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Abstract
Bayesian networks are probabilistic models used for prediction and decision making under
uncertainty. The delivery quantity, the production quantity, and the inventory are changing
according to various unexpected events. Then the prediction of a production inventory is required
to cope with such irregular fluctuations. This paper considers a production adjustment method for
an automobile parts production process by using a dynamic Bayesian network. All factors that may
influence the production quantity, the delivery quantity, and the inventory quantity will be
handled. This study also provides a production schedule algorithm that sequentially adjusts the
production schedule in order to guarantee that all deadlines are met. Furthermore, an adjusting
rule for the production quantities is provided in order to maintain guaranteed delivery.
& 2015 Chongqing University of Posts and Communications. Production and Hosting by Elsevier B.
V. All rights reserved.
1. Introduction

In the production system generally termed FA (Factory
Automation), purchased parts or materials that go through
each process of manufacturing, subassembly, and final
assembly are both sent to the client and stored in the
inventory for the next shipment. In the workplace utilizing
such a system, production attributes such as production rate
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are subject to irregular changes according to the operating
capabilities of the facilities and number and quality of the
day’s labor force. Product orders themselves also randomly
change [1–3]. As such, the managers of each process needs to
make an estimation based on their know-how and experience
and tactfully decide the output in such a production system.

Regarding the inventory, according to a ‘Kanban’ production
management way of thinking, the inventory itself is a cost.
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Kanban is a scheduling system for lean and just-in-time (JIT)
production. Kanban is a system to control the logistical chain
from a production point of view, and is an inventory control
system [4]. This system controls the logistical chain from a
production point of view, and is an inventory control system.

The general purpose of inventory management is to
efficiently compress stock and maintain the standard
amount of stock. Inventory of final goods resulting from
production is the origin of profit and necessary to guarantee
the due date of orders. However, over-stocking increases
company costs through interest, rent, and outdated pro-
ducts. On the other hand, under-stocking hinders companies
from guaranteeing the due date for large or urgent orders
and could decrease the customer service quality or company
credibility. As such, production inventory problems become
the discerning matter for a trade-off between decreased
cost by inventory and increased customer satisfaction and
company credibility with respect to due date guarantees
and urgent orders.

This research aims to suggest an approach for a trade-off
such that delivered goods are seen as demand and production
and inventory as supply regarding the demand. The irregular
changes of various factors bringing demand and supply cause
the problem [5,6]. The research describes the irregularly
varied supply and demand, its various causes and correspond-
ing changes in production, and the causal relationship by using
dynamic Bayesian network (DBN) [7–14]. A method is proposed
to estimate the supply and demand probability distribution
and accordingly adjust production and inventory plans [14–23].

With the rapidly changing socioeconomic environment sur-
rounding the automobile parts manufacturing industry, one of
the basic industries with a strict deadline schedule was selected
as the subject for this study. We will analyze various factors
influencing production and delivery viewed as supply and
demand, and will construct a probability model by DBN. Based
on real data obtained from an automobile parts manufacturing
company, we will estimate the supply and demand probability
distribution and describe the production inventory plan in order
to control the overflow and underflow inventory probability,
maintains the optimum inventory to guarantee even large or
urgent orders.

2. Construction of the DBN model regarding
the production inventory management

2.1. Dynamic Bayesian networks

Bayesian networks, a type of graphical model, are suitable for
discovering neural interactions due to their graphical nature
and rigorous underlying theory. First, the structural similarity
between Bayesian networks and the nervous systems makes the
former promising tools for modeling the latter. The nervous
system is a network of connected neurons that transmit
electrochemical signals between each other through nerve
fibers. The topology of this complicated system can be naturally
abstracted as a graph, that is, nodes connected with edges.
Second, the edges of a Bayesian network are directional, which
is suitable for modeling the transmission path of neural signals.
Third, the node variables of a Bayesian network only locally
depend on their parent nodes, which is similar to a neuron
network with direct interactions with neighbor neurons through
nerve fibers. Fourth, Bayesian networks are modular and
flexible, which can be used to describe the dependence
relationships between nodes and their parent nodes. Fifth,
plenty of model-learning and computation methods have been
developed for Bayesian networks by researchers in the field of
artificial intelligence. A dynamic Bayesian network (DBN) is an
extension of a Bayesian network (also called a belief network)
for stochastic processes [9–11].

A Bayesian network employs a directed and acyclic graph
(DAG) to encode conditional independence among random
variables. The essential concept in the encoding is D-
separation, which we will introduce after defining related
concepts in graph theory. A DAG G is a pair (U ,E) where U is
a set of vertices and E DU �U is a set of arrows without
cycles.

A chain between two vertices α and β is a sequence α=α0,
…, αn=β of distinct vertices such that (αi�1, αi ) or (αi ,
αi�1) A E for all i=1,…, n. Vertex β is a descendant of
vertex a if and only if there is a sequence α=α0,…, αn=β of
distinct vertices such that (αi�1, αi ) A E for all i=1,…, n. If
three disjoint subsets A, B and SDU satisfy the condition
that any chain between 8α AA and 8β AB contains a
vertex γAπ such that either

� arrows of π do not meet head-to-head at γ and γAS,
� arrows of π meet head-to-head at γ and γ is neither in S

nor has any descendants in S,

then S D-division A and B. The same set of conditional
independence can be encoded by different DAGs, and a DAG
can be converted to an essential graph that uniquely
encodes the set of conditional independencies [10–13].

A multi-channel stochastic process can be modeled with a
Bayesian network of C�T vertices, where C is the number
of channels and T is the number of time points and each
vertex represents the signal of a channel at a time point. In
this case, DAG is subject to an additional constraint, that
vertices at time t cannot have vertices after t as their
parents, since the future cannot influence either the
present or the past. If the same dependence relationships
repeat time after time and the signals at t only depend on
the signals from t�N to t, then the whole network can be
rolled up as its DBN representation, a DAG is composed of
only vertices from t�N to t.

For example, Zt=[Ut, Xt, Yt]
T is a first-order Markov

process with dependence relationships specified as in Fig. 1.
Xt is a Markov process whose transition distribution P(Xt|
Xt�1,Ut) varies according to the input Ut. Arrows from Xt�1

and Ut to Xt are associated with the transition distribution.
Yt is the output observation at time t. The arrow from Xt to
Yt is associated with the distribution P(Yt|Xt). Such a process
can be represented by the first two time-slices circled by
the dots [13].
2.2. Formularization of the production inventory
control problem and probability distribution of
inventory

For a production system with three volumes: the planned
production volume, the delivery product volume, and the
inventory volume, it is necessary to consider situations



Fig. 1 Manufacturing process.
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where the three volumes would probabilistically change due
to diverse factors. For instance, although the delivery
product volume during m period is already set, it can be
changed due to production facility breakdown, sudden
change in order volume according to customer needs, and
abrupt faulty occurrences. With this in consideration, the
DBN model for production inventory control problem can be
constructed as below.

– Production quantities: At

– Delivered product quantities: Dt

– Inventory quantities: St
– The production plans will be carried out for m months
(t=1,2, ,...,l l : forecast adjustment months)

– Factors for the production quantities
RAαt : (α=A,B,…,Z α: factors)
RAαβt : (β=A,B,…,Z β: factors)
RAαβγt : (γ=A,B,…,Z γ: factors)
RAαβγδt : (δ=A,B,…,Z δ: factors)
RAαβγδit: (i=1,2,...,m m: the number of factors)

– Probabilistic change factors for the delivery quantities
RDκμνs t : (κ=A,B,…,Z κ: factors)
RDκμνs t : (μ=A,B,…,Z μ: factors)
RDκμνs t : (ν=A,B,…,Z ν: factors)
RDκμνs t : (s=A,B,…,Z s: factors)
RDκμνs t : (j=1,2,...,n n: the number of factors)

– Production quantity of every month: AtrAmax

Thus, the total stock of the product St for the tth month
can be expressed as Eq. (1).

St ¼ St�1þAt�Dt ð1Þ

Also, considering all these factors, the probability dis-
tribution for product St of the tth month can be expressed
as Eq. (2).
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Here, the combination probability distribution are devel-
oped further by a conditional probability distribution as
below.
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Here,
P
Xi

Pð⋯; Xi;⋯Þmeans
P

xi AΩXi

Pð⋯; Xi ¼ xi;⋯Þ. Due to

the D-division [9–13], a characteristic of the DBN, Eq. (3)’s
joint probability distribution can be simplified like Eq. (4),
and acquires the probability distribution of inventory like
Eq. (5).

PðSit; Sit�1;A
i
t;D

i
t;RAαt;RDκt;RAαβt;RDκμt;

RAαβγt; ;RAαβγδtÞ
¼ PðSitjSit�1;A

i
t;DtÞ

�PðAi
tjRAαt;RAαβt;RAαβγt;RAαβγδtÞ

�PðDi
tjRDκt;RDκμtÞ

� PðRAαtjRAαβt;RAαβγt;RAαβγδtÞ
�PðRAαβtjRAαβγt;RAαβγδtÞ

�PðRAαβγtjRAαβγδtÞPðRDκtjRDκμtÞ ð4Þ

PðSitÞ ¼
P
Sit� 1

P
Ai
t

P
Di
t

XC

RAαt

XB

RDκt

XE

RAαβ

XC

RDκδt

XU

RAαβγt

XG

RAαβγδt

PðSit; Sit�1;A
i
t;D

i
t;RAαt;RDκt;RAαβt;

RDκμt;RAαβγt;RAαβγδtÞ

¼
X
Sit� 1

X
Ai
t

X
Di
t

XC

RAαt

XB

RDκt

XE

RAαβ

XC

RDκμt

XU

RAαβγt

XG

RAαβγδt

PðSitjSit�1;A
i
t;DtÞ

�PðAi
tjRAαt;RAαβt;RAαβγt;RAαβγδtÞ

�PðDi
tjRDκt;RDκμtÞ

� PðRAαtjRAαβt;RAαβγt;RAαβγδtÞ
�PðRAαβtjRAαβγt;RAαβγδtÞ

�PðRAαβγtjRAαβγδtÞPðRDκtjRDκμtÞ ð5Þ
2.3. Production inventory control for auto parts
production

This research will study the production system of an
automobile part processing line that produces four types
of products under a situation where the set production
volume and the delivered product volume are probabilisti-
cally changed.
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For a production system with three volumes: the planned
production volume, the delivery product volume, and the
inventory volume, it is necessary to consider situations
where the three volumes would probabilistically change
due to diverse factors. For instance, although the delivery
product volume during m period is already set, it can be
changed due to a production facility breakdown, a sudden
change in order volume according to customer needs, and
abrupt faulty occurrences. Therefore, four products of the
automobile parts of manufacturing lines of production
systems are defined as below.

� Production item: auto parts engine valve lifter
(four types)

� Production capacity: 1.5 million units per month
� Product composition: comprised of ten parts across eight

processing lines
� Actual data acquisition period: Jan. 2003–Dec. 2005 (36

months)
Fig. 2 Manufacturing process.

Tab. 1 The stochastic variables of delivered goods and produc

St Inventory quantities
Dt Delivered goods
RDAt The cause of external
RDAAt A poor outbreak process
RDABt A poor delivery inspection
RDBt The cause of in-company
RDBAt Strike of customer
RDBBt Order-change of A/S products
RDBCt Change of production schedule
At production quantities
RAAt The cause of external
RAAAt Order-change
RABt The cause of in-company
RABAt Control of inventory quantity (+)
RABBt Control of Inventory quantity (-)
RACt Inferior a manufacturing process
RACAt Inferior of B 1
RACAAt Body-lathe processing
RACABt Hole-processing
The auto parts production line producing singular product
varieties are composed of eight manufacturing processing
lines such as manufacturing, subassembly, final assembly,
inspection of the final product as shown in Fig. 2. It
assembles 10 varieties of parts that are separately produced
on different processing lines according to the final destina-
tion of products.

It should be noticed that this study calculates the factors
that influence production and delivery in each assembly for
actual auto parts processing lines from January 2003 to
December 2005 (36 months). Tab. 1 shows the statistical
variables of delivered goods and production volumes.

Fig. 3 presents the statistical model of production and
inventory by a dynamic Bayesian network in which St is
inventory volume, At is the production volume, and Dt is the
delivered product volume. They are probability variables
and are represented as nodes.
2.4. Probability distribution of inventory volume
according to conditional probability

The initial production schedule can probabilistically change
due to production facility faulty, shipment inspection mis-
take, strikes, or sudden changes in orders. In fact, even the
daily production volume, set according to the inventory
volume and delivered products volume of the previous day,
can probabilistically change due to factors such as the change
of production plans or faulty assembly lines. Therefore, the
prior probability for changed delivered product volume and
production volume will be obtained by utilizing the data of
the previous 36 months for each related causes of change.

Fig. 4 presents the early prior probability of order change
(RAAA), representing the node of changed production plans
of the assembling company and other companies in LINE-1.
Fig. 5 shows the early prior probability of production change
caused by manufacturing trouble (RAAB).
tion.

RACAFt An external diameter processing
RACBt Inferior of B2
RACBAt Lathe processing
RACBBt Dimensional check
RACBCt An external diameter processing
RACBDt The inside diameter processing
RACCt Inferior of DPL
RACCAt DPL-lathe processing
RACCBt Crowning
RACCCt Hole-processing
RACCDt An external diameter processing
RACCEt Hole polishing
RACCFt An external diameter processing
RACDt Inferior of assembling
RACDAt HOLE-CHECK
RACDBt CLIP Insertion
RACDCt DPL-assembling
RACDDt Stratification
RACDEt Stratification



Fig. 3 Stochastic model of production and inventory by a dynamic Bayesian network.

Fig. 4 Prior probability of order change (RAAA).
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Fig. 6 presents the early prior probability of internal
trouble (RDBA), representing the node of causes in the
assembling company such as faulty production facilities or
faulty shipment inspections for delivering company B. Fig. 7
shows the early prior probability of external factors (RDBB),
representing the node for causes outside the assembling
company such as strikes or sudden changes in orders.

Considering these factors, the probability distribution for
inventory St can be obtained by Eq. (5). Fig. 8 presents the
probability distribution for inventory volume estimated
from prior probability distribution between January 2003
and December 2005, as well as the production plan of 2006.

3. Maintaining optimum inventory according
to a production adjustment algorithm

3.1. Production adjustment algorithm

While inventory volume is decided by the inventory volume
of the previous month, delivery and production volume of
that month, there can be over or under inventory due to
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various causes after that month. With that, defective
products or increased inventory management costs occur.
The plan is to adjust a production plan that restricts to a
certain limit the probability of each inventory volume
going under the lowest or over the highest limit due to
changes in production volume and delivered products
volume.

The targeted inventory is set to 20–30% of the maximum
production volume (300,000–450,000 units), the lowest limit
is set to 10% of the maximum production volume (150,000
Fig. 5 Prior probability of production cha

Fig. 6 Prior probability of

Fig. 7 Prior probability of
units), and the highest limit is set to 80% of the maximum
production volume (1,200,000 units). The production plan is
adjusted so that the probability of each situation is lower
than 5%. The focal point of the adjustment algorithm is to
intervene in the situation that the probability of the
inventory volume decreasing more than the lowest limit is
more than 5%.

Also, in the scenario that the probability of the inventory
volume increasing more than the highest limit is more than
5% as the production volume is increased, the algorithm will
nge by manufacturing trouble (RAAB).

internal trouble (RDBA).

external factors (RDBB).



Fig. 8 Probability distribution of the production schedule.
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intervene to decrease the production volume while con-
sidering the probability of having less than the lowest limit
as seen in Fig. 9.
Fig. 9 Flowchart of adjusting rule.
3.2. Update of conditional probability

While the prior probability of the production volume and
delivered products volume has been determined based on
data accumulated for the past 36 months, this prior prob-
ability can be updated when the data of the 37th month has
been measured. The DBN model for the production inven-
tory control assigns each prior probability to the number of
times new nodes of the delivered product volume and
production volume occur. Here, the probability distribution
of inventory volume of a set time period based upon prior
probability of a time period before the set term is esti-
mated. Adjustment of production plans are carried out per
period.

Regarding the set time period, we will hold it to six
months for the auto parts production plan problem. A
conceptual diagram will update the conditional probability
for each cause of delivered product volume and production
volume based upon determined volume of inventory at the
end of the month and factors that occurred during that
month. It will also obtain the predicted probability distribu-
tion of a set period according to the expected delivery
product volume and production volume. The conceptual
diagram is presented in Fig. 10.
3.3. Predicted probability distribution of
inventory volume

In practice, the adjustment of production plan and the
update of inventory probability distribution are necessary.
As can be seen in Fig. 8, which predicts the inventory
probability distribution from initial production plans, the
months from January to April have more than 5% probability
that production volume falls short of the lowest limit
(150,000 units) and the months from September to
December have more than 5% probability that production
volume will exceed the highest limit (1,200,000 units). The
adjusted production plan via the adjustment algorithm is
presented in Tab. 2.

Fig. 11 presents the change in probability distribution for
inventory volume St by the adjusted production plan. In
contrast, Fig. 12 shows the predicted inventory volume by
the adjusted production plan, the predicted inventory
volume by the initial production plan, and the real inven-
tory volume of that year (2006). The subject, an assembly



Fig. 10 Delivery goods, production and stock forecasting flow by the adjusting rule.

Tab. 2 Adjustment of the production schedule.

Month Initial production schedule The production schedule updated

Jun 960,000 960,000
Jul 1,140,000 1,140,000
Aug 1,060,000 910,000
Oct 1,230,000 1,130,000
Nov 1,210,000 1,160,000
Dec 1,130,000 880,000

Fig. 11 The adjustment of the probability distribution of the production shedule.
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Fig. 12 Inventory quantities of adjusted production and actual production.

Fig. 13 Inventory management cost during year.
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line, has a safe production volume as 20–30% (300,000–
450,000 units) of the monthly maximum production volume.
This safety inventory range is presented as a dotted line.
The predicted inventory volume of the adjusted production
plan is close to the predicted inventory volume by the initial
production plan and actual inventory volume.

Note that the assembly line calculates the inventory
management cost at 2 yen per product due to the labor
cost and facilitation management cost, the company has
saved 1,120,000 yen via the production plan adjustment and
890,000 yen over the real inventory volume in 2006. This is
presented in Fig. 13.
4. Conclusion

The DBN model was constructed for a production inventory
management of an auto parts assembly line to handle the
irregularly changing delivered product volume, production
volume, and inventory volume. We determined the causes
of change for probabilistically changing delivered product
volume and production volume through factor analysis, and
converted these causes into nodes to a probabilistic depen-
dent relation that was presented through a graph. Also, in
order to develop a production plan reflecting such efforts,
we suggested a production inventory management method
that would accordingly adjust production plans to each
coming period and optimally guarantee delivery deadlines.
Production plans themselves would maintain optimal inven-
tory volume by calculating the predicted probability dis-
tribution based upon accumulative data. Finally, we
presented a reduced cost of inventory management by
comparing them prior and after adjusted production plans,
and comparing the real cost of that year.
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