
Digital Communications and Networks 2 (2016) 130–138
H O S T E D  B Y Contents lists available at ScienceDirect
Digital Communications and Networks
http://d
2352-86
license

n Corr
E-m

hwang1
journal homepage: www.elsevier.com/locate/dcan
Dynamic scheduling and analysis of real time systems
with multiprocessors

M.D. Nashid Anjum, Honggang Wang n

University of Massachusetts Dartmouth, 285 Old Westport Rd, Dartmouth, MA 02747, USA
a r t i c l e i n f o

Article history:
Received 15 June 2016
Accepted 27 June 2016
Available online 18 July 2016

Keywords:
Job-shop scheduling problems
JSP
LPT
SPT
LS
EDD
Tube-tap
MINLP
x.doi.org/10.1016/j.dcan.2016.06.004
48/& 2016 Chongqing University of Posts and
(http://creativecommons.org/licenses/by-nc-n

esponding author.
ail addresses: manjum@umassd.edu (M.D. Nas
@umassd.edu (H. Wang).
a b s t r a c t

This research work considers a scenario of cloud computing job-shop scheduling problems. We consider
m realtime jobs with various lengths and n machines with different computational speeds and costs.
Each job has a deadline to be met, and the profit of processing a packet of a job differs from other jobs.
Moreover, considered deadlines are either hard or soft and a penalty is applied if a deadline is missed
where the penalty is considered as an exponential function of time. The scheduling problem has been
formulated as a mixed integer non-linear programming problem whose objective is to maximize net-
profit. The formulated problem is computationally hard and not solvable in deterministic polynomial
time. This research work proposes an algorithm named the Tube-tap algorithm as a solution to this
scheduling optimization problem. Extensive simulation shows that the proposed algorithm outperforms
existing solutions in terms of maximizing net-profit and preserving deadlines.
& 2016 Chongqing University of Posts and Telecommunications. Production and Hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The rapid growth of realtime services and complex commercial
strategies of cloud computing makes the scheduling problem a
crucial challenge. In the literature of computer science the pro-
blem of scheduling multiple jobs (or tasks) on multiple machines
(or processors) has been found very crucial and challenging. In
terms of computer science jargon this type of optimization pro-
blems is known as job-shop scheduling problems (JSP) [1,2]. A
number of variants of JSP are available in the literature focusing on
different objectives and constraints. This research work considers
a cloud computing scenario of real-time dynamic job-shop sche-
duling where multiple jobs need to be scheduled on multiple
processors (i.e., machines) to maximize the net profit. The problem
scenario assumes that each job has a deadline to be met, each job
may have different job lengths in terms of bits, and the profit of
processing a packet of one job differs from the other jobs. It is also
considered that each machine may have a different processing rate
(bit/s) and processing cost. The cost of processing a job on a ma-
chine per time unit may differ from one machine to another ma-
chine. The goal is to distribute the loads of the jobs to multiple
machines in such a way that meets all the deadlines and max-
imizes the net profit, i.e., minimizing the overall processing cost.
Telecommunications. Production
d/4.0/).

hid Anjum),
The problem formulation considers both the hard-realtime
deadlines [3] and the soft-realtime deadlines [4]. In the case of the
hard-realtime deadline the execution time of a job must not ex-
ceed the given deadline. Hence, the scheduling makespan needs to
meet the deadlines of each job. If the execution time of a job fails
to meet the deadline, no reward or profit is gained for processing
this job. On the other hand, a soft-realtime deadline allows the
execution time to exceed the deadline. Hence, the scheduling
makespan does not necessarily meet all the deadlines. However,
the soft-deadline concept introduces a penalty function. If the
makespan fails to meet the deadline of a job, a penalty is applied.
The penalty is non-negative and a function of execution time. If
the execution time is less than the deadline the value of the
penalty is zero. But the value of the penalty keeps increasing if the
execution time exceeds the deadline.

This paper formulates the scheduling optimization problem as
a mixed integer programming (MIP) problem [5]. At first, the
problem formulation considers only hard-deadlines. Later, the
problem is extended considering soft-deadlines. The formulated
optimization problem for hard-deadlines is basically a mixed in-
teger linear programming (MILP) problem [6]. This paper con-
siders an exponential function for the penalty and thus the for-
mulated problem that considers the soft-deadlines is basically a
mixed integer non-linear programming (MINLP) optimization
problem. The MINLP problem is practically very difficult to solve,
because it combines the combinatorial nature of mixed integer
programming (MIP) and the difficulty in solving nonconvex (and
even convex) nonlinear programming (NLP) [6].
and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

www.sciencedirect.com/science/journal/23528648
www.elsevier.com/locate/dcan
http://dx.doi.org/10.1016/j.dcan.2016.06.004
http://dx.doi.org/10.1016/j.dcan.2016.06.004
http://dx.doi.org/10.1016/j.dcan.2016.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2016.06.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2016.06.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2016.06.004&domain=pdf
mailto:manjum@umassd.edu
mailto:hwang1@umassd.edu
http://dx.doi.org/10.1016/j.dcan.2016.06.004


M.D. Nashid Anjum, H. Wang / Digital Communications and Networks 2 (2016) 130–138 131
A number of solutions are available in the literature to solve the
multiprocessor job-shop scheduling problems. The solutions are
precisely heuristic because of the hardness of the optimization
problem. A major number of the existing job-shop scheduling al-
gorithms deal with distributing multiple jobs on multiple ma-
chines, but in general they consider identical machines dis-
regarding different processing rates and different processing costs
of the machines. Few of them consider heterogeneous multi-
processors and real-time jobs. Primarily the existing solutions fo-
cus on minimizing the makespan and computational complexity.
The existing literature has yet to find a solution which addresses
the problem of maximizing the net profit of a dynamic real-time
multiprocessor job-shop scheduling optimization problem con-
sidering machines with different processing rates and costs and on
top of hard and soft-deadlines with penalty function.

This paper proposes an algorithm named the Tube-tap algo-
rithm as a solution to the formulated optimization problem and an
extensive simulation is carried out to compare the performance of
the proposed algorithm with basic existing solutions. Simulation
results show that the proposed algorithm outperforms the existing
solutions.

The rest of the paper is organized as follows – Section 2 deals
with related works, Section 3 explains the system model, the
mathematical representation of the scheduling optimization pro-
blem is formulated in Section 4, Section 5 discusses the proposed
solution, simulation results are explained in Section 6, finally the
concluding remarks are drawn in Section 7.
2. Related work

A number of research works regarding the job-shop scheduling
problem have been discussed in computer science and computa-
tional literature. Different versions of JSPs are introduced by dif-
ferent researchers focusing on distinct objective functions and
constraints. The vast majority of them deal with identical multi-
processors. The most common algorithms for identical multi-
processor JSP are List-scheduling (LS) [7], Longest processing time
(LPT) [8,9], Shortest processing time (SPT) [10], Weighted Shortest
Processing Time (WSPT) [11], Earliest Deadline First (EDF) or Ear-
liest Due Date (EDD) [12,13], Minimum Slack Time (MST) [14], etc.
List-scheduling (LS) considers n jobs in some fixed orders and
assigns the job j to the machine whose load is smallest so far.
Longest processing time (LPT) sorts n jobs in descending order of
processing time, and then runs the list scheduling algorithm.
Fig. 1. System model of multiproce
Shortest processing time (SPT) sorts n jobs in ascending order of
processing time, and then runs the list scheduling algorithm.
Earliest Due Date (EDD) sorts n jobs to be done from the job with
the earliest due date to the job with the latest due date. Variants of
the EDF algorithm and their applications are widely discussed in
[15]. Weighted Shortest Processing Time (WSPT) sorts the jobs in
non-decreasing ratio of processing time to importance weight [11].
Minimum Slack Time (MST) scheduling assigns priority based on
the slack time of a process. Slack time is defined as the amount of
time left after a job to meet the deadline [14].

Hodgson's Algorithm minimizes the number of tardy jobs on
multiple parallel machines [16]. First it computes the tardiness of
all jobs. If a tardy job is found at the kth position then the algo-
rithm finds the LPT (longest processing time) in between position
1 and k. Johnson's Algorithm provides less computation but it
works optimally only for two machines [17,18]. A genetic algo-
rithm is proposed to solve the cloud computing scheduling in [19],
where a cost function is introduced for late execution. A hybrid
genetic algorithm is proposed in [20], where the job scheduling is
executed using a priority rule and the priorities are defined by the
genetic algorithm. In [21], the authors introduce a multiprocessor
scheduling framework which integrates hard and soft real-time
jobs and best-effort jobs. The focus of this work is to reduce tar-
diness and to improve response time of best-effort jobs by utiliz-
ing dynamic slack reclamation.

However the above-mentioned research works do not precisely
address the cloud computing job-shop scheduling problem con-
sidering multiple machines with different processing speeds and
processing costs, different rates of profits for different jobs with
various lengths, and the penalty function for soft deadlines. This
motivates us to precisely address the cloud-computing job-shop
scheduling problem using a proper mathematical representation
and find a realistic solution which offers less computation com-
plexity and better net-profit.
3. System model

The problem scenario is depicted in Fig. 1. It shows there are n
machines on the server-side with different processing rates (r) and
processing costs (c). On the client side, there are m jobs where each
one of them has different delay constraints (T), data sizes (L) and profits
(p) per packet. The packet size (s) of a job may differ from others.

The notations of the presented system model are described as
follows:
ssor job distribution scenario.



M.D. Nashid Anjum, H. Wang / Digital Communications and Networks 2 (2016) 130–138132
ri¼
<r1

ci¼
<c1

lij¼
Lj¼
pj¼
sj¼

<c
r
i

i

pij

Tj¼
data processing rate by the ith machine (bits/time)
< < ⋯ <r r rn2 3

Cost of the ith machine per unit time
< < ⋯ <c c cn2 3

the portion (bits) of the jth job done by the ith machine
Total length of the jth job (packets)
profit of processing a packet of the jth job per packet
packet size of the jth job

p

s
j

j
, ∀ ∀i j

= c
r
i

i
¼profit of processing a bit of the jth job on the ith

machine
deadline of processing the jth job
{ … }n1, 2, 3, , ; ∈ { … }j m1, 2, 3, ,
∈i

The deadlines can be either hard or soft. It is assumed that a job
is schedulable within the corresponding given deadline.
4. Problem formulation

In this section we formulate the job-shop scheduling problem
as a mixed integer programming problem, where the objective
function is to maximize the net profit. Initially the problem con-
siders only hard-deadlines. This implies that if the deadline of a
job is not met, the profit for executing that job will be zero. Later,
the problem will be extended for soft-deadlines too. In the case of
soft-deadlines, if the deadline of a job is missed, a penalty will be
applied for late execution. The penalty is a function of time. The
amount of penalty increases as the lateness (i.e., delay) of the
execution increases.
4.1. Problem formulation considering the hard-deadline

In this section we formulate the job scheduling problem as a
mixed integer programming problem, where the objective func-
tion is to maximize the net profit. As described in Eq. (8), the
constraints are as follows: (i) all deadlines are required to be met
and (ii) all jobs should be done completely, not partially.

4.1.1. Assumptions
It is assumed that

� All deadlines are hard. Mathematically,

if ∑ >= Ti
n l

r j1
ij

j
then ∑ ( ) == l p 0i

n
ij ij1 ; ∀ j

� All jobs are schedulable. It implies ≤ ∀
∑ =

T j;
L

r j
j

i
n

i1

� <c
r

p

s
i

i

j

j
; ∀ ∀i j,

� >p 0ij ; ∀ ∀i j,

4.1.2. Formulation
Objective function:

∑ ∑= ( )
( )= =

z l pMaximize
1j

m

i

n

ij ij
1 1

Subject to:

∑ ∑ ≤ ∀
( )= =

l

r
T j;

2j

m

i

n
ij

j
j

1 1
∑ = ∀
( )=

l

s
L j;

3i

n
ij

j
j

1

Eq. (2) represents the first constraint of the optimization pro-
blem that indicates the total processing time of a jth job on dif-
ferent machines cannot be greater than its deadline, Tj. The second
constraint given in Eq. (9) means portions of the jth job on dif-
ferent machines should be equal to its job length Lj.

4.2. Problem extension considering soft-deadlines

4.2.1. Assumptions

� All deadlines are soft.
� All jobs are not necessarily schedulable.

� <c
r

p

s
i

i

j

j
; ∀ ∀i j,

� >p 0ij ; ∀ ∀i j,

4.2.2. Penalty function
Rate of penalty increases as the delay increases. The function of

penalty rate is chosen as follows:

⎧
⎨⎪
⎩⎪

ϕ τ
α τ

τ
( ) =

>

≤ ( )

β τp e , if 0

0, if 0 4
rate
j

j
j j j

j

j j

τ = − ( )t T 5j j j

where tj represents the execution time of jth job.
The total penalty over τj second delay for the jth job is calcu-

lated by

∑ϕ ϕ τ= ( )
( )

τ

= 6
total
j

k
rate
j

j
1

j

Hence, the net penalty for m jobs after execution of the entire
process is

∑ ∑ ∑ϕ ϕ τ= ( )
( )

τ

= = = 7j

m

total
j

j

m

k
rate
j

j
1 1 1

j

4.2.3. Formulation
Objective function:

∑ ∑ ∑ ϕ= ( ) −
( )= = =

z l pMaximize
8j

m

i

n

ij ij
j

m

total
j

1 1 1

Subject to:

∑ = ∀
( )=

l

s
L j;

9i

n
ij

j
j

1

5. Proposed solution

A novel algorithm is proposed to solve the formulated scheduling
optimization problem. Pseudo-code of the proposed algorithm is given
in Algorithm 1. The basic idea of the proposed solution is simplified in
Figs. 2 and 3. Fig. 2 shows there are three jobs j1, j2, and j3 sorted
according to their deadlines T1, T2, and T3. The jobs have different sizes
in terms of bits presented by different colors. This example considers
that all jobs have hard-deadlines and all jobs are schedulable. The
machines M1, M2, M3, and M4 are presented by tubes and sorted ac-
cording to their cost per bit. The tubes are connected through taps at



3:

4:

5:
6:
7:
8:

9:

10:
11:
12:
13:
14:
15:
16:

17:

18:
19:

20:
21:

Fig. 2. Initializing the Tube-tap algorithm: (1) Jobs are sorted in ascending order with respect to deadlines. (2) Machines are sorted in ascending order with respect to cost/
bit.

Fig. 3. Portions of different jobs distributed among different machines.

M.D. Nashid Anjum, H. Wang / Digital Communications and Networks 2 (2016) 130–138 133
each deadline level. The width of the tube represents the processing
rate of the corresponding machine and height represents the execution
time. The taps are initially kept open. At first, the job J1 with the lowest
deadline T1 is poured through tube M1. It fills the tube up to the level
T1, then it overflows through the connected tap and fills the M2, and
M3 tubes up to the levels marked by the green color. The summation of
the portion of bits of Job J1 distributed among the machines re-
presented by green color is equal to the job size of the J1. After the
distribution of job J1 the taps at the level T1 are closed and J2 is then
poured through the tube M1. The portion of J2 distributed among the
tubes is presented by orange color. All the taps at level T2 are closed as
soon as the distribution of J2 is done. Next, the same process is done for
J3 which is marked by the light-blue color. Fig. 3 depicts whichmachine
processes what portion of a job. It also indicates when a portion of a job
starts and ends on different machines. Though the example shown in
Figs. 2 and 3 considers the hard deadlines, the proposed algorithm is
capable of dealing both hard-deadlines and soft-deadlines. To do so the
proposed algorithm coins a variable named ‘Threshold’. The value of the
threshold is equal to the given deadline for hard-deadline jobs but the
value of ‘Threshold’ is updated for each job in the case of soft-deadlines.
The pseudo-code snippet mentioned in line-17 to line-20 in Algorithm
1 deals with only soft-deadline jobs. The rest of this section deals with
some characteristics of the proposed Tube-tap algorithm.

Algorithm 1. Proposed Tube-tap algorithm.
1:

2:
22:

23:
sort_c; {machines sorted with respect to cost/bit in
ascending order}
24:
sort_T; {jobs sorted with respect to deadline in as-
cending order}
loads¼zeros(m,n); {portion of mth job done on nth
tube}

job_machine¼zeros(m,n) {portion of jth job done on ith
machine}

penalty_TT¼zeros(1,m);

time_count¼zeros(1,n);

time_table¼zeros(m,n);

Initialize [1�m] matrix: α; {penalty scaling factor}
Initialize [1�m] matrix: β; {penalty exponential
factor}

L_bit¼L. n packet_size; {job length in bits}

L_temp¼0

for j¼1:1:m do

L_temp¼L_bit(sort_T(j))

i¼1

flag¼0

Threshold¼sort_T(j); {updates the jth threshold of

the tube}
= ∑ =y j
m

1 (Threshold - time_count(i).nr(sort_c(i));
if _ >L temp y then
= + ( _ − )
∑ ( )=

Threshold Threshold L temp y

ri
n

1
;

end if

while <flag 1 do
= ( − _ ( _ ( )))⁎ ( _ ( ))x Threshold time count sort c i r sort c i

if _ < =L temp x then
( ) = _loads j i L temp,



25
26
27:
28
29
30

31:

32

33

34
35
36
37:
38

1.
2.
3.
4.
5.

6.
7.

1.
2.

3.

1.
2
3
4
5

M.D. Nashid Anjum, H. Wang / Digital Communications and Networks 2 (2016) 130–138134
:
 else

:
 ( ) =loads j i x,
end if

:
 _ = _ − ( )L temp L temp loads j i,

:
 _ ( _ ( ) _ ( )) = ( )job machine sort T j sort c i loads j i, ,

:
 _ ( _ ( )) = _ ( _ ( )) + ( )

( _ ( ))time count sort c i time count sort c i loads j
r sort c i

;

_ ( ) = _ ( )
( _ ( ))time table j i, loads TT j i

r sort c i
,

:
 _ ( ) = ∑ _ ( )=time cum i time table j i,j
m

1

:
 ( _ ( )) = ( _ )time sort T j time cummax ; {Execution time
of jth job}
:
 if _ ==L temp 0 then

:
 flag¼1

:
 end if
i¼ iþ1

:
 end while

:
 end for
39

5.1. Properties of Tube-tap algorithm

5.1.1. Penalty calculation
The pseudo-code for calculating the penalty for missing the

soft-deadline is given as follows:
τ = −time T

FOR k¼1:1:m

IF τ( ) >k 0
FOR l¼1:1:tau(k)
STATE α( ) = ( ) + ( )⁎ ( )⁎ β( )⁎penalty k penalty k k p k e k l;

ENDFOR
ENDIF
ENDFOR
8.

5.1.2. Profit calculation for soft-deadlines
The net-profit is calculated using following pseudo-code:
FOR j¼1:1:m

⎡⎣⎢ ⎤⎦⎥ ⎡⎣⎢ ⎤⎦⎥( ) = ∑ ⁎ ( ) − ∑ ⁎ ( )=

_ ( )
_ ( ) =

_ ( )
( )

profit j p j c ii
n job machine j i

packet size j i
n job machine j i

r i1
,

1
, ;
ENDFOR
_ = ∑ [ ( ) − ( )]=net profit profit j penalty jj
m

1

4.

5.1.3. Profit calculation for hard-deadlines
Pseudo-code for calculating net-profit for jobs with hard-deadlines:
FOR x¼1:1:m

.
 IF ( ) > ( )time x T x

.
 loss(x)¼p(x)n L(x);

.
 ENDIF
.
 ENDFOR

Table 1
.

Simulation parameters for simulation-1.
_ = ∑ [ ( ) − ( )]=net profit profit j loss jj
m

1

Parameter Value

Number of machines, n 4
Processing rate, r 1000 n 8 n [1 3 2 4] bits/s
Cost of machine, c [2 3 4 5]/10 units/s
Number of jobs, m 5
Job length, L [100 200 150 300 100] packets
Packet size, s [1000 1500 1200 1000 800] bytes
Profit from job, p [6 7 8 9 8]/10 units/packet
Deadlines, T [70 80 50 120 60] s
6

5.1.4. Computational complexity

Theorem 5.1. The time complexity of the proposed Tube-tap algo-
rithm is order of ( )n2 .

Proof. Time complexity of the Tube-tap algorithm is derived from
analyzing the pseudo-code given in Algorithm 1.

The algorithm contains two sorted arrays and two nested loops.
The nested loop is composed of a FOR LOOP and an embedded
WHILE LOOP. The complexity of a single FOR LOOP is order of ( )n . As
like FOR LOOP the complexity of a single WHILE LOOP is also an order
of ( )n . Since the block of the nested loop is composed of a FOR LOOP

and a WHILE LOOP hence the time complexity of the nested loop
block is order of ( )n2 . The average time complexity of a Quicksort

algorithm is ( )n nlog [22,23]. So, the complexity of the proposed
Tube-tap algorithm is ( ) + ( ) + ( ) ≡ ( )n n n n n nlog log2 2 . □

5.1.5. Schedulability

Theorem 5.2. Proposed Tube-tap algorithm ensures the execution of
all jobs before the corresponding deadlines iff all jobs are schedulable.

Mathematically, ∑ ∑ ≤= = Tj
m

i
n l

r j1 1
ij

j
, ∀ j iff ≤

∑ =
T

L

r j
j

i
n

i1
, ∀ j.

This claim is derived from analyzing the algorithm's logic and
pseudo-code. The validity of this claim will be verified using an
extensive simulation in Section 6.
6. Simulation result

The following section contains the MATLAB simulation results.
In this section, an extensive simulation is carried out to compare
the performance of the proposed Tube-tap algorithm and the
other four existing algorithms called List-scheduling (LS), Longest
Processing Time (LPT), Shortest Processing Time (SPT), and Earliest
Due Date (EDD). MATLAB is used to conduct the simulation. The
simulation is done in six parts. The first four parts deal with hard-
deadlines and the latter two parts deal with soft-deadlines. The
corresponding simulation parameters and corresponding results
are discussed as follows.

6.1. Part-1

In the first simulation we consider 5 jobs and all the jobs are
considered with hard deadlines. Each job has a different job
length. The profit gained from processing a packet of a job is dif-
ferent from other jobs. The packet sizes of the jobs may differ too.
These jobs are required to be scheduled on 4 machines with dif-
ferent processing speeds and processing costs. The parameter va-
lues for simulation-1 are listed in Table 1.

Fig. 4 represents the elapsed time to execute the assigned jobs on
different machines. The red line represents deadlines of the corre-
sponding jobs as mentioned in Table 1. The figure shows that the List
algorithm fails to meet the deadline of job-3 and 5 and LPT algorithm
fails to meet the deadlines of job 1, 3, and 5. Hence, list algorithm
gains no profit for processing job-3, and 5. Similarly LPT gains no
profit for processing job 1, 3, and 5. On top of that a loss is received
due to processing costs on the machines. On the other hand, the SPT,
EDD, and proposed Tube-tap algorithm meet all the required dead-
lines and thus no loss is applied for processing any job.



Fig. 4. Simulation result compares the net profits of applying different algorithms
for the parameter set-1 as given in Table 1.

Fig. 5. The simulation results compare the net profits of applying different algo-
rithms for the parameter set-1 as given in Table 1.

Table 2
Simulation parameters for simulation-2.

Parameter Value

Job length, L [200 200 200 200 200] packets
Packet size, s [1000 1000 1000 1000 1000] bytes
Profit from job, p [6 7 8 9 8]/10 units/packet
Deadlines, T [40 50 60 70 30] s

Fig. 6. The simulation results compare the elapsed time of jobs for different al-
gorithms for the parameter set-2 as given in Table 2.

Fig. 7. The simulation results compare the net profit for different algorithms for
the parameter set-2 as given in Table 2.

M.D. Nashid Anjum, H. Wang / Digital Communications and Networks 2 (2016) 130–138 135
Fig. 5 represents the comparison of net profits earned by ap-
plying different algorithms for the simulation parameters de-
scribed in Table 1. The red dotted line represents the List algorithm
and it shows a decreasing trend in between job-2, and 3 and job-4,
and 5. This decrement in profits occurs due to the failure of
meeting the corresponding job deadlines. The LPT is represented
by the blue dotted line and it results in a negative net profit (i.e.,
loss) after processing the first job. It happens because of LPT fails
to meet the deadline of job-1 as found in Fig. 4 and thus it gains no
profit for processing that job but it bears a cost for processing the
job on the machines. On the other hand, EDD, SPT, and the pro-
posed Tube-tap show continuous increasing trends in terms of
net-profit. According to Fig. 5 the proposed Tube-tap algorithm
earns the maximum net profit as indicated by the dotted black line
in the figure.

Therefore, analyzing the simulation results of the first simula-
tion we conclude that the proposed algorithm outperforms other
existing algorithm in terms of profit while fulfilling all the delay
constraints.

6.2. Part-2

Table 2 shows the simulation parameters for the second si-
mulation. Unlike simulation-1 all the job lengths for simulation-2
are kept equal to 2000 packets, the packet sizes of all jobs are also
kept the same (1000 bytes). The rest of the parameter values are
kept equal to the simulation-1 parameter values.

Fig. 6 compares the elapsed time to accomplish the job
scheduled by different algorithms. Like simulation-1, List and LPT
algorithms fail to meet the deadlines for job-3 and 5. Like these
two algorithms SPT also fails to meet the deadlines for job-3 and 5.
Also like simulation-1 the EDD and Tube-tap algorithms meet all
the required deadlines.

Fig. 7 shows how the net-profit after accomplishing job-3 and
5 decreases for List, LPT, and SPT algorithms. Since these three
algorithms missed the deadlines for job-3 and 5 as is shown in
Fig. 6. From Table 2 we find that all jobs have the same length and
from Fig. 6 we find that List, LPT, and SPT provide the same ex-
ecution times for all five jobs. Hence, from Fig. 7 we see that all the
of these three algorithms show the same net-profit trend. The



Fig. 8. The simulation results compare the net profit of jobs for different algorithms
for the parameter set-3.

Fig. 10. The simulation results compare the elapsed time for the different algo-
rithms for the parameter set-4.

M.D. Nashid Anjum, H. Wang / Digital Communications and Networks 2 (2016) 130–138136
figure displays that the other two algorithms (i.e., EDD and Tube-
tap) show greater net-profit. Since these two algorithms did not
miss any deadlines, the net-profit curves show a continuous in-
creasing trend throughout the process. Among all of the five al-
gorithms the proposed Tube-tap algorithm shows the best net-
profit.

6.3. Part-3

In the case of part-3 of the simulation, all the simulation
parameter values are kept the same as simulation-2 except for the
deadlines. In this simulation, it is assumed that all the five jobs
have the same deadlines of 150 s.

Fig. 9 represents the elapsed time to execute the assigned jobs
on different machines. This figure shows that all the algorithms
meet the required deadlines (150 s). All the algorithms provide the
makespan less than the deadline (150 s) except the Tube-tap al-
gorithm. It is noteworthy that in the jargon of JSP the makespan is
defined as the total processing time for executing all jobs. As we
mentioned before, traditional JSP algorithms focus on minimizing
the makespan and computational complexity rather than focusing
on maximizing net-profit. Recall that the objective of the problem
scenario of this paper is to maximize net-profit. Hence the pro-
posed Tube-tap algorithm tries to extend the makespan focusing
on processing all the jobs on the least costly machine as long as it
is capable of meeting the deadlines. Moreover, from Fig. 9 all the
Fig. 9. The simulation results compare the elapsed time for different algorithms for
the parameter set-3.
algorithms show the same execution time for all five jobs except
the Tube-tap algorithm. For this reason all the algorithms except
Tube-tap show the same trend of net-profit as is shown in Fig. 8.
The figure makes it clear that the proposed Tube-tap algorithm
provides a far better net-profit than that of the existing algorithms.

Therefore, analyzing the simulation results of the third simu-
lation, we conclude that the proposed algorithm still maintains
best performance in terms of profit and delay constraint.

6.4. Part-4

The simulation parameters for the fourth simulation are almost
the same as simulation-3 except that the deadline is extended to
250 s instead of 150 s.

The makespan of the Tube-tap algorithm is also increased to
250 s as shown in Fig. 10 and the other four algorithms show the
same makespan like in the previous simulation that is equal to
100 s. Fig. 11 shows that the net-profit of the Tube-tap algorithm
has also increased as the deadline is extended. It happened be-
cause Tube-tap prolongs the makespan as the deadline is extended
and thus it allocates a larger portion of the jobs on the least costly
machines.

From the analysis of the above-mentioned four simulations we
conclude that the proposed Tube-tap algorithm is capable of
meeting all the hard-deadlines if the given jobs are schedulable.
Moreover, the proposed Tube-tap algorithm allocates the jobs on
Fig. 11. The simulation results compare the net profit of the jobs for different al-
gorithms for the parameter set-4.



Table 3
The simulation parameters for simulation-5.

Soft-deadlines, T [70 80 50 120 60] s
α [0.5 0.5 0.5 0.5 0.5]
β [0.025 0.025 0.025 0.025 0.025]

Fig. 13. The simulation results compare the net-profit of jobs for different algo-
rithms for the parameter set-6.

Fig. 14. The simulation results compare the elapsed time of jobs for different al-
gorithms for parameter set-6.

M.D. Nashid Anjum, H. Wang / Digital Communications and Networks 2 (2016) 130–138 137
the least costly machines by reducing slack time and extending the
makespan. The slack time is defined as the amount of time that a
task is delayed without delaying another task or impacting the
deadline. This property of the proposed Tube-tap algorithm allows
it to maximize the net-profit as well as meet the deadlines.

6.5. Part-5

This part of the simulation deals with the jobs with soft-
deadlines. The simulation parameters are kept the same as simu-
lation-1 except the deadlines are soft instead of hard. The penalty
scaling factor α is considered 0.5 and the penalty exponent β is
considered 0.025 for all five jobs as mentioned in Table 3. Practi-
cally, not necessarily all the jobs need to have the same scaling
factor and exponent.

Fig. 12 shows that the execution times for the jobs with soft-
deadlines using List, LPT, SPT, EDD, and Tube-tap are the same as
their execution time for the hard-deadlines in simulation-1 as
presented in Fig. 4. Analyzing Fig. 13 we see that the SPT, EDD, and
Tube-tap do not exceed any deadlines hence the trends of the net-
profit of these three algorithms are the same as simulation-1 as
presented in Fig. 5. In the case of the List and LPT algorithms the
net-profit curves do not show decreasing trends as in Fig. 5 though
these two algorithms miss the deadlines of job-3 and 5. This is
because exceeding the soft-deadlines does not necessarily result in
zero profits but it applies some penalties. However, if the delay
exceeds the delay for too long a time, the net profits can be zero or
negative.

6.6. Part-6

In simulation-6 the much tighter soft-deadlines are considered
to be given as follows T¼[20 30 120 150 50] s. All the 5 algo-
rithms fail to meet the deadline of job-2 as shown in Fig. 14. Yet
the proposed Tube-tap algorithm misses the deadline in the
smallest margin compared with the other algorithms. Moreover,
the List algorithm misses the job-5 deadline and LPT misses both
the job-1 and 5 deadlines. LPT misses the 1st deadline by a large
margin and that results in a larger penalty and thus the net-profit
after accomplishing 1st job is less than zero as shown in Fig. 15.
Fig. 12. The simulation results compare the net profits for different algorithms for
the parameter set-5.

Fig. 15. The simulation results compare the net profit for different algorithms for
parameter set-6.
Since the LPT and List algorithms fail to meet the deadline of job-5
hence the profit margin between job-4 and 5 is less for these two
algorithms. Among all the 5 algorithms proposed Tube-tap pro-
vides the best results in terms of net-profit and execution time.

Summarizing all five simulation results mentioned above, we



M.D. Nashid Anjum, H. Wang / Digital Communications and Networks 2 (2016) 130–138138
conclude that the proposed Tube-tap algorithm outperforms other
existing solutions by preserving all the deadlines and maximizing
net profit. The net profit keeps increasing as the value of the
deadline increases.
7. Conclusion

This project work considers a scenario of cloud computing job-
shop scheduling where multiple jobs are assigned to a server that
possesses multiple processors (i.e., machines). It is considered that
each job has a deadline to be met, each job may have a different
job length, and the profit of processing a packet of a job can differ
from other jobs. It is also considered that each machine may have
different processing rates and processing costs. It is also assumed
that the deadlines are either hard or soft. A penalty is applied if a
job fails to meet deadline. The problem has been formulated as a
mixed integer non-linear programming problem. This paper pro-
poses a realistic solution to solve the formulated problem called
the Tube-tap algorithm which offers less computational com-
plexity. Extensive simulations are carried out to compare the
performance of the proposed algorithm with existing solutions.
The simulation results show that the proposed algorithm outper-
forms the existing solutions in terms of maximizing net profit and
preserving deadlines.
Acknowledgment

This research work would not be easy to accomplish without
the kind co-operation of Anusha Krishna Murthy, Sneha kolapalli
and A.M. Esfar-E-Alam Turzo.
References

[1] P. Larranaga, J.A. Lozano, Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation, vol. 2, Springer Science & Business Media, 2002.

[2] U.K. Chakraborty, Computational Intelligence in Flow Shop and Job Shop
Scheduling, Studies in Computational Intelligence, vol. 230, Springer-Verlag,
Berlin, Heidelberg, 2009.

[3] S.A. Brandt, S. Banachowski, C. Lin, T. Bisson, Dynamic integrated scheduling of
hard real-time, soft real-time, and non-real-time processes, in: 24th IEEE Real-
Time Systems Symposium, 2003. RTSS 2003, IEEE, Cancun, Mexico, 2003, pp.
396–407.

[4] J.A. Stankovic, K. Ramamritham, What is predictability for real-time systems?
Real-Time Syst. 2 (4) (1990) 247–254.

[5] L.A. Wolsey, Mixed integer programming, in: Wiley Encyclopedia of Computer
Science and Engineering, 2008.

[6] M.R. Bussieck, A. Pruessner, Mixed-integer nonlinear programming, SIAG/OPT
Newsl.: Views News 14 (1) (2003) 19–22.

[7] J. Schutten, List scheduling revisited, Oper. Res. Lett. 18 (4) (1996) 167–170.
[8] L. Lu, L. Zhang, J. Yuan, The unbounded parallel batch machine scheduling with

release dates and rejection to minimize makespan, Theor. Comput. Sci. 396 (1)
(2008) 283–289.

[9] A.H. Kashan, B. Karimi, M. Jenabi, A hybrid genetic heuristic for scheduling
parallel batch processing machines with arbitrary job sizes, Comput. Oper. Res.
35 (4) (2008) 1084–1098.

[10] E. Kondili, C. Pantelides, R. Sargent, A general algorithm for short-term sche-
duling of batch operations I. MILP formulation, Comput. Chem. Eng. 17 (2)
(1993) 211–227.

[11] A.P. Vepsalainen, T.E. Morton, Priority rules for job shops with weighted tar-
diness costs, Manag. Sci. 33 (8) (1987) 1035–1047.

[12] H.M. Goldberg, Analysis of the earliest due date scheduling rule in queueing
systems, Math. Oper. Res. 2 (2) (1977) 145–154.

[13] T. Cheng, M. Gupta, Survey of scheduling research involving due date de-
termination decisions, Eur. J. Oper. Res. 38 (2) (1989) 156–166.

[14] K.R. Baker, J.J. Kanet, Job shop scheduling with modified due dates, J. Oper.
Manag. 4 (1) (1983) 11–22.

[15] J.A. Stankovic, M. Spuri, K. Ramamritham, G.C. Buttazzo, Deadline Scheduling
for Real-Time Systems: EDF and Related Algorithms, vol. 460, Springer Science
& Business Media, 2012.

[16] J.C. Ho, Y.-L. Chang, Minimizing the number of tardy jobs for m parallel ma-
chines, Eur. J. Oper. Res. 84 (2) (1995) 343–355.

[17] J.Y. Leung, Handbook of Scheduling: Algorithms, Models, and Performance
Analysis, CRC Press, 2004.

[18] L. Engebretsen, Simplified tight analysis of Johnson's algorithm, Inf. Process.
Lett. 92 (4) (2004) 207–210.

[19] D. Dutta, R. Joshi, A genetic: algorithm approach to cost-based multi-qos job
scheduling in cloud computing environment, in: Proceedings of the Interna-
tional Conference & Workshop on Emerging Trends in Technology, ACM, New
York, NY, USA, 2011, pp. 422–427.

[20] J.F. Goncalves, J.J. de Magalhães Mendes, M.G. Resende, A hybrid genetic al-
gorithm for the job shop scheduling problem, Eur. J. Oper. Res. 167 (1) (2005)
77–95.

[21] B.B. Brandenburg, J.H. Anderson, Integrating hard/soft real-time tasks and
best-effort jobs on multiprocessors, in: 19th Euromicro Conference on Real-
Time Systems, 2007. ECRTS'07, IEEE, Pisa, Italy, 2007, pp. 61–70.

[22] J. Nievergelt, K.H. Hinrichs, Algorithms & Data Structures, vdf Hochschulverlag
an der ETH, 1999.

[23] N. Wirth, Algorithms & Data Structures, Prentice-Hall, 1986.

http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref1
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref1
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref1
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref2
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref2
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref2
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref4
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref4
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref4
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref6
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref6
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref6
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref7
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref7
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref8
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref8
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref8
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref8
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref9
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref9
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref9
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref9
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref10
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref10
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref10
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref10
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref11
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref11
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref11
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref12
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref12
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref12
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref13
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref13
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref13
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref14
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref14
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref14
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref15
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref15
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref15
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref16
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref16
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref16
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref17
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref17
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref18
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref18
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref18
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref20
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref20
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref20
http://refhub.elsevier.com/S2352-8648(16)30030-X/sbref20

	Dynamic scheduling and analysis of real time systems with multiprocessors
	Introduction
	Related work
	System model
	Problem formulation
	Problem formulation considering the hard-deadline
	Assumptions
	Formulation

	Problem extension considering soft-deadlines
	Assumptions
	Penalty function
	Formulation


	Proposed solution
	Properties of Tube-tap algorithm
	Penalty calculation
	Profit calculation for soft-deadlines
	Profit calculation for hard-deadlines
	Computational complexity
	Schedulability


	Simulation result
	Part-1
	Part-2
	Part-3
	Part-4
	Part-5
	Part-6

	Conclusion
	Acknowledgment
	References




