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Abstract
When updating the 10 Gbps optical transmission system to 40 Gbps, the main limits are
chromatic dispersion, nonlinear effect, especially the interactions of dispersion and intra-
channel nonlinearity. To optimize the performance of standard WDM in a 40 Gbps four-channel
transmission system, numerical simulations are carried out to compare three different
dispersion compensation techniques (without compensation; periodic dispersion compensation
at the front end; and dispensation compensation all at the end of the system by means of highly
dispersed pulses) for chromatic dispersion on a terrestrial 40 Gbps system. Both the loss and
dispersion of the transmission fiber are periodically compensated, since two dispersive
elements are placed at the input and the output ends of a compensation period. Due to the
interplay between dispersion, nonlinearity and signal power, and the effect of dispersion on the
pulse evolution, the pulse compress can be optimized and the system performance can be
improved to compare with the system with either pre- or post-dispersion compensation. On
comparing pre- and post-compensation methods, it is found that the latter is superior to the
former. Further performance optimization includes how to properly match the EDFA power and
length of the fiber.
& 2015 Chongqing University of Posts and Communications. Production and Hosting by Elsevier
B.V. All rights reserved.
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1. Introduction

A linear dispersion analysis on system performance can be
used to predict the future needs of ultra-long haul and
40 Gbps systems as it relates to dispersion compensation.
The equations developed in Ref. [1] clearly show that the
Production and Hosting by Elsevier B.V. All rights reserved.
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amount of residual dispersion at the end of a system that
one can accommodate is of the order of 1500 ps/nm for
10 Gbps systems and only of the order 100 ps/nm for
40 Gbps system. By considering an ultra-long haul transmis-
sion at 10 Gbps system, it is seen that as we go to distance
longer than 600 km we need to start using dispersion
compensating devices in some of the in-line amplifiers. As
soon as transmission bit rates increase from 10 to 40 Gbps
and beyond, chromatic dispersion compensation becomes a
critical issue on all kind of fibers, and the periodic disper-
sion compensation for 40 Gbps terrestrial systems has been
investigated, with a new method being proposed on highly
dispersed pulses to provide the evidence that the position of
dispersion compensating devices can be placed all at the
end of the system [2]. Pizzinat et al. further analyzed these
techniques using computer simulations [3].

Although the 40 Gbps transmission systems have been
intensively studied and commercial almost nine years ago,
there is still a lot of progress towards increasing capacity
and transmission distance for future optical communication
networks. It is evident that accurate compensation at
40 Gb/s would benefit from tunable compensation modules,
and several papers have demonstrated the comparison
between three dispersion compensation techniques: pre-,
post- and symmetrical- for different fibers [4,5]. The results
of three compensation methods have been compared and it
is found that the symmetrical compensation method is
superior to pre- and post-compensation methods [6]. On
comparing pre- and post-compensation methods, it is found
that the later is superior to the former [7].

In the paper, we further observe that system needs proper
matching between the Erbium-doped Optical Fiber Amplifier
(EDFA) power and length of the fiber for optimum perfor-
mance, with the optimization of different types of dispersion
compensation of interest in transmission systems at operating
wavelength of 1550 nm using the multi-channel 40-Gb/s
dispersion compensating using dispersion-compensation
fiber (DCF).

The theoretical model and the impact of fiber nonlinea-
rities on fiber dispersion are given in Section 2. The
characteristics of pulse propagation without fiber dispersion
compensation and the impact of the compensation of the
pre- and post-fiber dispersion will be considered via imple-
menting the same parameters of the experimental system in
Section 3, where system performance is characterized by
the feature like power map and eye diagram. Finally,
conclusions are drawn in Section 4.
2. System configuration, parameters, and
basic equations

Both the loss and dispersion of the transmission fiber are
periodically compensated with a period of LC where the fiber
loss is compensated by the EDFA. Fig. 1 shows a schematic,
where only the first period and the location of EDFA are shown,
of the transmission system considered in this paper. We
consider a 40 Gbps system using initial pulses having a full-
width at half-maximum (FWHM) of a few pico-seconds. The
simulation setup for dispersion compensation consists of
transmitter, fiber link and receiver. Fig. 1 shows the schematic
configuration of an implementation of the system, here, post-
Please cite this article as: K. Xu, Y. Ou, Theoretical and numerical c
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compensation is demonstrated. If DCF is prior to single-mode
fiber (SMF), it is pre-compensation.

2.1. Transmitter

Electrical generator generates 4� 10 Gb/s NRZ signals that
will be modulated by 4 continuous-wave lasers. For such a
high bit rate, external modulation is used. The character-
istics of M–Z modulator can be described as below:
�

har
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where I0 is the modulated optical power intensity, Ii is
electric power intensity and Ron=off is the maximum ratio
of optical power (dBm).
2.2. Dispersion compensation fiber

Chromatic dispersion compensation in optical fiber commu-
nication systems is still an open issue. This dispersion refers
to the combined effects of material dispersion and wave-
guide dispersion. Although generally smaller than material
dispersion, waveguide dispersion does shift the wavelength
at which the total chromatic dispersion is minimal [8].

Since chromatic dispersion limits the performance of single-
mode fibers (SMF), more advanced fiber designs aim at
reducing this effect by using graded-index cores with
refractive-index profiles selected such that the wavelength
at which waveguide dispersion compensates material disper-
sion is shifted to the wavelength at which the fiber is to be
used. Dispersion-shifted fibers have been successfully fabri-
cated by using a linearly tapered core refractive index and a
reduced core radius. This technique can be used to shift
the zero-chromatic-dispersion wavelength from 1300 nm to
1550 nm, where the fiber has its lowest attenuation. Other
grading profiles have been developed for which the chromatic
dispersion vanishes at two wavelengths and is reduced for
intermediate wavelengths. This is dispersion-flattened fiber.

Fiber with other refractive index profiles may be engi-
neered such that the combined material and waveguide
dispersion coefficient is proportional to that of a conven-
tional SI fiber but has the opposite sign. This can be achieved
over an extended wavelength band. The pulse spread
introduced by a conventional fiber can then be reversed by
concatenating the two types of fiber. A fiber with a reversed
dispersion coefficient is known as a dispersion compensating
fiber (DCF), as shown in Fig. 2. A short segment of the DCF
may be used to compensate the dispersion introduced by a
long segment of conventional fiber [9].
acterization of a 40 Gbps long-haul multi-channel transmission
rks (2015), http://dx.doi.org/10.1016/j.dcan.2015.06.001

dx.doi.org/10.1016/j.dcan.2015.06.001
dx.doi.org/10.1016/j.dcan.2015.06.001
dx.doi.org/10.1016/j.dcan.2015.06.001


TRANSMITTER
#1

SMF
DCF

EDFA

TRANSMITTER
#2

TRANSMITTER
#3

TRANSMITTER
#4

RECEIVER
#1

RECEIVER
#2

RECEIVER
#3

REVEIVER
#4

N periods

Fig. 1 40 Gbps experimental setup for evaluation of the tunable dispersion compensator: the entire transmission setup with
tunable post-dispersion compensation.

Fig. 2 Dispersion value versus the transmitting wavelength for
Dispersion Compensation Fiber (DCF).

Fig. 3 Correlation between the dispersion (D) and the group delay
versus wavelength (a) in the (a) SMF and (b) in the DCF.
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Use of DCF is now a well-proven and commercially
available technique for compensation of the dispersion of
standard-shifted single mode fiber [10]. The condition for
obtaining zero dispersion slope at the operating wavelength
of a link composed of SMF and DCF is that the relative
dispersion slope (RDS) of the DCF should be equal to the RDS
of the SMF at the operating wavelength. It is assumed that
the length of the DCF is chosen so the total dispersion is zero
at the operating wavelength. The relative dispersion slope is
defined as the dispersion slope divided by the dispersion

RDS¼ S
D

ð3Þ

The investigated SMF is a SSMF with a loss of 0.25 dB/km,
a dispersion of 16 ps/nm km, a dispersion slope of 0.05 ps/
nm2 km and a nonlinear coefficient of 1.317 W km�1. Fig. 3
shows SMF and DCF fiber used in the experiment.

In what follows, polarization-mode dispersion, intra-pulse
Raman scattering, and fourth- or higher order dispersions
are all neglected. Spatial evolution of the pulse envelope
u z; tð Þ in a moving frame at a transmission distance z and a
time t is then described by the following generalized
nonlinear Schrödinger equation:

i
∂u
∂z

¼ � i
Γ

2
uþ β2

2
∂2u
∂t2

þ i
β3
6
∂3u
∂t3

�γu2u ð4Þ

where Γ is the fiber loss, β2 and β3 are the GVD and the TOD,
respectively, and γ is the nonlinear parameter that denotes
the Kerr non-linearity which is responsible for SPM and
signal-noise FWM. The parameters β2, β3, and γ are related
Please cite this article as: K. Xu, Y. Ou, Theoretical and numerical ch
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β2 ¼ � λ2

2πc
D ð5Þ
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Fig. 4 Pulse Width map: without compensation.

Fig. 5 Pulse Width map: pre-compensation.
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β3 ¼
λ2

2πc
D0 þ λ3

2π2c2
D ð6Þ

γ ¼ 2πn2
λAeff

ð7Þ

where λ is the center wavelength of pulse, c is the speed of
light in a vacuum, and Aeff and n2 are the effective beam
cross section and the nonlinear refractive index of the
DCFs, respectively [11]. The dispersion parameter is
D¼ �ðð2πc=λ2Þ=β2Þ [12]. Eq. (4) could be numerically
solved using the split-step Fourier method [13].

Although the fiber non-linear effect plays an important
role on the system performance, such transmission regime is
named pseudo-linear regime. Accordingly, in the case of
non-linear transmission along the SMFs, the optimum
amount of dispersion Dpre introduced by the electrical
dispersion compensator is given by:

Dpre ¼
�D
α

ln
2

1þexp �αULð Þ

� �
ð8Þ

where L is the length of the SMFs considered in the section
of the transmission link [14].

In summary, chromatic dispersion and non-linearity of the
fiber are still the main destructive forces for pulse propaga-
tion in ultra-high rate optical transmission system and cause
power penalty and other impairments in an optical DWDM
communication system [15]; hence dispersion management
must be managed properly to achieve transmission over an
appreciable capacity [16].

2.3. Dispersion methods and WDM

The dispersion compensation can be accomplished by arranging
the dispersion of the transmission fiber or by the use of a
dispersive element in which its sign of dispersion is opposite to
the transmission fiber. For every span, the dispersive element
can be placed at either the input or output end of the
transmission fiber to compensate for the fiber dispersion. The
former is called pre-compensation configuration (PRCC) and the
later is called post-compensation configuration (POCC).

However, fiber nonlinearities complicate the system design.
Because the average dispersions of such a system are low, four-
wave (FW) between signal and amplifier noise is serious. This
leads to the distortion of signal, the broadening of signal
spectrum, and the increase of noise power which is converted
from signal through FWM. On the other hand, signal suffers
from pulse distortion owing to the residual frequency chirping
induced by self-phase modulation (SPM). Fortunately, by prop-
erly utilizing SPM to compress the signal pulse, the system
performance can be improved.

Indeed, WDM technique has been studies actively for higher bit-
rate transmission such as 10 Gbps system etc. for this technique,
slope compensation and suppressed nonlinearity are desired. In
order to discuss the flat compensation at a wide wavelength
range, a dispersion slope compensation rate is given as follows:

Compensating rate ð%Þ ¼ SlopeDCF
SlopeSMF

� �
=

DispersionDCF
DispersionSMF

� �
ð9Þ
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where slope was defined as the difference of dispersion values
from 1.53 mm to 1.56 mm divided by a wavelength interval. The
nearer to 100% this rate, the higher the compensating efficiency.
On the WDM transmission, optical power density becomes very
large because plural optical signals are inputted into a fiber at the
same time [17].
3. Tunable multi-channel dispersion
compensation

We make simulations by means of the split step Fourier
method, implementing the same parameters of the experi-
mental system. The wavelengths of 4 carriers are 1525 nm,
1550 nm, 1575 nm, and 1600 nm. We consider the transmis-
sion over G. 652 step-index fibers and G. 655 non-zero
dispersion ones. With regards to the arrangement of disper-
sion compensation, we analyze three compensation
schemes: (1) without compensation; (2) pre-compensation;
(3) post-compensation. The realized total link is 600 km and
the amplifier spacing is 100 km. For each period, the
distance is 100 km in which it consists of 80 km SMF and
20 km DCF, and the total number of period is 6. EDFA is
applied periodically in the long-haul optical communication
system to overcome fiber loss at 1550 nm region. In all the
three compensation schemes, the number of amplifiers the
same, since they are after every 100 km of fiber and also
after each DCF module.
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tworks (2015), http://dx.doi.org/10.1016/j.dcan.2015.06.001

dx.doi.org/10.1016/j.dcan.2015.06.001
dx.doi.org/10.1016/j.dcan.2015.06.001
dx.doi.org/10.1016/j.dcan.2015.06.001


Fig. 9 FWHM map: post-compensation.
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The three dispersion compensation schemes have been
tested both on G. 652 and G. 655 fibers, over 6� 100-km
link. It is known that Pulse Width (PW) can be used to
express dispersion that affect the band-width, Figs. 4–6
show the PW at the end of every compensation period along
the fiber for the three different types of dispersion com-
pensation. In Fig. 4, pulse is compressed for show distance
and is broaden for long distance as expected, and the
unequal accumulation pulse width for each wavelength is
due to the wavelength-dependent dispersion in the fiber. As
a way to characterize the system performance versus the
input optical power for the fixed pulse-width of a few pico-
seconds, Figs. 7–9 show the relationship between the FWHM
width at different wavelengths.

Regarding the maximum transmission distance as a func-
tion of the FWHM. Fig. 10 shows the result for the SMF non-
zero dispersion fiber link, whereas Figs. 11 and 12 are for
Fig. 6 Pulse Width map: post-compensation.

Fig. 7 FWHM map: without compensation.

Fig. 8 FWHM map: pre-compensation.

Fig. 10 Power map: without compensation.

Fig. 11 Power map: pre-compensation.

Fig. 12 Power map: post-compensation.

Please cite this article as: K. Xu, Y. Ou, Theoretical and numerical characterization of a 40 Gbps long-haul multi-channel transmission
system with dispersion compensation, Digital Communications and Networks (2015), http://dx.doi.org/10.1016/j.dcan.2015.06.001

dx.doi.org/10.1016/j.dcan.2015.06.001
dx.doi.org/10.1016/j.dcan.2015.06.001
dx.doi.org/10.1016/j.dcan.2015.06.001


Fig. 13 Eye diagrams for 40 Gbps pseudorandom binary sequence (PRBS): (a) without compensation; (b) pre-compensation;
(c) post-compensation.
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the slope-compensation (i.e., dispersion compensation
fiber, DCF) link in the cases of pre-compensation and post-
compensation, respectively. Differences can be found in the
wider band-width regime. The maximum transmission dis-
tance in the DCF link is available for higher transmission
power than in the non-zero dispersion fiber link.

More detailed 4� 10-Gbps dispersion compensation results
are given. Figs. 10–12 show the reflected power spectrum.
Without DCF, amplifier over-compensates for the attenuation
at each span, and power rises with distance. As attenuation
of DCF is larger than SMF, we can see that the power falls
rapidly in the DCF section than in the SMF section.

Considering the 40 Gbps RZ data band-with, the actual
usable bandwidth for multiple channels is �2 nm, corre-
sponding to a tuning range from �400 ps/nm to �500 ps/
nm. Figs. 7–9 also illustrate that the dispersion is not
uniform within each channel's bandwidth. Therefore, the
penalty induced by intra-channel dispersion is negligible.
Accordingly, Fig. 13 shows eye patterns (a) without dis-
persion compensation; (b) in the dispersion-flattened fiber
link with pre-dispersion compensation; (c) in the
dispersion-flattened fiber link with post-dispersion
compensation.

As can be seen in Fig. 13, the dispersion introduced by
the SMF is canceled by the by the chromatic dispersion in
the optical path. When DCF is employed at the front or at
the back end, the dispersion tolerance is improved for the
10-Gbps NRZ data signal generated by the pattern generator
with a pseudorandom binary sequence (PRBS) length of 223–1
for each channel. For the communication quality, it is
compared that pre-compensation is best and without-
compensation is worst, allowing the achievement of disper-
sion compensation at the back end is much better than that
at the front end in the optical communication system.

In general, dispersion is an important impairment that
degrades overall system performance of a high speed long haul
Please cite this article as: K. Xu, Y. Ou, Theoretical and numerical c
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optical communication system and causes crosstalk. Hence, a
detailed investigation of dispersion compensated optical com-
munication system using pre-, post- and symmetrical-dispersion
compensation techniques is specifically reported.

4. Conclusion

Chromatic dispersion is a critical issue which can severely
influence system performance at 40 Gb/s, and such a com-
pensation tenability should accommodate multiple WDM
channels. Since dispersion compensation is the technique
used in fiber optic communication system designed to cope
with the dispersion introduced by the optical fiber [18,19],
the paper focuses on reporting a detailed investigation of
40 Gb/s WDM transmission experiments using periodic dis-
persion compensation and dispersion slope compensation.
Pre-compensation decreases the signal power faster, and the
signal experiences normal dispersion while signal power is
higher; whereas in post-compensation, the signal power falls
more slowly and the signal experiences anomalous dispersion
while the signal power is higher. Pre-compensation has also
been shown to result in pulse compression due to self-phase
modulation (SPM), rather than the more detrimental pulse
broadening effect that occurs in post-compensation. Opti-
mally adjusting the compensation ratio of each channel will
further improve the transmitted distances.

Acknowledgment

The financial support of the IEEE Photonics Society and the
International Year of Light 2015 (IYL2015) is gratefully
acknowledged. The authors would like to thank IEEE Orange
Country Section Past-chair and Professor of Cal State Univ.,
Dr. David Cheng, for the useful discussions and encourage-
ment during the course of this work. The authors also wish
haracterization of a 40 Gbps long-haul multi-channel transmission
tworks (2015), http://dx.doi.org/10.1016/j.dcan.2015.06.001

dx.doi.org/10.1016/j.dcan.2015.06.001
dx.doi.org/10.1016/j.dcan.2015.06.001
dx.doi.org/10.1016/j.dcan.2015.06.001


7Theoretical and numerical characterization of a 40Gbps long-haul multi-channel transmission system
to thank the anonymous reviewers for their continued
encouragement and helpful suggestions.

References

[1] A. Sano, Y. Miyamoto, S. Kuwahara, H. Toba, A 40 Gb/s/ch
transmission with SPM/XPM suppression through pre chirping
and dispersion management, J. Lightwave Technol. 18 (2000)
1519–1527.

[2] A. Mecozzi, C. Balslev Clausen, M. Shtaif, System impact of
intra-channel nonlinear effects in highly dispersed optical
pulse transmission, IEEE Photonics Technol. Lett. 12 (2000)
1633–1635.

[3] A. Pizzinat, A. Schiffini, F. Alberti, A. Paoletti, D. Caccioli,
P. Grigio, P. Minzioni, F. Matera, Numerical and experimental
comparison of dispersion compensation techniques on differ-
ent fibers, IEEE Photonics Technol. Lett. 14 (2000) 1415–1417.

[4] W. Chen, S. Li, P. Lu, D. Wang, W. Luo, Dispersion compensa-
tion optical fiber modules for 40 Gbps WDM communication
systems, Front. Optoelectron. China 3 (4) (2010) 333–338.

[5] J. Yadav, R. Kaur, R. Singh, Performance comparison of
dispersion compensation techniques on 40 Gbps OTDM system
at S-band and C-band over different fiber standards, Opt.-Int.
J. Light Electron Opt. 126 (4) (2015) 391–393.

[6] R. Kaler, A. Sharma, T. Kamal, Comparison of pre-, post- and
symmetrical-dispersion compensation schemes for 10 Gb/s
NRZ links using standard and dispersion compensated fibers,
Opt. Comm. 209 (1–3) (2002) 107–123.

[7] K. Xu, Comparison of dispersion compensation in a 40 Gbps
WDM optical communication system, Proc. SPIE 7846 (78460H)
(2010) 1–7.

[8] Z. Pan, Y. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y. Li,
A. Willner, Tunable chromatic dispersion compensation in 40-
Gb/s systems using nonlinearly chirped fiber bragg gratings,
J. Lightwave Technol. 20 (no. 12) (2002) 2239–2246.

[9] B. Saleh, M. Teich, Fundamentals of Photonics, 2nd, John
Wiley & Sons, 2001.
Please cite this article as: K. Xu, Y. Ou, Theoretical and numerical ch
system with dispersion compensation, Digital Communications and Ne
[10] L. Grtiner-Nielsen, B. Edvold, D. Magnussen, D. Peckham, A.
Vengsarkar, D. Jacobsen, T. Veng, C. Larsen and H. Damsgard,
Large volume manufacturing of dispersion compensating
fibers, Digest of Optical Fiber Communications Conferences,
OFC’98, paper TuD5, pp. 24–25, 1998.

[11] J. Maeda, Y. Fukuchi, Numerical study of nonlinear pulse
transmission in a fiber link with periodical dispersion slope
compensation, J. Lightwave Technol. 23 (no. 3) (2005)
1189–1198.

[12] S. Wen, Bi-end dispersion compensation for ultralong optical
communication system, J. Lightwave Technol. 17 (no. 5)
(1999) 792–798.

[13] G. Agrawal, Nonlinear Fiber Optics, 3rd ed, CA: Academic, San
Diego, 2001.

[14] D. Fonseca, A. Cartaxo, and P. Monteiro, 40 Gb/s optical
single-sideband transmission resorting to pseudolinear regime
and electrical dispersion compensation, 11th International
Conference on Transparent Optical Networks (ICTON’09),
pp. 1–4, 2009.

[15] P. Bijayananda, P. Sahu, Ultra high capacity 1.28 Tbps DWDM
system design and simulation using optimized modulation
format, Opt.-Int. J. Light Electron Opt. 124 (iss. 13) (2013)
1567–1573.

[16] P. Zhang, D. Feng, W. Huan, D. Jia, Comparison of dispersion
compensation for DQPSK modulated format in 100 Gbps DWDM
optical communication system, Proc. SPIE 8906 (89061E)
(2013) 1–7.

[17] Y. Akasaka, R. Sugizaki, A. Umeda, and T. Kamiya, High-
dispersion-compensation ability and low nonlinearity of W-
shaped DCF, Digest of Optical Fiber Communications Confer-
ences, OFC’96, paper ThA3, pp. 201–202, 1996.

[18] V. Sharma, Rajni, Investigation of pre-, post- and symmetric-
dispersion compensation techniques (DCF) using different
modulation formats over high-speed optical link, J. Opt.
Commun. 33 (no. 3) (2012) 227–240.

[19] A. Yin, L. Li, X. Zhang, Analysis of modulation format in the
40 Gbit/s optical communication system, Opt.-Int. J. Light
Electron Opt. 121 (iss. 17) (2010) 1550–1557.
aracterization of a 40 Gbps long-haul multi-channel transmission
tworks (2015), http://dx.doi.org/10.1016/j.dcan.2015.06.001

http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref1
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref1
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref1
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref1
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref2
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref2
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref2
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref2
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref3
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref3
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref3
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref3
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref4
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref4
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref4
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref5
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref5
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref5
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref5
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref6
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref6
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref6
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref6
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref7
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref7
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref7
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref8
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref8
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref8
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref8
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref9
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref9
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref9
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref10
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref10
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref10
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref10
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref11
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref11
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref11
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref12
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref12
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref13
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref13
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref13
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref13
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref14
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref14
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref14
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref14
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref15
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref15
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref15
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref15
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref16
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref16
http://refhub.elsevier.com/S2352-8648(15)00040-1/sbref16
dx.doi.org/10.1016/j.dcan.2015.06.001
dx.doi.org/10.1016/j.dcan.2015.06.001
dx.doi.org/10.1016/j.dcan.2015.06.001

	Theoretical and numerical characterization of a 40Gbps long-haul multi-channel transmission system with dispersion...
	Introduction
	System configuration, parameters, and basic equations
	Transmitter
	Dispersion compensation fiber
	Dispersion methods and WDM

	Tunable multi-channel dispersion compensation
	Conclusion
	Acknowledgment
	References




