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A B S T R A C T

Millimeter-wave communication (mmWC) is considered as one of the pioneer candidates for 5G indoor and
outdoor systems in E-band. To subdue the channel propagation characteristics in this band, high dimensional
antenna arrays need to be deployed at both the base station (BS) and mobile sets (MS). Unlike the conventional
MIMO systems, Millimeter-wave (mmW) systems lay away to employ the power predatory equipment such as
ADC or RF chain in each branch of MIMO system because of hardware constraints. Such systems leverage to the
hybrid precoding (combining) architecture for downlink deployment. Because there is a large array at the
transceiver, it is impossible to estimate the channel by conventional methods. This paper develops a new
algorithm to estimate the mmW channel by exploiting the sparse nature of the channel. The main contribution
is the representation of a sparse channel model and the exploitation of a modified approach based on Multiple
Measurement Vector (MMV) greedy sparse framework and subspace method of Multiple Signal Classification
(MUSIC) which work together to recover the indices of non-zero elements of an unknown channel matrix when
the rank of the channel matrix is defected. In practical rank-defective channels, MUSIC fails, and we need to
propose new extended MUSIC approaches based on subspace enhancement to compensate the limitation of
MUSIC. Simulation results indicate that our proposed extended MUSIC algorithms will have proper
performances and moderate computational speeds, and that they are even able to work in channels with an
unknown sparsity level.

1. Introduction

Thanks to the tremendous growing demand for data rates in
cellular networks, it seems to be essential to shift the operating
frequency of cellular systems from the conventional microwave spec-
trum to promising E-band Millimeter-wave spectrum (30–300 GHz)
for indoor and even outdoor applications [1,2]. Free license and
wideband spectrum in millimeter wave along with using of the array
with massive number of antenna make a plentiful combination for fifth
generation (5G) [3]. Fortunately, the very small wavelengths of mmW
signals (between 1–10 mm) make it possible to pack a miniaturized
large number of antennas into transceivers thereby providing high
beamforming gains that can compensate severe path loss caused by
shadowing phenomena because of encountering higher frequency to

environmental obstructions such as oxygen absorb; humidity fades and
reflective outdoor materials [4]. Propagation measurements in urban
environments show that the mmW channel is sparse in angular domain
meaning only a few scattering clusters [5,6]. For resolving the
problems related to sparsity, compressed sensing (CS) literature has
been studied extensively in recent years [7]. The main goal of CS
approaches is trying to recover a sparse signal successfully from a few
linear measurements. Furthermore, to overcome the poor propagation
characteristics in this frequency band and boost the traveling range of
waves, adaptive beamforming may make systems less vulnerable to
unfavorable shadowing effects. However, in the mmW system, it is
unfeasible to dedicate one complete Radio Frequency (RF) chain and
one high-resolution analog to digital converter (ADC) or digital to
analog converter (DAC) to each branch of antenna due to a high cost
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and power consumption of these components. For this reason and for
supporting capability of multiplexing several data streams and also
achieving more accurate beamforming gain, a hybrid architecture has
been proposed in [8,9] such that the processing is performed in analog
stage with the number of RF chains much lower than the number of
antennas and baseband stage. Baseband precoder (combiner) is used
for correction of limitation of analog RF section. In [8,9], the sparse
nature of the poor scattering mmW channel is exploited to develop low-
complexity hybrid beamforming. Design of hybrid beamformers has
been investigated for other architectures in [10,11]. For instance [10],
the past proposed a scheme based on subspace estimation rather than
estimation of the whole channel by utilizing the concept of the
reciprocity of the channel in TDD MIMO systems. In most of the
previous works, estimation of the channel or the beamforming has been
based on the sparse recovery problem in compressive sensing for single
measurement vector [12]. Convex optimization problem such as
LASSO or some simple and fast suboptimal greedy algorithms such
as orthogonal matching pursuit (OMP) can be leveraged to resolve the
sparse problems [7] .

In this paper, we consider a hybrid beamforming model for down-
link single-user mmW systems. We assume to have a constant sensing
matrix in several times of training mode as well as to know the
geometry of the arrays in source and destination. Thus, we utilize the
multiple measurement vectors (MMV) for sparse millimeter channel
and propose different approaches for solving the channel estimation
problem. We can consider the various greedy MMV algorithms where
are mostly an extension of single measurement vector (SMV) prescrip-
tions such as Simultaneous OMP (SOMP), Simultaneous Iterative Hard
Thresholding (SIHT), Simultaneous Hard Thresholding Pursuit
(SHTP) [13]. The main contribution of the paper is the development
of the MUSIC based methods rather than the existing simultaneous
algorithms for solving the joint sparse channel recovery. In practical
rank-defective and noisy channels, MUSIC fails, and we need to
propose some new approaches based on subspace enhancement to
compensate the limitation of MUSIC [14]. Rank-deficiency may occur
due to shortage of snapshots number than the sparsity level value, or
correlation between sources or multipath propagation which is usual in
millimeter wave communications.

The reminder of this paper is organized as follows. In Section 2, the
system and channel models will be introduced. In Section 3, we will
take the advantages of the sparse nature of the mmW channel and
formulize its estimation as a compressive sensing problem. In Section
4, we first give MUSIC algorithm for estimating the subspace and
solving joint recovery problem and then introduce the subspace
enhancement approach for noisy and rank-defective channel.
Afterwards, a sparsity level-blind algorithm based on the MUSIC and
conventional greedy support recovery methods will be described.
Performance comparison and conclusions are presented in Sections 5
and 6 respectively.

We use the following notations throughout this paper. The bold
upper-case letters denote matrices, and bold lower-cases represent
vectors. Furthermore, A|| ||Fand a|| ||stand for Frobenius norm of a matrix
and Euclidian norm of a vector, whereas AT ,AH , A*and A† are its
transpose, conjugate transpose (Hermitian), conjugate and Moore-
Penrose pseudo-inverse, accordingly. The terms of A B⊗ is the
Kronecker product of A and B. The term of A ∈ Ci j× means that the
matrix A is a complex matrix with dimension of i j× . We use [.] to
denote expectation operator. vec A( ) means arranging all of columns of
matrixAin a column vector.

The jth column and jth row of the matrixAis demonstrated by
A j:, and A j( ). For an arbitary set of χ , the sub matrix of Aχ is composed
of selected columns ofA by entries of χ . For an arbitary subspace S,

matrix PSmeans the orthogonal projection onto the range space of S and
PS

⊥ indicates the orthogonal projection onto orthogonal complement of
S⊥.

2. System model

Assuming a single-user downlink Millimeter-wave MIMO system
with Nt transmitter antennas at the base station (BS) and Nr receiver
antennas at the Mobile station (MS). Each side is equipped with Nrf

t

and Nrf
r Radio-Frequency (RF) chains. Ns data streams are considered

separately to be sent into a sparse channel. In the proposed model, the
number of component of the transmitter array is more than
the receiver. Furthermore, the number of RF chains
satisfiesN ≤ N ≤ N ≤ min(N , N )s rf

r
rf
t

t r . Fig. 1 depicts a hybrid single user
MIMO mmW transceiver with spatial multiplexing gain and phase
shifter as an analog beamformer.

The downlink signal at the receiver side before a baseband filter is
given by,

x F HF G t F n= +r r
H

t t r
H (1)

where H ∈ CN N×r tis the complex sparse channel assumed to be slowly
block-fading, F ∈ CN N

t
×t rf

t
is the analog (RF) precoder, G ∈ CN N

t
×rf

t tis the
baseband precoder, t ∈ CN ×1t is transmitting signal vector with covar-
iance matrix [ttH]=(P /Ns s)INsandn ∈ CN ×1r is the additive Gaussian
noise at the receiver with  nn[ ]H ]=σn

2INr . Similarly, F ∈ CN N
r

×r rf
r
and

G ∈ CN N
r

×rf
r rare the RF band and baseband combiners, respectively. The

received signal, after filtering, is given by,

y G x G F HF G t G F n C HPt C n= = + = +H H
r r

H
r r

H
r
H

t t r
H

r
H (2)

where C is defined F G ∈ CN N
r r

×r r . In Fig. 1, the block of phase shifters as
analog precoder/combiner can be chosen from predefined codebooks
or from random matrices with stochastic phases and constant ampli-
tudes. Thus, a possible value set for μth phase shifter and νth RF chain
in the matrix F is F[ ] = 1/ N eμ ν, t

jϑμ ν, where ϑμ ν, as an M-bits quantized
angle is chosen from uniform distribution in range of π[0, 2 ). The total
power constraint is compelled by normalizing Gtsuch that F G = NF st t

2 .
Millimeter-wave channel in outdoor environment is limited by a

few numbers of propagation paths [5,6]. The statistical model for
mmW channel is unsuitable due to poor scattering nature. Based on the
parametric physical model of channel with L scatterers and assumption
that each scatterer contributes a single propagation path between the
BS and MS, the nonlinear channel H in spatial angles (but linear in the
path gains) can be indicated as

∑N N
L

β θ φ N N
L

θ φH v v V βV= ( ) ( ) = ( ) ( )t r

l

L

l l l
t r

=1
r t

H
r t

H

(3)

where diag β β ββ = ([ , , ... , ]) ∈ CL
L L

1 2
× is the L dimensional propagation

path gain diagonal matrix with independently and identically distrib-
uted complex Gaussian diagonal entries with zero mean and variance

L1/ . The θV ( ) ∈ CN L
r

×r and φV ( ) ∈ CN L
t

×t in (3) represent array response
matrices at the BS and MS, respectively. Such matrices are given by

θ θ θ θ NV v v v( ) = [ ( ), ( ), ... , ( )]/L rr r 1 r 2 r (4)

φ φ φ φ NV v v v( ) = [ ( ), ( ), ... , ( )]/L tt t 1 t 2 t (5)

The terms of φi and θi denote the Angle of Departure (AoD) and
Angle of Arrival (AoA) of ith the independent path from L total paths.
By assuming a uniform linear arrays (ULA) model [15], θv ( )lr and φv ( )lt
can be defined as

⎡
⎣⎢

⎤
⎦⎥θv ( ) = 1, e , ... ,e Nr l

j π
λ d θ j π

λ N d θ
r

− 2 sin( ) − 2 ( −1) sin( )
T

l r l

(6)
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⎡
⎣⎢

⎤
⎦⎥φv ( ) = 1, e , ... ,e Nl

j π
λ d φ j π

λ N d φ
tt

− 2 sin( ) − 2 ( −1) sin( )
T

l t l

(7)

where λ is the signal wavelength and d is the inter-antenna distance
such that it sets to λ/2 at both the BS and MS. It is assumed that θv ( )lr
and φv ( )lt are quasi-static at the receiver and transmitter, which means
that θv ( )lr and φv ( )lt vary slowly, and they can be well estimated at both
sides of the transceiver.

3. Problem formulation

In this section, we take the advantages of the sparse nature of the
mmW channel and formulize channel estimation model as a compres-
sive sensing problem. Authors in [9,16] attempted to obtain training
analog vectors from a hierarchical multi-level, but here these vectors
are considered as random vectors with fluctuating phase by using one
RF chain in training step. As a result, the received signal can be written
as

υ f Hf f n= t +r k t k r kk ,
H

, k ,
H

k (8)

where υk and tk are received and transmitted symbol, fr k, and ft k, are
training analog beamformer at the MS and BS and nk is additive
received vector noise at the kth time-slot. For representing the sparse
characteristics of the channel, we can apply lemma
vec vecABC C A B( ) = ( ⊗ ) ( )T to (8) from [17]. Thus we can rewrite (8)
as

υ vecf f H f n= ( ⊗ ) ( )t +t k r k r kk ,
T

,
H

k ,
H

k (9)

It can be assumed that BS sends the same symbol tk in separate M
time slots with distinctive precoder vectors and also MS received in
Mdifferent combiners. With such an assumption, MS stacks
theMmeasurements in a vector as

y Θh ζ= t + (10)

where, υ υy = [ , ... , ]1 M
T, Θ f f f f= [( ⊗ ), ... ,( ⊗ )]t r t M r M,1

T
,1

H
,

T
,

H T, vech H= ( )
and ζ f n f n= [ , ... , ]r r M,1

H
1 ,

H
M

T.
Using the linear model of virtual channel described in [18], physical

channel H in fixed virtual transmit and receive directions can be
modelled as

∑ ∑ θ φH H v v U H U= ( ) ( ) =
m

N

n

N

v m n m n
=1 =1

, , r t
H

r v t
H

r t

(11)

θ θ θU v v v= [ ( ), ( ), ... , ( )]Nr r 1 r 2 r r is an N N×r r array response matrix similar to
(3). But, instead of spatial frequencies π λ d θ l L(2 / ) sin( ), = 1, ... ,l , we

substitute the virtual spatial frequencies πk N k N2 / , = 1, 2, ... ,r r .
Similarly, φ φ φU v v v= [ ( ), ( ), ... , ( )]Nt t 1 t 2 t t is an N N×t t array response
matrix with virtual spatial frequencies πi N i N2 / , = 1, 2, ... ,t t. Thanks
to these spatial virtual directions, the matrices Ur and Ut are full-rank
DFT matrices. Therefore, Hv is unitarily equivalent to H such that it
captures all of channel information. Matrix of H ∈ CN N

v
×r t represents

the virtual complex channel matrix and is not generally diagonal.
In practice, however, the virtual channel matrix Hv is generally non-

sparse due to a mismatch between the scattering angles and uniform
fixed angles’ grid. To force the matrix Hv to be sparser [19], has
proposed, “aperture shaping”. For simplicity, in this paper we assume
that Hv is approximately sparse.

By vectorization of the channel matrix in (11), we have

vec vech H U U H= ( ) = ( ⊗ ) ( )t
T

r v (12)

h U U h Wh= ( ⊗ ) =t
T

r v v (13)

where W ∈ CN N N N×t r t r is defined as a complex dictionary matrix of the
channel and h ∈ CN N

v
×1t r represents a sparse vector with L non zero

entries as L N N< < r t .
Replacing (13) in the stacked measurement vector in (10) and

assuming t = 1, we can write,

y ΘWh ζ= +v (14)

y Ψh ζ= +v (15)

where Ψ ∈ CM N N× t r is sensing matrix with the constraint of M N N< t r .
Eq. (15) can be seen as a single measurement vector (SMV) compres-
sive sensing problem due to L-level sparse in hv. The sparsity level of a
vector is defined as the number of nonzero components of that vector.
The support set of hv, with notation of χ , is considered as the set of the
indices at which it is nonzero. Unknown vector hv is recovered as a
unique L-sparse solution of a noiseless model of (15) if and only if 2 L
columns of Ψ are linearly independent [20]. Reconstructing hv in the
noiseless case can be easily computed as

h Ψ y= χv
†

(16)

where Ψ ∈ Cχ
L M† × denotes the Moore-Penrose pseudo inverse of the sub

matrix Ψχ . Some of the important greedy techniques such as orthogonal
Matching Pursuit (OMP) and its derivation, Hard Iterative
Thresholding (IHT) and its extensions have been proposed to resolve
the SMV sparse problems [21]. When the SNR is very low, which is a
usual case at mmW systems, we need to enhance the number of
measurements comparable to the dimension of unknown sparse vector.
To prevent large stacking of the measurements, exploiting Multiple

Fig. 1. Hybrid Model of millimeter wave channel.
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Measurement Vector (MMV) is proposed. A common sensing matrix Ψ
is utilized to obtain different measurement vectors of multiple realiza-
tions of virtual vector channel. Rather than the recovery of the K
unknown vectors separately, it is possible to recover all vectors
simultaneously by finding the row support of the unknown Hv from
the matrix formulation as

Y ΨH Ε= +v (17)

where H h h= [ , ... , ] ∈ Cv v K
N N K

v ,1 ,
×r t ,E ζ ζ= [ , ... , ] ∈ CK

M K
1

× and thus
Y y y= [ , ... , ] ∈ CM K

1 K
× . When predominant nonzero entries of hv k, are

shared in the same locations, MMV algorithms can lead to computa-
tional speed promotion [22]. In this paper, we assume that Hv has L
sparse rows.

The joint sparse non-convex recovery problem, which attempts to
regain the unknown matrix with no more than L nonzero rows, is
expressed as

subject to LY ΨH Hmin − ≤r
H

v F v 0
v (18)

where . r0 stands for the number of nonzero rows of the matrix. Some
of the famous greedy algorithms for solving the full-rank MMV
problem are included of SOMP [23], SIHT, and SHTP [13].
Nevertheless, these procedures are incapable of extract the rank
information in order to improve the recovery ability in the worst-case
(rank( LH ) <v ). In contrast to high computational complexity of rank-
blind methods, MUSIC as a rank-aware approach, provides guaranteed
recovery in the full row rank cases with the mild complexity. However,
once the row rank is not complete, i.e., LHrank( ) <χv,( ) , MUSIC does
not operate well and needs to propose a modified version of MUSIC.
Rank-aware OMP (RA-OMP), a modified version of SOMP, is an
algorithm to improve the rank-defective case by inferring the rank
information, but not fully rank aware [24]. A modified version of RA-
OMP is Rank Aware Order Recursive Matching Pursuit (RA-ORMP)
proposed in [25].

4. Subspace enhancement methods

One of the main disadvantages of the MUSIC technique is a drop of
its operation under the condition of rank-deficiency or under ill-
conditioning. When the number of snapshots is smaller than the
sparsity level L, then no more than K rows can be linearly independent,
and the nonzero rows of unknown matrix turned into rank defective.
Correlation between sources or multi-path propagation is another
reason that caused to rank deficiency. For compensating these limita-
tions, one can use a greedy selection algorithm to find s L r= − atoms
of the dictionary (or equivalently columns) and then applies MUSIC to
an enhanced subspace to recognize the rest of supports. Rank estima-
tion based on observation data matrix is Minimum Description Length
(MDL) proposed in [26]. Unlike the mentioned approach in [27], MDL
does not require any subjective threshold setting. Motivated by rank-
deficiency in channel, we investigate rank-aware algorithms to improve
estimation of an unknown rank-defective Millimeter-Wave channel
matrix.

4.1. MUSIC as a rank-aware method

The range of the arbitary matrix of Α is defined as the space
spanned by set of all possible linear combination columns of Αand is
denoted byΩ Α( ). If these columns are linearly independent, we called
them basic columns and they are a basis for Ω Α( ). Thus, signal
subspace onto (17) is defined by

S Ω ΩΨH Ψ H= ( ) = ( )Δ
χ χv v,( ) (19)

Ω Ψ H( )χ χv,( ) agrees with Ω Ψ( )χ when Hv χ,( ) is a full row rank matrix. In

practice, estimated signal subspace, i.e., S , is provided from the EVD or
SVD on numerous snapshot in matrix Y ΨH Ε= +v while exact
subspace obtained by YY /KH when K → ∞. If we assume that
Ψ Hχ χv,( ) is a full row rank matrix, and SNR is high sufficiently, then
range of Ψ Hχ χv,( ) is equivalent to range of Y. Consequently, one can find
the value of elements of support by projecting the columns of Ψ into
orthogonal subspace of Ω Ψ H( )χ χv,( ) [28].
Remark1. Relying on the MUSIC algorithm, we exploit Ps as an
orthogonal projection matrix onto Ω Ψ H( )χ χv,( ) under the conditions
of K → ∞. Thus, for any k χ∈ we have

P Ψ = 0s k
⊥ (20)

Based on the above-mentioned explanation and [28], the proof is
straightforward and thus omitted.

Additionally, according to (20), rank Q Ψ( ) = 0H
χ where Q is ortho-

normal matrix of noise subspace of Y. However, in practical issue of
estimating the rank, due to limitations in SNR or finite number of K,
estimation of signal subspace is inaccurate. Thus, Eq. (20) is not
satisfied, and we have to minimize P Ψs k

⊥ or equivalently maximize P Ψs k
in MUSIC algorithm. When the rank of H χv,( ), i.e. dimension of signal
subspace, is less than the sparsity level then subspace is called proper
subspace and MUSIC incapable of completed support recovery. To
prohibit the wrong estimating of the support, one can estimate a
subspace spanned by L r− columns of Ψ by conventional MMV
algorithms like SOMP in a probabilistic way and enhance this subspace
to the r-dimensional subspace obtained by MUSIC method determi-
nistically. Because of improper performance of MUSIC method in case
of rank-deficiency, it is disregard to explain the algorithm and we refer
readers to [25].

4.2. Subspace enhancement MUSIC

Suppose that Hv has L nonzero rows within support
χ N N⊂ {1, ... , }t r and also Hv is rank defective, i.e. r L< . Let δ be an
arbitrary subset of χ with L r− elements and S is estimated subspace
of Ω Ψ H( )χ χv,( ) obtained by applying the EVD overYYH. Because of
reduction of rank in estimated subspace signal, we are allowed to find
an extra subspace to combine it with estimated subspace and compen-
sate incoherence of S to Ω Ψ( )χ . By approximation from [27],

Ω S ΩΨ Ψ( ) ≈ + ( )χ δ (21)

Thus, the goal will be to find an enhanced subspace of signal under
the condition of linear independency of L r− rows of Hv [27]. That is,
partial support,δ , should be estimated by MMV.
Theory1: Suppose that S is an enhanced signal subspace within Ω Ψ( )χ .

By rewriting (21) as S S Ω Ψ≈ + ( )δ , and applying projection operator
on both side of it, we have

P P P P Ψ P Ψ= = + ( )( )S Ω S S δ S δU Ψ[ ] ⊥ ⊥ †
S δ (22)

Proof . See Appendix A .
The implementation of (22) seems impractical. We know that the

projection onto Ω U Ψ([ , ])s δ is achieved by applying SVD on matrix
U Ψ[ , ]s δ and choosing U1 from U U Σ V V[ | ] [ | ]H

1 2 1 2 [29].
Let δ be an arbitary subset of χ with cardinality of L r− , then

rank L rQ Ψ([ ]) = −H
δ whereQ is noise subspace resulted by SVD on Y

and consists of orthonormal columns such that Q Y 0=H
. If we suppose

the noisy model of Y ΨH Ε= +v , then for any k N N δ∈ {1, ... , }/t r the

term of rank L rQ Ψ Ψ( [ , ]) = −H
δ k:, is satisfied if and only if k χ∈ . It
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means that Ψ k:, is not basic column in augmented matrix of Ψ Ψ[ , ]δ k:, .
Thus, rank rank L rΨ Ψ Ψ([ , ]) = ( ) = −δ k δ:, and consistency is occurred
[29]. According to this rule and similar to MUSIC algorithm, it is easy
to prove the selection rule to pick up the remained components of
support.
Theory2:Suppose that δ χ⊂ is partial support obtained by one of the
MMV algorithms while χ is support set of Hv. Selection rule for
remained entries of support is attained by maximizing P ΨS

H
k:, 2 where

k N N δ∈ {1: }/t r and P P=S Ω U Ψ([ , ])s δ .
Proof See Appendix B.

In SOMP as a typical method of MMV and according to [23,30], the
selection rule of support is given by l P YΨ= arg max

k N N δ
Ω kΨ

∈[ ]/
( )

⊥
:, 2

t r
δ for L

iteration and δ = {∅}at the first step. The key point of SE-MUSIC for
selection rule of δ is the replacement of the stacked data matrix Y by
the estimated orthonormal signal subspaceUs . That is, SE-MUSIC
algorithm incrementally updates the partially support by the following
selection rule,

l P U Ψ= arg max
k N N δ

Ω s kΨ
∈[ ]/

( )
⊥

:, 2
t r

δ (23)

whereδ is {∅}at the first iteration. The selection rule in (23) adds a
superior member, l, to δ in each step of SOMP. By replacing
orth P Y( )Ω Ψ( )

⊥
δ instead of P UΩ sΨ( )

⊥
δ in (23) and exploring all of L support,

we can extract RA-OMP from SE-MUSIC. However, rank degeneration
problem in a residual matrix of RA-OMP does not happen in SE-
MUSIC algorithm when M L= + 1.

Motivated by rank-aware order recursive matching pursuit (RA-
ORMP) algorithm [25,31], we present a generalized Subspace
Enhancement Rank Aware MUSIC (GSE-MUSIC) to recover the virtual
channel matrix from noisy snapshots. In fact, GSE-MUSIC replaces the
snapshot matrix Y in RA-ORMP by an orthogonal basis matrix for the
estimated signal subspace. The strength of GSE-MUSIC rather than the
RA-ORMP is rank determination and subspace employment of signal
directly in noisy case. However, RA-ORMP can recover support of
channel in high SNRs or noiseless cases because the orthonormal basis
provided by it includes rank information whereas rank of noisy Y is full
and equal to M Kmin( , ).

According to (A.2) in Appendix A, Ω P U( )SΨ
⊥

δ is enhanced range for
signal subspace range. GSE-MUSIC gets an orthogonal basis of
estimated signal subspace as an input onto this range and prepares
the partially entries of supportχ i.e. δ , from the following rule selection.

l P Ψ P Ψ= arg max /
k N N δ

k Ω kP U Ψ
∈[1: ]/

:,
2

( )
⊥

:, 2
t r Ω δ s δΨ( )

⊥
(24)

The key differences between SE-MUSIC and GSE-MUSIC algo-
rithms are orthogonal complementary projecting the dictionary except
of partial support atoms, i.e., Ψk N N δ∈{1,..., }/t r to the selected atoms, i.e.,
columns of Ψδ, and also renormalize them. Moreover, in SE-MUSIC we
only project residual matrix onto the dictionary whereas in GSE-
MUSIC, basis of the updated residual matrix Ξ P= P UΩ δ sΨ( )

⊥ is projected.

In Algorithm 1, partial recovery of L r− elements of support χ is
established in one of the mentioned approaches. After signal subspace
enhancement by partial support, MUSIC provides the rest r entries of
support. This algorithm can be considered as a new algorithm that we
called Subspace-OMP if we have full recovery of Lelement and
eliminate MUSIC steps. The key note in Subspace-OMP algorithm is
sparsity-level blindness.

Algorithm 1. SE and GSE-MUSIC.

1. δ = {∅};
2. exploit Usand r(rank) by eigenvalue decomposition and MDL;
3. for j=1:L r−

4. PΩ Ψ( )δ =QR {Ψδ};
5. P SPΩ δΨ( )

⊥ =QR { I P U( − )Ω sΨ( )δ } ;

6. PΩ Ψ( )
⊥

δ =I P− Ω Ψ( )δ ;
7. if SE-MUSIC: l P U Ψ= arg max

k N N δ
Ω s kΨ

∈[ ]/
( )

⊥
:, 2

t r
δ

8. if GSE-MUSIC: l P Ψ P Ψ= arg max /
k N N δ

P S k Ω kΨ
∈[ ]/

:,
2

( )
⊥

:, 2
t r Ω δ δΨ( )

⊥ ;

9. δ δ= ∪{l};
10. end for ;
11. U U Ψ= [ , ]aug s δ ;find enhancing subspace
12. orthU U= ( )aug aug ; find orthonormal basis
13. γ N N δ= {1: }/t r

14. for j=1 : length( γ )
15. κ U Ψ=j aug

H
j:, 2

16. end for
17. χ δ= ∪ {r largest basics of κ };
18. H Ψ Y=v χ χ,( ) ( )

†

4.3. The case of unknown sparsity level

Until now, we assume to know sparsity level of virtual channel as a
priori. Although, it is not a deterrent restriction to process of greedy
algorithms if value of L is unavailable. One way for estimation of
sparsity level is proposed in [32] based on covariance matrix of
observation data. However, this method is suitable in full rank
channels because calculation of sparsity level is based on
Eigenvalues. As a prior knowledge, in most of the greedy algorithms,
the stopping criterion is based on the L iterations. Provided that L is
unknown, for an intuitive termination criterion, we use angle function
idea from [33], a metric for two subspace even with the different
dimensions. We have

λP U <Ω sΨ( )
⊥

β (25)

where λ is a predefined threshold. In the first iteration, Ψβ is selected
from r columns of the dictionary such that maximum correlation with
the signal subspace of US is occurred. Constraint of (25) is replaced to
line 3 from Algorithm 1. If (25) is satisfied, the Algorithm 1 pursues
from line 4–17. Afterward, Ψβ is composed of r+1 atoms (columns)
such that one of them has chosen from support set and the other r
atoms are provided by applying the projection of enhanced subspace
onto Ψδ. Then, algorithm goes back to line 3 to check the condition (25)
again. The procedure is reiterated until (25) fails.

After estimation of virtual channel and extracting the estimated
mmW channel, thanks to the assumption of the Gaussian signalling
over the link in (2), we are able to achieve the estimated spectral
efficiency as follows,

⎛
⎝⎜

⎞
⎠⎟R P

N
I R H H= log +N

s

s
n eff eff

H
2

−1
s

(26)

where H C HP=eff
H

is effective estimated channel with C F G= r r and

P F G= t t as estimated combiner and precoder matrices respectively.
Furthermore, σR CC=n n

H2 is the covariance matrix of filtered noise
matrix. Considering the estimated virtual channel provided by one of
the proposed algorithms and using (11), the estimated mmW channel
model can be written

H U H U= r v χ t
H

,( ) (27)

By applying the singular value decomposition on H in (27) and
choosing the primary Nscolumns of the left-handed unitary matrix,
i.e.,U, and choosing the first Ns columns of the right-handed unitary
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matrix, i.e.,V, and finally replacing them rather than C and P
respectively, we can design Fr ,Gr ,Ft and Gt by solving the general sparse
optimization problem as follows,

F G W F G( , ) = arg min − ,x x x x x F

s.t and i lF G C. [ ] [ ] ∈ {[ ] 1 ≤ ≤ N }, = 1, 2, ... ,Nx l x l x i x x:, :, :, ,cod ,rf (28)

F G = Nx x F
2

s

where the subscript x can be substituted for transmiter/receiver , Wx can
be replaced by Uor Vdependent on x and Cx is a general codebook
included of quantized steering vectors for transceiver and is chosen
from

⎧
⎨⎪

⎩⎪

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬⎪

⎭⎪
kv

v

, = 0, 1, ... ,N − 1, N = 2

(ϑ) = [1, e , ... ,e ] / N

kπ
x Q

Q

x
jπ jπ N

x

N ,cod

cos(ϑ) ( −1)cos(ϑ) T

Q

x (29)

Qin (29) indicates the number of bits for controlling the phase shifters
and Nx,cod implies the number of steering vectors existing in transmit-
ter/receiver codebook. Optimization problem in (28) is solvable by one
of the iterative sparse algorithms.

5. Simulation results

In this section, we evaluate numerical results of proposed algo-
rithms and compare their performance to conventional MMV and SMV
problems. Under adoption of hybrid analog/digital architecture illu-
strated in Fig. 1, RF phase shifters in analog parts of precoder and
combiner are able to be controlled with 8 quantization bits. Similar to
[9], the operational carrier frequency of the system is 28 GHz with
consideration of bandwidth of 100 MHz. The path-loss exponent is
assumed to be β = 3.5loss and the angles of arrival and departure are
selected randomly with a uniform distribution from range of π[0, 2 ].

In Fig. 2(a), we consider N = 32t , N = 8r , L=4 and K=4 but with
different values of M. Proposed subspace OMPS is compared to various
rank-aware algorithms such as SE-MUSIC, MUSIC, RA-ORMP and
rank-blind conventional SHTP, SIHT with full and defficient rank. The
figure indicates that the performance of virtual channel estimation is
totally improved when M is increasing. The performance of proposed
SE-MUSIC with deployments of M=20 and decreasing rank to 2
outperforms than the rank-defective MUSIC with M=40, conventional
rank-blindness SIHT, SHTP. The SE-MUSIC algorithm generally has
similar behaviour to MUSIC in full row rank case. The key note in this
figure is better performance of proposed Subspace-OMPS in rank-

Fig. 2. (a). Comparing subspace-based algorithms in sparsity level 4. (b). MSE of different algorithms when sparsity level is 8 and different rank.
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defective and even in full-rank case rather than the others.
In Fig. 2(b), the sparsity level is 6 with M =20 and K=6. The

number of BS and MS antenna are 32 and 8 respectively. First, full row
rank and then rank-defective scenarios for rank-blind and rank-aware
algorithms are experienced. As shown in the figure, the performance of
the MSE in SE-MUSIC and GSE-MUSIC is better than the MUSIC,
SOMP and SHTP when SNR is increased. In other words, algorithms
based on OMPS approach along with exploiting subspace guarantee
recovery of the channel for the full row rank or even rank-defective
cases in spacious SNRs.

RA-ORMP and Subspace-OMP in full-rank case are similar but
better than MUSIC based algorithms while in the rank-defective case,
proposed Subspace-MUSIC outperforms than the others, especially in
middle to high SNRs.

In Fig. 3(a), the sparsity level is changed to be 8 with M =20, K=8
and the same antenna size. The goal of this experiment is finding the
performance of proposed algorithms on MSE while the rank of channel
is decreasing. In additional to the evaluated algorithms, here we
compare results to optimized CS-MUSIC proposed in [34]. The
performance shows that Optimized-CS-MUSIC behaves similar to SE
and GSE-MUSIC.

In Fig. 3(b), the case when the sparsity level is unknown is
illustrated for MUSIC algorithms based on subspace enhancement

such as SE-MUSIC and GSE-MUSIC. For this figure, the same system
setup of Fig. 3(a) is adopted again, and the MSE achieved by constant
size of training vector.

The result shows that when the channel is rank-defective with
unknown number of multipath, the MSE of GSE-MUSIC outperforms
than SE-MUSIC in a different range of SNRs. Increasing value of K
improves MSE in the vast range of SNRs especially in low SNRs when
rank is full or even incomplete. Simulation results show that the value
of threshold in (25) depends on the rank of the unknown channel
matrix. As an empirical rule, we choose the value of r( /10) as a proper
threshold.

In Fig. 4(a), the spectral efficiency is represented by the proposed
algorithms when desired number of paths, i.e., L equals 8. Algorithms
include MUSIC, SE-MUSIC, GSE-MUSIC, RA-ORMP and Subspace-
OMP for the rank-defective case of channel are tested for different
values of BS and MS antenna number with constant RF chains such
that N = 10rf

t and N = 6rf
r , and compared with the spectral efficiency of

the perfect channel. The values of the M and K are 20 and 8
respectively and channel estimation is performed whileSNR dB= 10 .

The results indicate that spectral efficiency can be achieved using
the proposed algorithms based on subspace enhancement despite their
low-complexity.

In Fig. 4(b) experiment is repeated for unknown channel state to

Fig. 3. (a). Impact of growth of rank in rank-aware algorithm when sparsity level is 8. (b). Unknown channel estimation when sparsity level is unknown too.
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sparsity level of 4 and 8 in SE and GSE-MUSIC while SNR dB= 0 .
Results represent prominence of GSE-MUSIC in different arrange-
ments.

In Fig. 5(a), the impact of RF chain limitations and number of
quantized bit of phase shifters is evaluated. Two system models with
various suggested algorithms and different quantization bits for the
phase shifters are considered, one with 10 RF chains at the BS, 6 RF
chains at the MS, and the other with 5 RF chains at the BS, and 3 RF
chains at the MS. The other parameters are the same as the last
simulations with L=5, Rank=3, N = 64t ,N = 32r . Simulation results in
SNR dB= 20 show that the offered subspace based algorithms can
achieve near optimal rates while the sufficient number of RF chains
and quantization bits exist.

In Fig. 5(b)-6(a) performance of success rate is attained in terms of
SNR and M when various algorithms under rank defective condition
and different K are experienced. Number of transmit antenna, receiver
antenna and sparsity level set to 32, 8 and 8 respectively. In Fig. 5(b)
when K=8 and rank changes between 2 and 6, algorithm Subspace-
OMP is prior than the others. When rank is increased, success rate
improves such that around of SNR=0 dB support is recovered com-

pletely. In Fig. 6(a) algorithm RA-ORMP in small M, low rank and
middle SNR conditions is unsuccessful while Subspace-OMP and GSE-
MUSIC are prosperous. Support recovery in Subspace-OMP when rank
is 6 and M=15 is completed.

In Fig. 6(b) parameters, SNR, K and M for SE and GSE-MUSIC
algorithms are variant while rank is fixed to 5. As shown in this figure,
GSE outperforms SE-MUSIC. Additionally, increasing of the value K
and SNR each of them solitarily makes growth in success rate.

Comparing average computation’s time of each iteration in various
approaches under same conditions of N = 16t N = 8r , L=8, K=8 and
Rank=4 is summarized in Table 1. As shown in Table 1, Subspace-
MUSIC is faster than the others, but it is blind when sparsity level is
unknown. GSE-MUSIC is the next fast algorithm.

6. Conclusion and future works

In this paper, we explored the potential of MUSIC-based and Rank-
aware algorithms in rank-defective or ill-conditioned mmW channel
estimation while these approaches exploit the sparse nature of the
channel with small training overhead. The hybrid architecture is

Fig. 4. (a). Spectral efficiency in different rank and size of antenna when sparsity level is 8. (b). Impact of sparsity level and rank on spectral behaviour.

M.S. Dastgahian, H. Khoshbin Digital Communications and Networks xx (xxxx) xxxx–xxxx

8

 



composed of analog phase-shifters and digital base-band processor in
the transceiver along with the large antenna array and RF chains very
smaller than the length of the array, achieving near optimal spectral
efficiencies even in rank-imperfect outdoor channels. We first enum-
erated the conventional MMV algorithms as extended SMV methods
for full-rank channel, and then developed subspace enhancement
approaches for channel with imperfect rank. Numerical results showed
that the proposed rank-aware OMP offers near-optimal solution and
achieves better spectral efficiency similar to the fully digital counter-
parts. We also provided a channel estimation method that can succeed

in the unknown multipath (sparsity) and noisy measurement condi-
tions.

For future work, one can extend rank-defective mmW channel
estimation based on Bayesian enhancement approaches, for example
mentioned in [35]. It would also be interesting to extract the hybrid
precoding/combining of rank-defective multi-user mmW according to
some studies such as [36]. Furthermore, it would be arousing to
consider the interference-cancellation problem in Multi-User fre-
quency- selective mmW networks.

Fig. 5. (a). Impact of number of RF chains and quantized bits on spectral when Nt16, Nr4 and sparsity level 8. (b). Impact of rank on success rate in different SNR when sparsity level
and M are 8 and 20 respectively.
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Appendix A. Proof of Theory 1

By assuming orthU U Ψ= [ , ]S S δ as an enhanced basis matrix with L columns within Ω Ψ( )χ such that US as is a r r× estimated signal subspace
within Ω ΩΨH Ψ H( ) = ( )χ χv v,( ) we have

Ω ΩU U Ψ( ) = [ , ]S S δ (A.1)

On the other hand, Ω ΩU Q( ) = ( )S S
⊥ where QS is an estimation of noise subspace of YY /KH . By applying the projection update rule [37] on (A.1)

we have

Ω Ω Ω Ω ΩU U P Ψ Ψ P U( ) = ( ) + ( ) = ( ) + ( )S S δ δ SU Ψ
⊥ ⊥

S δ (A.2)

Since PQS
is equivalent to I P P− =U U

⊥
S S

then we have,

Ω Ω ΩU U P Ψ( ) = ( ) + ( )S S δQS (A.3)

By applying the projection operator in both of equation (A.2) and considering S and S instead of US andUS respectively and knowing that
P GG=G

†for an arbitrary matrix of G [38], we have

P P P P= = +S Ω Ω ΩU Ψ U P Ψ[ ] ( ) ( )S δ S Ω S
δU( )

⊥
(A.4)

P P Ψ P Ψ= + ( )( )S s δ s δ
⊥ ⊥ †

In practical issues, one can calculate PS by considering of the unitary matrix part of QR decomposition on U Ψ[ ]S δ since the columns of orthogonal
projector matrix can be obtained from any set of orthonormal vectors ontoΩ U Ψ[ , ]S δ .

Fig. 6. (a). Impact of rank on success rate in terms of M when sparsity level and K are both 8. (b). Impact of K on success rate when SNR is 0 dB in terms of M when sparsity level and
rank are 8 and 5 respectively.

Table 1
Average Elapsed Time for one iteration of different proposed algorithms.

Algorithm Subspace-
OMPS

GSE-
MUSIC

SE-MUSIC Optimized CS-
MUSIC

SOMP

Elapsed
Time(sec)

0.04888 0.0537 0.0664 0.0945 0.0736
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Appendix B. Proof of Theory 2

If Ψ k:, is combination of columns from matrix Ψδ then,

rank L rQ Ψ Ψ( [ , ]) = −H
δ k:, (B.1)

Lemma B.1. Let A be any m n× matrix and r be any positive integer such that r n1 ≤ ≤ . A has rank of r if and only if there is a r r× sub matrix of
A with nonzero determinant, while every s s× sub matrix of A has zero determinant for s r≥ .

If we suppose that A Q Ψ Ψ= [ , ]H
δ k:, with a dimension of M r L r( − ) × ( − + 1) then A AH is a L r L r( − + 1) × ( − + 1)matrix. Since

rank L rA( ) = − , then sub matrix A AH has zero determinant according to the Lemma B.1. So we have

Q Ψ Ψ Q Ψ Ψ( [ , ]) [ , ] = 0H
δ k

H H
δ k:, :, (B.2)

where . indicates the determinant of a matrix. We can rewrite (B.2) as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Ψ
Ψ

QQ Ψ Ψ

Ψ P Ψ Ψ P Ψ
Ψ P Ψ Ψ P Ψ

[ , ] =

= 0

δ
H

k
H

H
δ k

δ
H

Ω δ δ
H

Ω k

k
H

Ω δ k
H

Ω k

Q Q

Q Q

:,
:,

( ) ( ) :,

:, ( ) :, ( ) :, (B.3)

By using lemma
⎡
⎣⎢

⎤
⎦⎥

A B
C D A D CA B= − −1 from [29] and knowing that Ψ P Ψ > 0δ

H
Ω δQ( ) because of rank L rQ Ψ( ) = −H

δ and a little manipulation

in (B.3) we have,

Ψ P Ψ Ψ P Ψ Ψ P Ψ Ψ P Ψ− ( ) = 0k
H

Ω k k
H

Ω δ δ
H

Ω δ δ
H

Ω kQ Q Q Q:, ( ) :, :, ( ) ( )
−1

( ) :, (B.4)

Using lemma A A A A= ( )H H† −1 and knowing that P P P=Ω Ω
H

ΩQ Q Q( ) ( ) ( ), (B.4) is equivalent to

Ψ P Ψ Ψ P Ψ P Ψ Ψ Ψ P P Ψ P Ψ Ψ Ψ P P Ψ− ( ) = [ − ( ) ] = [ − ] = 0k
H

Ω k k
H

Ω δ Ω δ k k
H

Ω Ω δ Ω δ k k
H

Ω Ω kQ Q Q Q Q Q Q P Ψ:, ( ) :, :, ( ) ( )
†

:, :, ( ) ( ) ( )
†

:, :, ( ) ( ) :,Ω δQ( ) (B.5)

But in noisy measurement condition,Y ΨH N= +v , (B.5) is not satisfied and for any j χ∉ and k χ∈ we have,

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥Ψ P P Ψ Ψ P P Ψ− < −k

H
Ω Ω k j

H
Ω Ω jQ P Ψ Q P Ψ( ) ( ) ( ) ( )Ω δ Ω δQ Q( ) ( ) (B.6)

whereQ is estimated noise subspace from the noisy model of Y. (B.6) means that we should find columns such that minimize (B.5). Therefore we
have,

⎡
⎣⎢

⎤
⎦⎥Ψ P P Ψmin −

k N N δ
k

H
Ω Ω kQ P Ψ

∈{1,..., }/
:, ( ) ( ) :,

t r Ω δQ( ) (B.7)

On the other hand, we know that Ω ΩU Q( ) = ( )s
⊥, then P P=Ω ΩQ U( ) ( )

⊥
s .

Lemma B.2. The term of P P−Ω ΩQ P Ψ( ) ( )Ω δQ( )
in (B.7) is equal to the orthogonal complement projection onto theΩ U Ψ([ , ])s δ .

Proof. We know that.

P P QQ P P P− = − = −Ω Ω
H

Ω ΩQ P Ψ P Ψ U P Ψ( ) ( ) ( )
⊥

( )Ω δ Ω δ s Ω δQ Q Q( ) ( ) ( ) (B.8)

It means that (B.8) is orthogonal complement projection ontoΩ ΩQ P Ψ( ) ∩ ( )Ω δQ( )
⊥. In the other side we have,

Ω Ω Ω Ω ΩU Ψ U Ψ U P Ψ([ , ] = ( ) + ( ) = ( ) + ( )s δ s δ s δQ (B.9)

Noise subspace for Ω U Ψ([ , ])s δ is equivalent to Ω U Ψ([ , ])s δ
⊥. By the projection update rule into the noise subspace we have,

Ω Ω Ω Ω ΩU Ψ U P Ψ U P Ψ([ , ]) = ( ( ) + ( )) = ( ) ∩ ( )s δ s s δ s δQ
⊥ ⊥ ⊥ ⊥ ⊥ (B.10)

where (B.10) is equivalent to Ω ΩQ P Ψ( ) ∩ ( )Ω δQ( )
⊥because of Ω ΩU Q( ) = ( )s

⊥ .
Subsequently, we can conclude that (B.7) is equal to

Ψ P Ψmax
k N N δ

k
H

Ω kU Ψ
∈{1,..., }/

:, ([ ]) :,
t r

s δ (B.11)

By applying property of a projection matrix P P P P P= =Ω Ω
H

Ω S
H SU Ψ U Ψ U Ψ([ ]) ([ ]) ([ ])s δ s δ s δ we can rewrite (B.11) as

Ψ P P Ψ P Ψmax = max
k N N δ

k
H

S S
H k

k N N δ
S

H
k

∈{1,..., }/
:, :,

∈{1,..., }/
:, 2

t r t r (B.12)
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