and circular solid rod are found to be 1.75 and 2.13 re-
spectively if the errors are only considered as absolute values, but if the
errors are instead expressed as relative (mexact−mfit) /mexact to give ap-
propriate weight to errors in smaller values as N→ Npl, the values of the
power p are found to be 1.673 and 2.25 respectively. These pairs of
values both clearly bracket the simple value of 2, but are all much larger
than values sometimes used for I-sections under major axis bending
(circa 1.30). The percentage errors in the estimation of the exact result
using the simple Eq. (27) are shown in Fig. 8. Whilst Eq. (27) is a conve-
niently simple expression, it is clear that the more practically relevant
thin shell tube experiences significantly unconservative errors at
high axial forces when represented by this simple formula, especially
when the power p is obtained by minimising the absolute errors. By
Fig. 9. Exact interaction curves for different tube thicknesses.
contrast, the approximationmade using relative errors leads to a sig-
nificant reduction in the unconservatism under high axial forces,
which is important for applications involving tension members.
The use of relative error minimisation also produces a better balance
between unconservative and conservative errors, especially for thin
tubes.

One significant advantage of Eq. (27) over the full exact analysis is
that it is easy to define the orientation of the normal flow plastic
strain vector. In problems concerning complete redundant struc-
tures, where a tubular cross-section is treated as an entity, there
are situations where the orientation of the plastic strain vector has
a significant effect on the resulting plastic deformation and plastic
collapse condition. Two such obvious candidates are the plastic col-
lapse of arches, where the interaction of thrust and bending is very
significant without stability, and the behaviour of axially restrained
members, where axial forces develop as a consequence of changes
of geometry under bending. For these and similar situations, the
availability of an accurate differentiable expression for the yield sur-
face is of particular value.

For the yield surface of Eq. (27), the plastic strain vector is oriented
as

Δκ
Δε

¼ Npl

Mpl

� �
1

pnp−1

� �
¼ Npl

Mpl

� �
n

p 1−m½ �
� �

ð28Þ

inwhichΔκ is the increment of plastic curvature coincident with the in-
crement of plastic axial strain Δε. By contrast, identifying this orienta-
tion using Eqs. (16a), (16b), (20a) and (20b) is a considerable challenge.

Two treatments for tubes of different wall thicknesses are described
in what follows. In the first, it is deemed appropriate to retain the sim-
plicity of Eq. (27) and to deduce the variation of the parameter p with
the thickness of the tube. This leads to a simpler but less precise defini-
tion of the full plastic condition. In the second, a more sophisticated
treatment of the form of the interaction is obtained, leading to greater
precision at the expense of slightly more complexity.

4. Representation of thicker tubes using Eq. (27) as the interaction
expression

Calculations using Eqs. (1)–(26) were performed on a wide range of
different tube thicknesses to establish the precise fit value of p in
Eq. (27) as the thickness was varied. The thickness of the tube is here
represented by the ratio of the thickness to outer diameter (t/d) since
this varies between simple limits. It may be noted that manufactured
tubes generally lie in the range 0.0 b t/d b 0.135. A sample of these cal-
culations is shown in Fig. 9. Naturally, these interactions progress
Fig. 10. Variation of the power p in Eq. (27) with tube thickness and the Eqs. (29a) and
(29b) approximation.



Fig. 11. Errors of Eqs. (29a) and (29b) relative to the extracted power p for Eq. (27) at
different tube thicknesses.

Fig. 13. Errors in the estimation of the plastic moment at various axial forces according to
Eq. (30).
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monotonically from the thin shell to the solid section. The curves are
very close together at low axial loads, but significant separation de-
velops at high axial loads, leading to more important errors for tension
members subjected to small bending moments.

When these interactions are represented by best fits using Eq. (27),
the values of the power p are found as shown in Fig. 10 for bothmethods
of minimising the errors. An initial trial showed that the variations of p
with the tube wall thickness could be well represented by a fifth order
polynomial, but this has the disadvantage of a lack of transparency. Fur-
ther work led to a very precise fit using the expressions:

p ¼ 1:673
1:61 t=dð Þ1:61 þ 0:5−t=dð Þ1:35
1:19 t=dð Þ1:61 þ 0:5−t=dð Þ1:35

( )
for relative errors ð29aÞ

p ¼ 1:75
0:787 t=dð Þ1:76 þ 0:5−t=dð Þ1:41
0:645 t=dð Þ1:76 þ 0:5−t=dð Þ1:41

( )
for absolute errors ð29bÞ

in which the two limiting values for thin tubes of p = 1.673 and 1.75,
and for solid rods of p = 2.25 (=1.673 × 1.61/1.19) and 2.13 (=
1.75 × 0.787/0.645), are explicitly identified for the sets of fits assuming
relative and absolute errors respectively. The only empiricism lies in the
choice of the powers of (t/d) and the functional form. The predictions of
this empirical fit are also shown in Fig. 10. The percentage errors in this
representation of the variation of the power p relative to the extracted
values are shown in Fig. 11, where it is evident that Eqs. (29a) and
(29b) provide a very good approximation to the extracted powers
when using Eq. (27).
Fig. 12. Accurate representation by Eq. (30) of the exact interaction.
5. Alternative representation of the interaction curve

The representation of the interaction curve by Eq. (27) produced
rather significant errors at high axial forces, as shown in Fig. 8, which
are unconservative for thin tubes and could be particularly signifi-
cant when sections under high tensile forces are being considered
for the effect of minor bending. This matter was addressed by consid-
ering several slightly more sophisticated relationships for the inter-
action between bending moment and axial force, resulting in the
following outcome.

Since most practical tubes lie somewhere between the ideally thin
shell structure (d/t→∞ or t/d→ 0) and thick tubes with a ratio diameter
to thickness of around d/t=7.5 or t/d≈ 0.135, this range was the focus
for an improved interaction rule. In Fig. 10 it is clear that the best fit to
the simple expression of Eq. (27) leads to a power p that is relatively sta-
ble in this range of t/d, so it is reasonable to suppose that a single better
interaction expression might possibly be found for most practical
geometries.

Following significant experimentation, it was found that these inter-
actions, using relative error minimisation, could all be very accurately
expressed by:

m ¼ 1−n2 þ np−n2

b

� �
ð30Þ
Fig. 14. Errors in estimation of the plastic moment of thin and relatively thick cylinders at
different axial force in existing standards for design.



Fig. 15. Errors in estimation by EN 1993-1-1 [8] of the plastic moment of both thick and
thin tubes at different axial forces.
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in which:

p ¼ 3:81−22:9 t=dð Þ 1−3:36 t=dð Þ½ � ð31Þ

b ¼ 0:137þ 2:90 p−2ð Þ−0:38 p−2ð Þ2 ð32Þ

The predictions of Eq. (30) are shown in Fig. 12 together with the
exact results for values of t/d from zero to 0.135 (or 7.5 b d/t b ∞). The
discrepancies between Eq. (30) and the exact results are shown in
Fig. 13. This shows the dramatic reduction in errors compared with
either version of the simpler Eq. (27) approximation (Fig. 8). Instead
there is an almost exact match for thin tubes (t/d small) and no errors
larger than 1.4% for the thickest tubes except at forces above 98% of
Npl.

Eqs. (30)–(32) also retain the significant advantage presented by
Eq. (27) that it is easy to define the orientation of the normalflowplastic
strain vector. This vector is now found as

Δκ
Δε

¼ Npl

Mpl

� �
b

n 2 bþ 1ð Þ−pnp−2½ �
� �

ð33Þ

6. Comparisons with existing standards

Most standards that define the strength of steel structures provide
an equation to define the fully plastic condition in circular hollow sec-
tions. The provisions of these standards vary, some providing very pre-
cise definitions, whilst others less so. The range of tube thicknesses for
manufactured tubes is found to be around 7.5 b d/t b 81 (0.012 b t/
d b 0.135), though some thicker tubes may be used in some other appli-
cations. Thinner tubes are naturally found as cold formed products and
as thin shell structures. The comparisons made here focus on these two
limits of thickness, and show, at every axial force level, the percentage
discrepancy between the defined fully plastic bending moment and
the precise value determined from the analysis above. A positive differ-
ence indicates a conservative and safe evaluation.

For thin tubular sections and cylindrical shells, a comparison with
the limiting case of the thin tube (see Section 2 above) is appropriate.
Fig. 14 shows the errors in the expressions used in [1–3,8,15]. The AS
4100 rule uses only an elastic stress limit to define the ultimate plastic
resistance, so it is naturally dramatically conservative. The AISC 360-
10 rule is not quite so conservative, but still very similar. By contrast,
the API RP 2A-LFRD rule follows a trigonometric, rather than power
law, interaction between m and n giving the same exact solution for
thin tubes (t/d=0) as Eq. (12c). The NORSOK rule ismarginally conser-
vative at low axial forces before rising to be rather unconservative at
high axial forces. It prescribes the power law interaction of Eq. (27)
with the power p = 1.75, so it is identical to the results presented
above for minimisation of the absolute errors (Fig. 8). However, relative
error minimisation is argued here to be more appropriate, which leads
to the lower power p = 1.673 and less unconservative predictions at
high axial loads (Fig. 8). The expressions in NORSOK, API and AS are
intended only for use on tensionmembers, so these ought to give a pre-
cise and conservative definition of the bendingmoment that can accom-
pany a high axial force, rather than providing an accurate definition of
the bending resistance at low axial forces.

The effect of the finite thickness of a tube influences the outcome of
this comparison, also shown in Fig. 14. Since thicker tubes aremarginal-
ly stronger than ideally thin tubes, all the predictions of the standards
become more conservative, though the difference does not appear to
be great on this scale. A clearer message is found by comparing the EN
1993-1-1 [9] provisions for the ideally thin and thickest manufactured
tubes, as shown in Fig. 15. Here the thin tube provision is in error in
an unconservative sense by just over 8% for high axial loads, whilst for
the thick tube this rises to almost 6% in a conservative sense. Also
shown for comparison are the errors in the relationships defined by
the simple power law interaction in Eq. (27) with Eqs. (29a) and
(29b), which illustrate that within the practical range 0 b t/d b 0.15,
the powers p established on the basis of minimised relative errors give
less unconservative predictions at high axial loads than those
established using absolute errors.

Whilst the conservatism of these estimates of the ideal fully-plastic
condition might seem minor, this condition of full plasticity is one of
the critical anchor points for all structural assessments [9,16,17] and is
thus worthy of an accurate description. The corresponding evaluations
for I, H and RHS sections are a standard part of the undergraduate cur-
riculum, so all engineers can perform these calculations accurately and
without difficulty. The CHS is worthy of a more accurate treatment
with an empirical but precise algebraic representation.

7. Conclusions

This short paper has presented the formal analysis of the state of full
plasticity under bending and axial force in a circular tube or cylinder of
any thickness. The two limiting cases of a thin tube (cylindrical shell)
and a circular solid section have been shown as special cases.

The chief goal of the paper has been to find approximate but simple
formulas that can accurately capture the outcome of the general equa-
tions, since these are too complicated for use in design calculations.
Two different approximate formulas have been presented that are suit-
able for adoption into design guides and standards. The precision of
each has been demonstrated. These expressions also allow easy identi-
fication of the orientation of the plastic strain vector on the yield surface,
making it easier to formulate plastic collapse analyses of redundant
structures inwhich axial and bending stress resultants strongly interact,
such as arches and axially restrained beams.

The accurate representation of the full plastic state in I, H, C and RHS
sections involves a simple calculation that is part of the standard train-
ing of structural engineers. By contrast, the same analysis for circular tu-
bular sections is not trivial, so it would be appropriate to include
accurate expressions in guides and standards for design. The results of
this study should be particularly useful for the design of tension mem-
bers subject to small bending actions.
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