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A B S T R A C T

Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a
frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) has to handle
a large set of data, a cluster based approach, specifically fuzzy c-means clustering (FCM), has been extensively
used in energy detection based cooperative spectrum sensing (CSS). However, the performance of FCM
degrades at low signal-to-noise ratios (SNR) and in the presence of multiple PUs as energy data patterns at the
FC are often found to be non-spherical i.e. overlapping. To address the problem, this work explores the scope of
kernel fuzzy c-means (KFCM) on energy detection based CSS through the projection of non-linear input data to
a high dimensional feature space. Extensive simulation results are shown to highlight the improved detection of
multiple PUs at low SNR with low energy consumption. An improvement in the detection probability by ∼6.78%
and ∼6.96% at −15 dBW and −20 dBW, respectively, is achieved over the existing FCM method.

1. Introduction

The present wireless communication services work on the basis of
static frequency spectrum allocation i.e. each service is assigned to a
fixed frequency spectrum. This static allocation policy results in a
spectrum under utilization state that in turn creates a spectrum scarcity
problem due to the increased number of wireless devices with data
intensive applications such as interactive and multimedia services
[1,2]. The cognitive radio (CR) concept emerges as a potential solution
to address this spectrum shortage problem [3]. In a cognitive radio
network (CRN), the unlicensed users are known as secondary users
(SU) or cognitive users (CUs) while the licensed users are known as
primary users (PU). The part of the spectrum or the frequency band of
the PU that remains idle or unused in a specific geographical area and
at a particular time is termed as white space or a spectrum hole [4].
SUs are accorded opportunistic access of the available spectrum hole
without creating any interference to the PUs. Therefore, CRs must have
the PU's spectrum utilization information or detect the presence of the
PUs transmission before starting its own transmission so as to avoid
any interference to the PU. In other words, the CR has to dynamically
detect the unused spectrum before the opportunistic use of those
available spectrum [5]. Dynamic spectrum sensing (DSS), spectrum
selection, dynamic spectrum allocation (DSA), and dynamic spectrum

management framework (DSMF) are a few of the important and pivotal
topics in the field of CR research [6].

Non-cooperative spectrum sensing (SS) (sensing by a single user
without the exchange of multiple users' sensing information) is not
often reliable enough due to several reasons, for example, the sensing
time often is short in duration, sensing is done at a low signal-to-noise
ratio (SNR), PU's signal attenuation, fading, shadowing, noise, receiver
uncertainty, etc. [6–8]. Cooperative SS (CSS) that involves multiple
SUs followed by some suitable fusion schemes has been studied
extensively to improve sensing reliability [7,9,10]. Performance relia-
bility of the SS is characterized by two probabilities. One of them is the
probability of detection (Pd) that indicates the probability of correct
detection of the PU transmission when the PU actually transmits over a
frequency band. The other one is the probability of false alarm (Pfa)
that represents the probability of presence of a PU transmission when
it is not actually transmitting.

The literature on CSS is quite rich [11–19]. Different schemes,
namely, energy detection (ED) [11,19], cyclostationary feature detec-
tion (CSFD) [12], eigenvalue based detection (EBD) [13], waveform
based detection [14], matched filtering (MF) [15], generalized like-
lihood ratio test (GLRT) [16], wavelet based detection [18], and
entropy based sensing [17] have been developed. The relative merits
and demerits of each sensing scheme have also been reported in the
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literature [20,21]. MF gives the optimal performance with high
processing gain but it needs the knowledge of the PU signals, channel
state information and synchronization among the receivers involved in
the sensing process [22]. Waveform based detection shows fast sensing
and higher accuracy in detection but requires a longer duration of a
known sequence. This leads to lower efficiency of the spectrum
utilization [21]. Eigenvalue based detection overcomes the noise
uncertainty and sensing-receiver synchronization problem. However,
it suffers from very complex computation and it requires larger sensing
time compared to energy based detection [21]. Wavelet based detection
has an ability to dynamically adapt with power spectral density (PSD)
structures but it requires higher sampling rates for characterizing the
complete spectrum bandwidth [21]. CSFD schemes show improved
performance even at low SNR and can handle noise variance un-
certainty [12]. However, drawbacks of the CSFD scheme are its very
complex implementation, excessive computational cost and high power
consumption [23,24]. CSFD gives poor sensing performance compared
to ED [22], although ED is widely used due to its low computational
complexity, low power consumption, very short sensing time and
generic implementation [20]. More importantly, ED is found to be
optimal in the absence of the knowledge of PU signal pattern [22].
However, ED suffers from noise uncertainty as well as uncertainty in
the PU's signal covariance [25].

(A) Machine Learning in CR works: CR is a promising wireless
transmission using autonomous learning about the other transmission
to adapt to its dynamic environment [5]. The Machine Learning (ML)
approach has been found to be effective in autonomous learning from
the surroundings [26–30]. Application of ML in CR is substantially
complicated due to several parameters and policies involved such as
transmission power, channel coding and modulation scheme, SUs
spatial diversities, spectrum sensing algorithm, fading, shadowing,
communication protocol, sensing policy, noise uncertainties, security
issues, etc. [27,28]. In spite of all these, ML is extensively applied in
recent CR research for systematic adaption that does not need prior
knowledge about the dependencies among the several parameters. In
[31,32], the authors show that adaptive learning algorithms allow CUs
to reconfigure the SS processes under various uncertainty conditions.
In [33], the authors use a particle swarm optimization (PSO) and fast
convergence PSO (FC-PSO) algorithms to address the sensing-through-
put tradeoff under various SNR conditions. The authors in [28]
proposed the CSS algorithm for CRN based on ML techniques such
as unsupervised schemes like K-means clustering, Gaussian mixture
model (GMM) and supervised schemes like support vector machine
(SVM) and weighted K-nearest-neighbor (KNN) classification techni-
ques. The methods reported are capable of implicitly learning the
sensing environment and are found to be more adaptive than the
traditional CSS hard fusion, e.g., OR/AND-rule-based and linear fusion
[34,35]. Genetic algorithm (GA) based on ML approaches for improv-
ing optimization and performance results are reported in [36,37]. The
authors in [38] proposed spectrum allocation methods based on GA,
quantum genetic algorithm (QGA) and PSO. An intelligent cooperative
spectrum sensing algorithm based on a non-parametric Bayesian
learning model is reported in [30].

Several works are reported on energy efficient CSS [39,40]. It is well
known that CSS improves sensing reliability at the cost of increased
energy consummation due to the involvement of multiple nodes [40].
Energy consumption in CSS includes circuit power consumption and
the energy requirement due to the transmission of sensing signal
samples. Transmission energy consumption depends on several para-
meters, namely the number of SUs or relays involved, sensing duration
i.e. number of samples needed and the associated power gain for the
transmission of samples. Since circuit power consumption of the nodes
for sensing PU signal is negligible compared to the amplifying gain,
energy consumption largely depends on the relay power gain for
transmission of sensing signals to the fusion center (FC). In other
words, relay power gain was found to have a notable trade-off influence

on sensing reliability and reduction in energy consumption [39].
Calculation of individual transmission power gains that involves
multiple SUs is not always tractable. This is basically due to the lack
of proper closed form mathematical expression. In [19], many para-
meters and a complex form of optimization are involved in simulta-
neous sensing of multiple channels to increase the channel capacity.
Furthermore, computation complexity significantly increases with the
number of relays [19,39]. Finding the solution using the numerous
numerical computations involves a large number of parameters and
demands a high computational cost and increased energy consumption
[33,36–38,41]. Sometimes algorithms suffer from stuck to the local
optimal values [32]. A low cost, tractable yet sub-optimal solution at
low SNR may be a preferable choice. Cluster based approaches are
found to be efficient to provide such solutions [40,42–44]. It is worth
mentioning that cluster based approaches are efficiently used in
medical image processing, bioinformatics, machine learning, informa-
tion retrieval, data mining, statistical data analysis and in other
problems [45–47].

(B) Cluster Based approaches in CSS: The literature on cluster
based approaches in CR research are quite rich at this time
[48,49,42,43,40,44]. Recent survey works on cluster-based SS in
CRN are reported in [50,51]. In [48], the authors proposed a cluster
based approach to decrease the number of sensing bits in SS. In [49], a
multiple hop cluster based CSS scheme was proposed to reduce the
power consumption. In [42], a cluster based approach was reported to
reduce the effect of imperfect reporting channels on correlated log-
normal shadow-fading channels. Work using clustering was proposed
in [43] for improving cooperation among the secondary devices (users)
that organize themselves in clusters according to both SS reliability and
mobility behavior of each SEW. Fuzzy c-means (FCM) [40] and optimal
FCM clustering [44] for ED based CSS are reported. Energy values of
the PU signal received by multiple SOs are transmitted to the FC and
using a selection combining scheme an energy data set is formed. FCM
is then applied for the multiple-class clustering problem. On the other
hand, differential evolution (DE) with FCM is used in [44] to separately
address the problems of (i) maximizing the probability of detection
under the constraint of the probability of a false alarm, (ii) SOs act as
an amplify-forward (AF) relay and then minimization of the average
energy consumption under the constraints of sensing reliability is done.
Both the works partition the sensing energy into four classes, namely,
strong presence, moderate presence, weak presence and absence of PU.
SS reliability increases with the increase in the number of clusters.
However, this performance gain is achieved at the expense of an
increase in computation cost.

FCM has been found to be effective for spherical or linear data
which means non-overlapping data inside the clusters. However, FCM
performance deteriorates significantly when the data structure of the
input patterns is non-spherical and complex [52]. At low SNR, the
sensed data contains a lot of noise and the corresponding energy values
become linearly inseparable in nature. In CSS, the sensed energy values
that are particularly associated with the weak presence and the absence
of the PU become inseparable. Projection of data (sensed energy) to a
high dimensional space becomes essential for performance improve-
ment in clustering. Kernel-fuzzy c-means (KFCM) maps nonlinear
input data space into a high dimensional feature space. Projection to
the higher dimensional space offers the scope of applying a linear
classifier. Its application to the original input samples fails to reliably
classify as the feature space could be extremely non-linear and
inseparable [53]. Thus KFCM enables a mapping of the inseparable
energy data sensed at a low SNR to a higher dimensional space where
the data samples can more accurately be separated into the specific
cluster. Though the direct computation in the high dimensional feature
space consumes much time but Mercer kernels are used to make this
practical [54]. This motivates us to use KFCM based clustering
algorithm on CSS at a very low SNR. It was mentioned earlier that
the increase in the cluster number [44] improves SS reliability but as
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the number of cluster increases the computational time and cost also
increase. The computational complexity of KFCM and FCM was found
to be the same [54]. Hence, reduction in the cluster numbers while
maintaining the target sensitivity becomes a viable alternative and
KFCM was found to be superior over FCM at low SNR.

(C) Multiple PU detection: Recent detection of multiple PUs in CSS
becomes another challenge in CR research. However, works using SEW
cluster based on multiple PU detection is not widely explored in the
existing literature. A few notable works may be mentioned [55–58].
CSS, in the presence of multiple PUs, becomes difficult due to the
involvement of several factors such as average distance between PU to
SU, channel conditions, shadowing, PUs’ transmit power, etc. [58]. SUs
are assumed to be mostly battery powered, and need to be physically
recharged or require battery replacement at regular time intervals. In
the presence of multiple PUs in CRN, an energy effeciency and reliable
SS can be implemented by associating a set of SUs to a particular PU
signal sensing. A set of associated SUs, based on the sensing energy,
forms a cluster. Hence, for N number of PUs in CRN, N number of SU
clusters can be formed. An SU cluster-based CSS, for single PU
detection, was reported in [10] where the authors suggested a cluster
head for each cluster. In [55], the authors have done comparison of
wide-band multiple PU detection using a weighted overlapped segment
averaging (WOSA) approach. In [56,57], the authors addressed multi-
ple PU detection using multiple antenna and a GLRT based approach.
However, the above mentioned schemes [56,57] require excessive
computational cost which leads to a greater energy consumption.

This work considers an ED based multiple PU detection scheme at
low SNR using FCM and KFCM. A set of SOs forms a cluster to sense a
particular PU signal using a probabilistic approach. The contributions
of the present work are as follows:

• Partitioning of the inseparable energy data at low SNR into the
respective clusters is done through the projection to a high dimen-
sion using KFCM. This results in an overall detection performance
improvement over FCM [40,44].

• Detection of multiple PUs using ED based CSS by associating a
particular set of SOs as a cluster to sense a particular PU.

• Extensive simulation results show improved detection performance
at low energy consumption and at a smaller number of clusters
(hence at reduced computation) over the existing FCM based
method [40] and analytically approach [39].

Simulation results also show that the proposed KFCM based scheme
requires reduced transmission energy values and offers faster sensing
(less samples required) compared to the existing works while meeting
the same detection reliability.

The article uses a large number of symbols which are included in
Table 1. The remainder of the paper is organized as follows: the system
model is presented in Section 2, while the proposed CSS algorithm is
discussed in Section 3. Numerical results and analysis are demon-
strated in Section 4. Finally, conclusions are highlighted in Section 5.

2. System model

This section presents the proposed system model. The system
model for CSS of a CRN with a single PU is shown in Fig. 1. The
network consists of L number of SUs, which are indexed as
(SU1,SU2,..SUL), a PU and a cognitive base station (CBS) or FC. The
FC contains multiple antennas that are represented as (AT1,AT2,..ATL).
CSS exploits spatial diversity of the SUs in the sense that SUs are
assumed to be scattered about the area. However, truly scattered
placement of the SUs needs channel adaptive unequal transmit power
gain for the individual SU. A closed form solution to the individual SU
transmit power gain is difficult to derive and computation complexity
significantly increases with number of SUs [39]. The use of an optimal
single power gain simplifies the analysis assuming that the SUs are co-

located which is again unrealistic in practical situations. A viable
alternative solution for an energy efficient system design may be a
clustered based association where a set of SUs is assumed to be co-
located and use a single transmit power [44]. In Fig. 1, for a single PU,
SUs are assumed to be collocated in two different sets and form two
clusters. The distance between the PU and SUj is denoted by daj and the
same between FC and SUj is denoted by dbj. The SUs, with the
respective distances of daj and dbj, form one cluster. Fig. 1 shows two
such clusters of SUs for sensing a single PU. The PU's transmit power is
represented by Pp. The sensing channels are considered to be Rayleigh

Table 1
List of symbols.

Symbol Description

L Number of unlicensed SUs/diversity number
Tsense Spectrum sensing interval
ts Spectrum sensing slot
ts1, ts2 Spectrum sensing sub-slots
si PU transmitted signal
Pp PU transmission power
N Number of PU samples
hi Channel gain between PU and respective SU
da Distance between PU transmitter and SU
db Distance between SU to FC
α Path loss exponent
xi Received signal at SUi during ts1
ηi SUi receiver noise
Pn Noise variance/power
Emax Strongest measured signal energy at FC (using SC)
μjz Membership value of each element in Emax

ν1, ν2, ν3, ν4 Set of cluster center
C1, C2, C3, C4 Set of cluster
Pd Probability of detection
Pfa Probability of false alarm

( )1 , ( )0 Probability of PU being active and idle

wi Individual SU amplifying gain
wc Total amplifying gain of all SUs
wcij Amplifying gain for the jth SU in the ith cluster

daij Distance from a PU to the jth SU in the ith cluster

Pi Average transmission power of SUi

Tsa Sampling interval
EBP Energy consumption in baseband processing circuits
EPA Energy consumption due to the amplification at SU
Ec Energy consumption at radio devices during signal reception

and transmission
Es Average energy consumption of all SUs

Fig. 1. Single PU system model.

A. Paul, S.P. Maity Digital Communications and Networks 2 (2016) 196–205

198

 



distributed and the reporting channels are considered to be ideal. The
path loss exponent for the channel is denoted by α, which is distant
dependent. The value of α is varied randomly and represents different
channel conditions.

Fig. 2 represents the sensing frame structure. The sensing time
interval (Tsense) is divided into multiple sensing slots, each one is
denoted by ts. Each individual ts is again divided into two sub-slots, ts1
and ts2. During the first sub-slot ts1 each SU receives a signal from the
PU. In the next sub-slot ts2, the SU forwards the sensed energy values
to the FC. The FC has a selection combiner (SC) which selects the
maximum energy signal among the received energy values. The
selected energy values by the FC are stored as an energy set for further
processing.

The symbol x(t) indicates the received signal by a specific SU during
ts1. Hence, x(t) is expressed as the sum of s(t) and η t( ),

x t s t η t( ) = ( ) + ( ) (1)

where s(t) is the PU signal and η t( ) represents the circularly symmetric
complex Gaussian (CSCG) noise at the SU receiver. In CRN, the PU's
signal either appears to be present or absent in the received signal by
the ith SU ( i L∀ = 1, 2, 3…. ). Hence, detection of PU signal presence or
absence leads to a binary hypothesis as follows:

x n h s n η n n N: ( ) = . ( ) + ( ) ∀ = 1, 2, 3….i i i i1 (2)

x n η n n N: ( ) = ( ) ∀ = 1, 2, 3….i i0 (3)

The symbol ‘N’ denotes the total number of observed PU samples
during ts1.

In Eq. (2), hi(n) represents the channel gain and is assumed to be
h n CN d( ) ∼ (0, )i a

α− . The channel gain hi(n) depends on the distance
(da) between the PU and the respective SU. The received signal energy
depends on the PU's transmit power, the SNR of the channel, noise
variance and the path loss exponent(α). It is assumed that the PU
signal si(n) follows a circularly symmetric complex Gaussian (CSCG)
distribution with zero mean and variance E s n P[| ( ) | ] =i p

2 . The noise
η n( )i at SUi is the independent and identically distributed (i.i.d) CSCG
with zero mean and variance E η n P[| ( ) | ] =i n

2 . The energy for the

received PU signal at SUi is computed as E x= ∑ ( )|i n
N

i=1
2. SUi sends

Ei to the FC during ts2. The FC collects all the Ei values from L number
of mutually independent SUs. Therefore the FC contains E E= { }all i i

L
=1.

From this energy set E( )all , the FC selects the maximum energy value
Emax{ }all and stores Emax to form the energy data set for further

processing. For different channel conditions the FC always stores the
Emax{ }all value in the Emax set.

The system model considered for multiple PU detection is shown in
Fig. 3. It contains L number of SUs and multiple PUs. The distance
between the SUs and PUs is different, indexed as
d d d d d d= { , , , , ….., }a a a a a aL1 2 3 4 . The distance from individual SU to
the FC is also different and represented as d d d d d= { , , … }b b b b bL1 2 3 . It
is assumed that the PUs may have the same or different transmit
power. It is assumed again that the path loss exponent(α) varies and
indicates specific channel conditions. A set of SUs is assumed to sense a
particular PU.

It is considered that all the SUs act as amplify-and-forward relays.
It is assumed that the ith SU amplifies each received energy value by

wi and forwards the new energy value to the FC during ts2 [39]. wi

represents the power amplifying gain at the ith SU.

3. Proposed KFCM based CSS method

This section focuses on improving the detection performance using
KFCM over FCM. The working principle of FCM for CSS has been
described in [40,44]. There are mainly two forms of KFCM. The first
one comes from constructed prototypes in the feature space and is
known as KFCM-F (F denotes feature space). The second one is KFCM-
K, where the prototypes are preserved in the kernel space. In KFCM-K,
there is an inverse mapping from the kernel space towards the feature
space [54]. The KFCM-F technique is used in this work. The kernel-
based method is performed on a random choice of non-linear mapping
ϕ from the original d-dimensional feature space Rd to a higher
dimension space. This is represented by the following Mercer kernel
function (Kernel):

K x y ϕ x ϕ y( , ) ≡ ( ) ( )ernel
T (4)

where x y R, ∈ d . The distances are not computed in kernel space
because it can be controlled by a Mercer kernel function. The
Gaussian kernel function (GKF) is a type of Mercer kernel function.
GKF makes the computation easy by transforming it into kernel space.
GKF can be expressed as:

K x y e σ( , ) = , > 0ernel
x y σ− − / 22 2 2

(5)

where the symbol σ2 represents the variance of GKF. Let us take a
sample of the input data set X x x x R= { , ,.. } ⊆z

Z d
1 2

× . Z is the number of
samples in the input space. The symbol ‘ d’ is the dimension of the
sample xz. KFCM minimizes the objective function as follows [54]:

∑ ∑Q μ ϕ x ϕ ν= ( ) − ( ) .
j

J

z

Z

jz
m

z j
=1 =1

2

(6)

The symbol m ∈ [1, ∞] is the fuzziness index. The symbol ‘μ’ is a
partition matrix which contains the membership of xz in the cluster νj.
xz is the zth d-dimensional measured data, νj is the d-dimension center
of the jth cluster and ν j J( = 1, 2, 3, 4, …. )j . The Euclidean distance
ϕ x ϕ ν( ) − ( )z j is computed in the kernel space using the following
equation:

ϕ x ϕ ν ϕ x ϕ x ϕ ν ϕ ν ϕ x ϕ ν

K x x K ν ν K x ν

( ) − ( ) = ( ) ( ) + ( ) ( ) − 2 ( ) ( )

= ( , ) + ( , ) − 2 ( , ).
z j z

T
z j

T
j z

T
j

ernel z z ernel j j ernel z j

2

(7)

In the Gaussian kernel, K x x( , ) = 1ernel z z , finally

Fig. 2. Sensing time frame structure.

Fig. 3. Multiple PU system model.
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ϕ x ϕ ν K x ν( ) − ( ) = 2(1 − ( , )).z j ernel z j
2 (8)

The partition matrix μ and the updating of new cluster centers νj are
optimized [54] as follows:

μ
K x ν K x ν

= 1
∑ {1 − ( , )/1 − ( , )}jz

i
J

ernel z j ernel z i
m

=1
1/ −1 (9)

and

ν
μ K x ν x

μ K x ν
=

∑ ( ( , ))

∑ ( ( , ))
.j

z
Z

jz ernel z i z

z
Z

jz ernel z i

=1

=1 (10)

In the KFCM algorithm, the kernel matrix between the input data
samples and the new cluster centers is computed during each iteration.
The computational complexity for generating the partition matrix is

JZd( ), where ‘J’, ‘Z’ and ‘d’ are the number of clusters, the number of
input samples and the dimension of the data, respectively. In other
words, to find the new cluster center, the complexity is found to be

JZd( ). At each iteration, the kernel matrix requires JZ kernel function
evaluations. This makes the total computational complexity JZd( ) for
KFCM-F, which is similar to the FCM time complexity [54]. The
termination condition for both FCM and KFCM is

present previous|{ } − { } | ≤ ϵμ μjz jz

where ϵ is a threshold value, which represents the least difference
between the present and the previous partition matrix ‘μ’.

The maximum energy values are stored in Emax at the FC. This
Emax is the input data space for both the clustering (FCM and KFCM)
algorithms. Emax is partitioned into four clusters using the FCM
algorithm [44,40]. In this proposed work, for low SNR, the Emax

energy set is partitioned into three clusters using KFCM. The reason for
a smaller number of clusters in KFCM is to maximize the inter-class
distances. Four classes of FCM are denoted as strong presence C( )1 ,
moderate presence C( )2 , weak presence C( )3 and absence C( )4 of the PU
signal. The FCM cluster centers are represented by ν ν ν ν{ , , , }j j j j,1 ,2 ,3 ,4 .
Individual data, and each specific measured energy value Emax

i (i.e.
ith positions from Emax), are placed under one of these classes by
comparing them with the cluster's center:

⎧⎨⎩dist ν E a FCM
a KFCM

min{ = | − |} ∀ = 1…4 in
∀ = 1 .. 3 inj a j a max

i
, ,

(11)

Using FCM, the binary data patterns fromC C C, ,1 2 3 are logically OR-ed
to calculate Pd and Pfa depending on the hypothesis 1 and 0,
respectively:

⎧⎨⎩
⎧⎨⎩

⎧⎨⎩
⎧⎨⎩

C j a j C j a j C j a j

C j a j

= 1 , * = , 1
0 otherwise

, = 1 , * = , 2
0 otherwise

, = 1 , * = , 3
0 otherwise

,

= 1 , * = , 4
0 otherwise

1 2 3

4

In the present analysis, KFCMmerges two clusters (strong presence
and moderate presence) to a single cluster (strong presence). Hence,
here KFCM considers three classes, namely, strong presence C( )1 , weak
presence C( )2 and absence C( )3 of the PU signal. It will be shown that
three clusters based KFCM performs better in a low SNR energy data
set due to transformation of the samples from input space to kernel
space. Now three clusters based KFCM aims to maximize the inter-
class distances and minimizes the intra-class distances among the data.
The KFCM cluster centers are represented as ν ν{ ,j j,1 ,2 and ν }j,3 . For
KFCM, the binary data patterns of C1,C2 are logically OR-ed to
calculate Pd, Pfa:

⎧⎨⎩
⎧⎨⎩

⎧⎨⎩C j a j C j a j C j a j= 1 , * = , 1
0 otherwise

, = 1 , * = , 2
0 otherwise

, = 1 , * = , 3
0 otherwise1 2 3

3.1. Multiple PU detection

This subsection presents an energy based multiple PU detection
scheme. Typically, the SU requires a particular antenna for the sensing
of a particular PU signal. This means, if there is an N number of PUs in
the CRN then each SU requires deploying N number of antenna. Each
SU forwards the sensing energy of the individual PU to the FC, and
transmission (SU to FC) of sensed samples requires a specific amount
of energy consumption at the SU. It seems to be a multiple-input and
multiple-output (MIMO) like architecture in CRN with complex
implementation (multiple antennas in a SU) and heavy energy con-
sumption at the SU due to the transmission of sensed samples to the
FC. The proposed work helps to reduce the implementation complexity
and energy consumption at the SU. During the initial sensing slot
(learning stage), the SUs forward the sensing energy to the FC. For
multiple PUs (PU1,PU2,..PUn) in CRN, the FC stores the individual
energy set for each PU such as E E E{ , , … }maxPU maxPU maxPUn1 2 . In this
proposed work, the FC divides the SUs into clusters using a probabil-
istic approach based on these energy sets. A set of associated SUs forms
a cluster. Henceforth, an individual SU cluster senses a particular PU
from the next sensing time slot. Each existing SU, in a specific cluster,
is equipped with a single antenna instead of multiple antennas to sense
a particular PU, which in turn reduces the overall implementation
complexity. Furthermore, each SU of a particular cluster participates to
sense a single PU, this means the SU needs to forward the sensed
information of a particular PU to the FC. This in turn reduces the total
energy consumption at the SU and improves the energy efficiency of the
CRN.

The following example (Fig. 4) is used to describe the above issues.
In this example, we consider the case with three SUs and two PUs in
CRN. In the initial learning stage, all SUs participate in the sensing
process of all the PU signals and forward the received signals to the FC.
The FC stores EmaxPU1 and EmaxPU2 energy sets, respectively, for PU1 and
PU2. The numerical values shown are the values of sensed energies in
some unit.

From Fig. 4, the probability for the calculated Emax by SU1 for the
PU1 as E PUmax 1 is denoted as SU( ) = 0.501 , and the same for SU2 and
SU3 are SU SU( ) = 0.167, ( ) = 0.3332 3 , respectively. From the EmaxPU2
set, the probabilities are SU SU( ) = 0.333, ( ) = 0.501 2 and

SU( ) = 0.1673 . The particular SU cluster is formed by comparing the
individual SU's probability values for the different energy sets. In this
example, there are two clusters formed as SU SU SU= { , }c1 1 3 and
SU SU= { }c2 2 . Hence SUc1 is allocated to sense PU1, and SUc2 to PU2

signal for the remaining sensing time slot.

3.2. Transmission energy calculations

The average transmission power of a specific SUi is calculated as
follows [44]:

P w d P P w P= ( ( ) (( ) + ) + ( ) )i i a i
α

p n i n1
−

0 (12)

where the symbol ‘wi’ represents the power amplifier gain at SUi. Due
to the high computation, it is difficult to find the optimal wi for an
individual SUi. Instead of calculating each SU's power gain, the
separate power gain for each SU cluster is calculated. It is assumed
that wci is the power gain of the ith cluster where w w= ∑c i

c
ci=1 . The

Fig. 4. Energy set of E E,maxPU maxPU1 2.
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amplifying gain for the jth SU in the ith cluster is calculated as:

w
d

d
=

∑
c

a

i
L

a=1
ij

ij

ij

where the symbol ‘daij ’ represents the distance from the PU to the jth
SU in the ith cluster. The optimal values of wc and N are calculated
using FCM and KFCM with differential evaluation (DE) technique [44].
The working procedure of the DE algorithm with FCM is described in
[44]. In this work, the DE algorithm is applied to KFCM to find the
optimal wc and N values. The average energy consumption of all SUs is
formulated as:

E E E E= + + .s BP PA c (13)

Here EBP represents the energy consumption in base-band proces-
sing circuits. The symbol EPA represents the energy consumption due
to the amplification at SUi for forwarding the received signal to the FC.
Ec represents the energy consumption for radio devices during the
signal reception and transmission. EBP and Ec values being much
lower compared to EPA are not considered in this experiment [44]. In
all such cases, it is assumed as E E≈s PA. The total energy consumption
EPA is written as:

∑E PNT=PA
i

K

i sa
=1 (14)

where Tsa represents the sampling interval and T N T= ×sense sa.

4. Numerical results and discussions

This section presents a large set of simulation results to highlight
PU detection performance at low SNR, CSS performance gain over
FCM [44] and analytical method [39], multiple PU detection results,
energy consumption and sensing duration time required.

4.1. CSS at low SNR

Performance of the proposed KFCM based approach is compared
with FCM [44] and the analytical technique proposed in [39] to
highlight its relative improvement in CSS at low SNR. Monte Carlo
simulations with 10,000 iterations are performed and the maximum
energy values are stored in the Emax set during the 10,000 sensing
slots (ts).

Fig. 5 illustrates the receiver operating characteristics (ROC) curve
which plots Pd against Pfa for the proposed three cluster based KFCM,
four cluster based FCM [44] and the analytical approach [39]. For
simulation purposes, the number of SUs is fixed to 10 and is
partitioned into two clusters (SUc1 and SUc2), depending on the

respective distance from the PU. SUc1 and SUc2 cluster centers are
assumed to be 1 m and 1.25 m, respectively, from the PU. In this case,
the PU's transmission power is set at −10 dBW and noise variance P( )n
is fixed at 0 dBW, the sensing channels are considered to be Rayleigh
distributed and the reporting channels are considered to be ideal, the
number of samples (N) is fixed at 150, the path loss exponent of the
channels are α = 21 for SUc1 and α = 42 for SUc2. ( ) = 0.301 and

( ) = 0.700 represent the probabilities of the presence and the
absence of PU's in CRN.

The graphical results show that the three cluster based KFCM offers
improved results over both the four clusters based FCM algorithm [44]
and analytical approach [39]. From Fig. 5, it is also observed that the
proposed KFCM method offers a Pd value above 0.9 at Pfa=0.3, while
Pd valuing for [44] and [39] are 0.82 and 0.60, respectively, at the same
Pfa and at a low PU power of −10 dBW. The three cluster based KFCM
improves the detection probability P( )d by ∼6.56% over the four cluster
based FCM [44] at P = 0.12fa . It is observed that a gain in Pd value by
∼80% for the three cluster based KFCM over [39] is achieved when
P = 0.12fa .

Fig. 6 illustrates the ROC curve which plots Pd against Pfa of KFCM
and FCM. In this case, the PU transmit power are considered:
−15 dBW and −20 dBW for two different cases, the number of samples
(N) is fixed at 1000, and the other parameter values are the same as in
the previous case. An improvement in Pd value for the three cluster
based KFCM over the four cluster based FCM [44] is clearly observed in
Fig. 6. From Fig. 6, the KFCM improves detection performance over
FCM [44] by ∼6.78% and ∼6.96% at −15 dBW and −20 dBW, respec-
tively, when P = 0.14fa .

Fig. 7 shows the performance comparison with [44,39] for Pd vs.
the number of samples (equivalent to the sensing duration). The
graphical results show that the three cluster based KFCM offers
significant performance gain over the four cluster based FCM [44,39]
at low sample values. The PU power is fixed at −10 dBW and the
number of samples (N) increases from 100 to 1000. From Fig. 7, it is
clearly observed that the Pd value increases with the increase in the
number of samples (N). As the N value increases from 100 to 1000,
about ∼24.67% gain in the Pd value is noted for the three cluster based
KFCM. It is also observed that the three cluster based KFCM provides
improved performance in the Pd value over the four cluster based FCM
[44] at a smaller number of samples (N). A gain in the Pd value by
∼6.78% is noted for the three cluster based KFCM compared to the four
cluster based FCM [44] when N=100. The KFCM results are also
compared to the technique proposed in [39]. A gain in the Pd value by
∼56% for the three cluster based KFCM is noted over the technique
proposed in [39] when N=100. The Pd values for the proposed method
are above 0.90 at N=400.

Fig. 8 shows the performance comparison with [44,39] for theFig. 5. Receiver operating characteristic curves P( d vs. P )fa .

Fig. 6. Receiver operating characteristic curves P( d vs. P )fa .
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changes in Pd when the number of cooperative users (L) varies. In this
case, the PU transmit signal power P( )p is fixed at−10 dBW, the number
of SUs (L) varies from 5% to 10%, and the rest of the parameters are set
the same as previous cases. The graphical results show that the
proposed three cluster based KFCM improves the detection perfor-
mance from 0.71 to 0.98 as the L value is increased from 5 to 10. The
graphical results also show about a ∼22.04% gain in the Pd value for the
three cluster based KFCM is achieved when the L value is increased
from 5 to 10. It is also observed that the three cluster based KFCM
performs better than the existing methods [44,39] when the number of
relays (L) is less. A gain in the Pd value by ∼6.28% is noted for the
proposed method compared to the four cluster based FCM [44] and a
gain in the Pd value by ∼73.17% for the proposed method is observed
over the analytical approach [39] when L=5. It is observed that the Pd
values for the proposed method are above 0.9 for L=8.

Fig. 9 shows the variation of Pd with the transmission power of PU
(Pp). The graphical results show that the three cluster based KFCM
performs better than the four cluster based FCM [44] when the PU
transmit power is decreased. The number of samples N is set at 1000
and the L value is fixed at 10. From Fig. 9, it is clearly observed that
KFCM improves the detection rate (Pd) by ∼2.97% and ∼16.32% at
P = −20 dBWp over the FCM based CSS scheme [44] and the proposed
technique in [39]. Simulation results thus show that KFCM is found to
be more efficient than FCM [44] and the analytical approach [39] at
low SNR with high Pd values.

4.2. Multiple PU detection

This subsection presents the simulation results of multiple PU

detection performance of the proposed technique. Monte Carlo simula-
tions with 10,000 iterations are performed to store the maximum
energy values for the individual PU at the FC. Here, ( ) = 0.301 and

( ) = 0.700 represent the probability of active and ideal state of the
PU, respectively.

Fig. 10 represents the performance of the three cluster based KFCM
and Fig. 11 represents the performance of the four cluster based FCM
for multiple PU detection. The performance comparison in both the
cases is represented by an ROC curve that shows the variation in
detection probability (Pd) vs. false alarm probability (Pfa). Simulation
parameters are considered to be the same for Figs. 10 and 11. The
parameters are as follows: the total number of PUs is set to 4, the total
number of SUs is fixed to 30, the path loss exponent α is chosen
randomly between 2 and 4, the Pn value is set to 0 dBW and the
number of samples is fixed at 2000, the Pp values are taken as
−15 dBW,−15.5 dBW,−16 dBW and −16.5 dBW for PU PU PU, ,1 2 3 and
PU4, respectively.

From Figs. 10 and 11, it is clearly observed that the proposed
scheme of SU clustering works well to detect multiple PUs. From
Figs. 10 and 11, it is observed that KFCM gives a higher detection rate
for all PUs compared to the FCM based technique. It is observed from
Fig. 10 that before SU clustering, KFCM yields the Pd value 0.9 when
pfa is 0.3 for PU1 and after SU clustering, KFCM shows the Pd value
0.89 at pfa=0.3 for PU1. Fig. 11 shows that before SU clustering, FCM
offers the Pd value 0.86 when pfa is 0.3 for PU1 and after SU clustering,
FCM yields the Pd value 0.85 at pfa=0.3 for PU1. The graphical results
show that KFCM improves the detection performance by ∼4.65% and
∼3.37% before and after SU clustering over FCM for PU1 when pfa=0.3.

Fig. 7. Probability of detection Pd vs. number of samples N( ).

Fig. 8. Probability of detection Pd vs. number of cooperative users L( ).

Fig. 9. Pd vs. PU transmit power.

Fig. 10. Receiver operating characteristic curves (Pd vs. Pfa) using KFCM.
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The same comparison between KFCM and FCM is done for PU2, PU3,
PU4. It is found that, for each one of these PU detection scenarios,
KFCM offers better results than FCM. From the results, it is observed
that Pd values fall slightly (∼1.11% in KFCM) when an individual of a
SU cluster senses a particular PU compared to the case when all SUs
participate to sense a particular PU. However, the total energy
consumption is reduced significantly for the SUs cluster based
approach over the latter method. From Fig. 12, it is clearly observed
that the average energy consumption is significantly reduced by the
cluster based approach of SUs. The wc value is fixed at 11.5 and
N = {100, …500}%, the average distance between a SU to PU is fixed at
1.25 m, in this case. From Fig. 12, about ∼75.02% saving in average
energy consumption is observed for the SUs clustering than the non-
cluster based approach at N=100.

4.3. Energy efficient CSS using KFCM clustering

The relative improvement in energy efficiency using the proposed
technique over the optimal FCM [40] and the technique proposed in
[39] is shown in Fig. 13. In this case, the average distance between the
PU and an SU is set at 1 m and the distance between the FC to SU is
fixed at 2 m. The set of simulation parameters is as follows:
N = {50, …1000}, w = {2, …100}c , α=4, P ( ) = 0.301 and

( ) = 0.700 , Pn=0 dBW, Pp=0 dBW, L=10, Tsa=1 ms. The symbol
‘Tsa’ represents the sampling interval. The optimal wi and N values are
calculated through the differential evolution (DE) algorithm for each
FCM and KFCM.

Fig. 13 shows the variation of the average energy consumption of

the SUs with the amplifying gain wc. For both FCM and KFCM, it is
observed that Es decreases with an initial increase in wc. The proposed
KFCM approach is compared with the optimal FCM [40] and the
technique proposed in [39]. FCM-DE provides the optimum values for
wc and N as 9.8 and 64, respectively, to meet the target P ≥ 0.90d and
p ≤ 0.05fa . On the other hand, KFCM-DE provides the optimum values
for wc and N as 9.62 and 58, respectively. Thus, not only an improved
performance in energy consumption is achieved but also a gain in
sensing duration is achieved. The performance results are shown in
Fig. 14 where a variation in the average energy consumption vs.
number of samples is shown. The number of samples can be considered
as the sensing duration. Since SS is done periodically on a frame by
frame basis, the low sensing duration requirement offers one way the
longer duration for SU transmission. Hence the proposed CSS scheme
is not only energy efficient but also fast and reliable enough.
Furthermore, there is a consequent gain in SU throughput when the
proposed CSS model is applied to joint SS and SU transmission. It is
observed from the Fig. 14 that the KFCM algorithm improves the
energy consumption (Es) minimization by ∼1.18% over FCM [40], and
∼4.36% over the technique proposed in [39]. It is also noted from
Fig. 14 that KFCM gives the optimal energy consumption while
meeting P ≥ 0.90d and p ≤ 0.05fa at less samples (N=58).

5. Conclusions and scope of future works

The proposed work shows the efficacy of KFCM over FCM on an
energy detection based CSS scheme at low SNR and multiple PU
detection. For a single PU, it is observed that the proposed KFCM
method offers detection probability value above 0.9 at false alarm

Fig. 11. Receiver operating characteristic curves (Pd vs. Pfa) using FCM.

Fig. 12. Average energy consumption Es vs. number of samples.

Fig. 13. Average SU energy consumption Es vs. total SU amplifying gain wc.

Fig. 14. Average SU energy consumption Es vs. the number of samples N.
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probability 0.3 when PU power is at −10 dBW. It is also observed that
the KFCM based CSS offers a higher detection probability when the
number of relays (L) and the number of samples (N) are relatively less
compared to the existing FCM based and analytic methods. For
multiple PU detection, it is observed that the KFCM based method
offers, on average, ∼0.86 individual detection probability at a very low
PU power ∼−16 dB and it is also noted that average energy consump-
tion is reduced by ∼75.02% through SUs clustering. The proposed
KFCM based CSS is not only energy efficient but also provides faster
sensing compared to optimal FCM which in turn increases the data
transmission duration. The KFCM algorithm improves the energy
consumption (Es) minimization by ∼1.18% over the optimal FCM,
while meeting the same detection probability ∼0.90 and false alarm
probability ∼0.05.

Some of the future works may be as follows:

• The proposed work may be extended in the joint SS and data
transmission framework to evaluate the gain in energy minimization
and throughput improvement over the FCM based method.

• Similar to [40], the proposed work may be extended as an energy
minimization problem under the constraints of detection reliability
for an individual PU.
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