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Molybdate transport through the plant sulfate transporter SHST1
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Abstract Molybdenum is an essential micronutrient required by
plants. The mechanism of molybdenum uptake in plants is poorly
understood, however, evidence has suggested that sulfate trans-
porters may be involved. The sulfate transporter from Stylosan-
thes hamata, SHST1, restored growth of the sulfate transport
yeast mutant, YSD1, on media containing low amounts of
molybdate. Kinetic analysis using 99MoO2�

4 demonstrated that
SHST1 enhanced the uptake of molybdate into yeast cells at
nM concentrations. Uptake was not inhibited by sulfate, but sul-
fate transport via SHST1 was reduced with molybdate. These re-
sults are the first measurement of molybdate transport by a
characterised plant sulfate transport protein.
Crown Copyright � 2008 Published by Elsevier B.V. on behalf
of the Federation of European Biochemical Societies. All rights
reserved.
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1. Introduction

Molybdenum (Mo) is essential for plant growth and is a rare

element with a crustal abundance of 1.2 mg/kg [1]. Availability

of the soluble oxyanion, molybdate ðMoO2�
4 Þ, decreases with

increasing acidity and/or in soils rich in iron oxides [2]. How-

ever, for soils above pH 4.23 and those rich in organic matter,

molybdate becomes the predominate available form [1]. Molyb-

date is active within the plant when complexed by the pterin

compound named molybdenum cofactor (Moco). Only a few

plant enzymes interact with Moco; nitrate reductase (NR), alde-

hyde oxidase (AO), xanthine dehydrogenase (XDH) and sulfite

oxidase (SOX) where Mo participates as a transition metal in

reduction/oxidation reactions [3]. When Mo is deficient striking

phenotypes can develop, including nitrogen starvation re-

sponses, stem and leaf development disorders (e.g. whiptail in

crucifers), leaf necrosis, and reduced fruit set [4].

Molybdate transport involves the ModABC system in pro-

karyotic systems [5] while in eukaryotes the transport mecha-

nism has recently been characterised involving a class of

transport proteins called MOT1 [6–8]. MOT1 is a relative of

the sulfate transporter superfamily [9] but does not appear to

transport sulfate. The role of MOT1 in plant molybdate up-

take is still unclear as recent results suggest MOT1 is localised

to mitochondria [8]. In plants, the uptake of molybdate may

occur through sulfate transport proteins [10,11], as both

molybdate and sulfate have similar chemical properties [12].
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In plants, sulfur (S) starvation can enhance Mo accumulation

[13] or alternatively repress Mo uptake when supplied at

increasing concentrations [14].

The Stylosanthes hamata sulfate transporter SHST1 is ex-

pressed in roots and is enhanced under S starvation [15]. When

expressed in YSD1 yeast, SHST1, can accumulate sulfate and

is capable of rescuing growth when sulfate concentrations in

the media are low [15]. SHST1 is a high affinity Hþ=SO2�
4

cotransporter with a Km for sulfate of 10 lM.

We have re-examined the functional transport properties of

SHST1 in the yeast mutant YSD1 in the context of its ability

to also transport molybdate.
2. Materials and methods

2.1. Yeast media and growth
YSD1 (sul1 his3-D1 leu2 trp1-289 ura3-5) was transformed with

SHST1 (in pYES3 [15]) and empty vector controls (pYES3) using
LiAc/PEG [15]. Transformed cells were grown on media containing
either low levels of Mo (LMB) ([Mo] was below detection by ICP-MS,
approximately less than 0.4 nM) or low levels of sulfate (LSB) [16]. To
these media additions were made of sulfate, 76.52 mg/l homocysteine
thiolactone (TL), or molybdate as indicated. LMB media consisted of
a modified Grenson�s media [17] where Na2MoO4 � 2H2O was omitted
(normally 16.5 nM) and solutions prepared using Mo scrubbed dH2O [18].

2.2. 99MoO2�
4 and 35SO2�

4 uptake assays
Cells used in uptake studies were grown initially in standard liquid

SC glucose media to an OD600 nm of 1.0. Cells were then grown as indi-
cated in either LMB + 2% (w/v) galactose or LSB + TL + 2% (w/v)
galactose. All cultures were grown with constant shaking (200 rpm)
at 28 �C. At mid-log phase, cells were washed and resuspended to an
OD600 nm of 5 in a base 20 mM KPO4 reaction buffer (pH 5.6 for
35SO2�

4 and pH 6.5 for 99MoO2�
4 ) containing 2% (w/v) galactose. Yeast

uptake assays consisted of taking 50–100 ll of cell culture in reaction
buffer and shaking in a 2 ml round bottomed microfuge tube with
equal amounts of labelled 99MoO2�

4 (as Na99
2 MoO2�

4 ; ANSTO-ARI)
or 35SO2�

4 (as Na35SO2�
4 ; GE Healthcare) in 20 mM KPO4 buffer with

pH modifications and added anions as indicated. At indicted time
points, 50–100 ll of the cell/buffer mix were harvested and placed in
5 ml ice-cold non-radioactive reaction buffer and filtered by vacuum
onto 0.45 lM nitrocellulose filters (Millipore). Harvested cells were
washed with 10 ml of ice-cold non-radioactive reaction buffer before
being placed into 4 ml of aqueous scintillant (Perkin–Elmer) and radio-
activity measured in a scintillation counter (Beckmann). Protein deter-
minations were performed by TCA precipitation [19].
3. Results

3.1. SHST1 enhances growth of YSD1 on low Mo containing

media and enhances the uptake of 99MoO2�
4

We developed a low Mo yeast media (LMB) to characterise

the transport properties of SHST1 in YSD1. When we plated
lf of the Federation of European Biochemical Societies. All rights reserved.



Fig. 1. Growth of YSD1 and wild type cells transformed with pYES3 or SHST1 on low concentrations of molybdate. Cells were plated onto LMB
media containing increasing concentrations of MoO2�

4 with 2% (w/v) galactose (Gal). pYES3 = pYES3/YSD1, SHST1 = pYES3/SHST1/YSD1,
INVSc1 = pYES3/INVSc1.

Fig. 2. Accumulation of 35SO2�
4 or 99MoO2�

4 in YSD1 cells containing SHST1 or the empty vector control pYES3. (A) Uptake of 35SO2�
4 over time

from an external concentration of 25 lM in transformed cells grown in LMB. (B) Uptake of 99MoO2�
4 (10 nM external concentration) over time in

transformed cells grown initially in LMB. Values are means ± S.E.M. (n = 4) and is representative of three independent experiments. Data points
with *, **, *** are significantly different from controls at P < 0.05, 0.01, 0.001, respectively.
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YSD1 containing pYES3 onto LMB media, cells grew slowly

(Fig. 1). In contrast improved growth was observed with both

the wild type (INVSc1: pYES3) and YSD1 cells transformed

with SHST1. When the LMB media was supplemented with

8 or 80 nM MoO2�
4 , SHST1 growth improved further, while

the empty vector controls continued to grow slowly.

Heterologous expression of SHST1 in YSD1 cells was

confirmed by measuring the uptake of 25 lM 35SO2�
4 over a de-

fined time period (Fig. 2A). As expected, SHST1 accumulated

significantly higher levels of sulfate over that of the controls.

Cells were then exposed to 10 nM 99MoO2�
4 in a similar time

course experiment. SHST1 significantly enhanced the uptake
Fig. 3. Concentration dependence of 99MoO2�
4 and 35SO2�

4 influxes in YSD1 c
with 0–1000 nM external Mo. The influx rate was determined from 10 min
SO2�

4 . Values are means ± S.E.M. (n = 4) representative of three independent
controls at P < 0.05, 0.01, 0.001, respectively.
of 99MoO2�
4 relative to the empty vector YSD1 controls

(Fig. 2B) where after a 15-min exposure, SHST1 had accumu-

lated a three-fold higher level of 99MoO2�
4 over the controls.

99MoO2�
4 was then supplied at increasing concentrations up

to 1000 nM (Fig. 3A). Rate of 99MoO2�
4 influx was linear

where SHST1 was about 2.8-fold higher than the pYES3 con-

trol (slope: 0.594 ± 0.012 versus 0:212� 0:008 pmol MoO2�
4

mg�1 protein min�1=nM MoO2�
4 , respectively). 35SO2�

4 influx

by SHST1 across a similar concentration range was also found

to be linear (Fig. 3B). For SO2�
4 influx the difference between

SHST1 and pYES3 controls was greater and the uptake rates

20-fold higher than that of 99MoO2�
4 influx (Fig. 3B). Note that
ells containing SHST1 or pYES3. (A) 99MoO2�
4 influx of cells incubated

uptakes. (B) 35SO2�
4 influx of cells incubated with 0–1000 nM external

experiments. Data points with *, **, *** are significantly different from



Fig. 4. Influence of external pH on the 99MoO2�
4 influx. Cells were harvested and washed in sterile Mo scrubbed dH2O and incubated with 99MoO2�

4

diluted in KPO4 buffer (pH 3–8). After 10 min cells were washed with KPO4 buffer and the 99MoO2�
4 influx rate (from 80 nM MoO2�

4 ) determined.
(A) Values are means ± S.E.M. (n = 4). Data points with *, **, *** are significantly different from the controls at P < 0.05, 0.01, 0.001, respectively.
Across the pH profile of each strain, data points with similar letters are not significantly different at P < 0.05. (B) Inset highlights the predicted
speciation of MoO2�

4 across the pH range 3–8.
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35SO2�
4 influx showed saturation with external SO2�

4 concentra-

tion when examined over a higher concentration range (1–

50 lM) (S1).

The pH of the external media influenced 99MoO2�
4 influx in

YSD1 cells containing SHST1 (Fig. 4). At pHs between 3

and 5 SHST1 elicited significantly higher 99Mo uptake com-

pared to higher pHs (6–8), but there was no significant differ-

ence between the influxes at pH 3, 4 and 5, nor between pH 6, 7

and 8. Molybdenum speciation calculations (S2) predicted that

between pH 3 and 4 the predominant Mo species will be the

aqueous 99MoO3(H2O)3 instead of 99MoO2�
4 (Fig. 4, insert

B). However at pH 5, 99% of the Mo is in the form of the diva-

lent anion and at this pH 99MoO2�
4 influx was significantly

higher than at higher pHs.

We examined the transport of 99MoO2�
4 or 35SO2�

4 when chal-

lenged with a competing anion. 99MoO2�
4 transport by SHST1

was not reduced by SO2�
4 , WO2�

4 , or NO�3 at equal (80 nM) or

at 10-fold excess (800 nM) concentrations (Fig. 5A). In con-

trast, 35SO2�
4 influx (25 lM) was reduced by approximately

48% by an equal concentration of molybdate (Fig. 5B). Molyb-

date was a poor competitive inhibitor of 35SO2�
4 influx with a

calculated KI of 34 ± 9 lM (S1).
4. Discussion

The plant sulfate transport protein SHST1 is able to enhance

the uptake of molybdate when expressed in the Saccharomyces

cerevisiae sulfate transport mutant YSD1. SHST1 rescued

growth of YSD1 on low concentrations of Mo (80 nM) and

using the radioactive tracer, 99MoO2�
4 , SHST1 accumulated

99MoO2�
4 in excess of controls. Kinetic analysis revealed a

non-saturating 99MoO2�
4 influx across a physiological relevant

range of molybdate concentrations (0–1000 nM). This was
similar to that of 35SO2�
4 influx over the same concentration

range. Based on the similar sizes of the sulfate and molybdate

metal–O lengths, net charge, hydrogen bonding properties and

tetrahedral geometry [12], we presumed sulfate would be an

effective competitor to molybdate influx if both were trans-

ported by the same protein. Surprisingly sulfate failed to com-

pete with molybdate influx when supplied at equal or at 10-

fold higher concentration. This is relevant to the potential

function of SHST1 as a Mo uptake system in plants where sul-

fate would normally be at a much higher concentration than

Mo. These results are consistent with the recent characterisa-

tion of MOT1 in both Arabidopsis and Chlamydomonas rein-

hardtii where sulfate failed to compete with Mo uptake when

MOT1 was expressed in yeast cells [6,7]. However, the lack

of a response to sulfate contradicts previous studies in plants,

which have shown that excess sulfate can inhibit Mo uptake

[14]. From our results direct competition of molybdate uptake

by sulfate ions appears to be minimal. It is possible that previ-

ously observed inhibition of Mo uptake in response to elevated

levels of S is due to regulated expression and activity of the sul-

fate transport and assimilatory pathways rather than through

direct competition. Alternatively other sulfate transporters

may behave different to SHST1. In contrast, MoO2�
4 acted as

a competitor to 35SO2�
4 uptake by SHST1. This characteristic

also lends weight to a dual function of SHST1, since MoO2�
4

would rarely attain such a high free concentration (>34 lM)

in soil to the extent that it would inhibit SO2�
4 uptake.

SHST1 was originally characterised as a Hþ=SO2�
4 cotrans-

porter [15]. Analysis of 99MoO2�
4 uptake at different external

pH showed that SHST1 prefers a more acidic external environ-

ment. Although the change in the predominant form of Mo to

a neutral species MoO3(H2O)3 occurs at low pH this did not

correlate with the higher influx observed at pH 5 where 99%

of the Mo occurs as the divalent anion MoO2�
4 . At pH 4 and



Fig. 5. Competitive effects of anions on 99MoO2�
4 and 35SO2�

4 influxes. Cells were grown in either LMB + Gal media (A) or LSB + TL + Gal media
(B) to induce gene expression and then incubated with either 80 nM 99MoO2�

4 (A) or 25 lM 35SO2�
4 (B) with or without competing anions. (A)

99MoO2�
4 influx into empty vector controls (pYES3 transformed YSD1 cells) was subtracted from the SHST1 influx. Data represents the combined

mean ± S.E. of two independent experiments (n = 10). (B) Data presented is the mean ± S.E. (n = 4) and is representative of three independent
experiments.
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below more of the influx could be carried by the neutral spe-

cies. As the pH was increased from 5 to 6 the uptake of

MoO2�
4 decreased significantly which is consistent with the

characterisation of SHST1 as a H+/anion cotransporter. As a

divalent anion it would be expected that uptake against a neg-

ative internal membrane potential would require active trans-

port and the pH effect is consistent with Hþ=MoO2�
4

cotransport.

The ability of SHST1 to transport both molybdate and sul-

fate may provide a functional explanation for interactions be-

tween molybdate and sulfate in prokaryotes [5] and eukaryotes
[10,20,21]. In Escherichia coli, when the modABC system is

inactive, molybdate uptake is thought to involve an ABC-type

sulfate transporter involving a sulfate binding protein or

through a non-specific anion transporter [5]. In Penicillium not-

atum [20] and C. reinhardtii [22], sulfate starvation will enhance

the rate of molybdate transport while in P. notatum molybdate

has been shown to be an effective inhibitor of sulfate uptake

[23]. Similarly, in animal systems sulfate transport through

the placental specific Na+ coupled sulfate transporter NaS2

is competitively inhibited in the presence of molybdate

[21,24]. In plants, the interaction between sulfate and molybdate
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transport has been characterised in tomato [25], and rice [26].

In tomato, the translocation of 99MoO2�
4 from the root to the

shoot is reduced in the presence of external sulfate, however,

uptake into roots did not appear to be influenced by sulfate

[25]. In rice seedlings, sulfate was shown to reduce the net up-

take of molybdate into roots [26]. The activity of SHST1 is dif-

ferent to that of MOT1 recently identified in both Arabidopsis

[6] and C. reinhardtii [7] which does not appear to behave as a

typical sulfate transporter per se as it lacks the ability to com-

plement a yeast sulfate transport mutant, although it does al-

low for the uptake of MoO2�
4 .

In summary, the data presented here suggests sulfate trans-

port proteins are capable of molybdate transport and provides

a functional basis for observations in the literature showing

strong relationships between molybdate and sulfate transport.

All the characteristics of the SHST1 transporter when ex-

pressed in yeast, particularly in relation to interactions be-

tween MoO2�
4 and SO2�

4 , would indicate that SHST1 could

transport both MoO2�
4 and SO2�

4 at normal concentrations

of the two anions, however, this remains to be tested in planta.
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Supplementary data associated with this article can be found,
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