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Trains are prone to delays and deviations from train operation plans during their operation because 
of internal or external disturbances. Delays may develop into operational conflicts between adjacent 
trains as a result of delay propagation, which may disturb the arrangement of the train operation 
plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be 
valuable references for dispatchers in making more efficient train operation adjustments when conflicts 
occur. In contrast to the traditional approach to conflict prediction that involves introducing random 
disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable 
based on historical statistics and the modeling of a high-speed railway train timetable based on the 
concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided 
conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. 
Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts 
between adjacent train operations, were developed using a formalized computation method. Based 
on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is 
proposed, and the results of a simulation example for two scenarios are presented. The results prove 
that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable 
and practical and can provide helpful information for use in train operation adjustment, train timetable 
improvement, and other purposes. 
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1. Introduction

Trains are likely to deviate from train operation plans during
their operation and produce headway and route conflicts as a 
result of the influences of factors such as the weather, geological 
conditions, and driver and train performance. Therefore, dis-
patchers often need to make some adjustment to conflicts, on the 
premise of keeping subsequent operation plans unchanged, and 
without considering disturbances. Obviously, these assumptions 
do not align well with the real world. Previous studies on the 

train delay propagation law [1–3], the dynamic properties of train 
delays [4,5], and the operation adjustment decision making have 
proposed adjusting the buffer time as the major way to eliminate 
headway conflicts or having simulated subsequent train opera-
tions by introducing stochastic disturbances [6–10]. Considering 
that the train timetable is operated periodically and that daily 
delay information including where, when, and how long can be 
recorded, we can sum up the delay distribution law and obscure 
the time interval in a train timetable in order to simulate the sub-
sequent train operation status based on these historical time data. 

* Corresponding author. 
E-mail address: lipingfeng@my.swjtu.cn 

http://dx.doi.org/10.1016/J.ENG.2016.03.019 
2095-8099/© 2016 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

journal  homepage:  www.elsevier.com/ locate /eng

Engineering



367H. Zhuang et al. / Engineering 2 (2016) 366–373

This approach is much more realistic and valuable than stochastic 
disturbances.

Murata [11] and Zhou et al. [12] discussed temporal uncer-
tainty and fuzzy timing in a high-level Petri net model with four 
fuzzy time functions and algorithms for performing the reason-
ing. This method was applied to check the consistency of tempo-
ral knowledge during operation planning by Ye et al. [13] and Liu 
et al. [14]. Wen et al. [15,16] proposed a method for distinguishing 
and predicting train operation conflicts based on triangular fuzzy 
number workflow nets. These studies provide insight into how 
actual operational data can be used to improve the reliability of 
conflict prediction results. The aim of this paper is to discuss the 
following research questions:
•	How can the time interval in a train timetable be obscured 

based on the historical time data?
•	What are the decision conditions to headway conflict, and 

how can the conflict prediction results be presented?
•	What is the advantage of the fuzzy temporal knowledge rea-

soning method in practical application, compared with the 
current method?

The remainder of this paper is organized as follows: Section 2 
models a train timetable based on a timed place Petri net and ex-
plains how to obscure the time interval based on historical time 
data. Section 3 proposes the judging conditions for two different 
types of conflicts and the evaluation indexes for conflict predic-
tion results presentation. Section 4 takes the Beijing South–Jinan 
West railway line as an example. Conflict predictions with or 
without additional perturbations are simulated and the amount 
of available information in two different reasoning methods is 
compared, proving the feasibility and effectiveness of the fuzzy 
temporal knowledge reasoning method.

2. Modeling and pre-processing a high-speed railway  
timetable

2.1. Modeling a train timetable based on a timed place Petri net (TPPN)

Train timetables have been modeled using different simula-
tion tools and mathematical methods in previous studies. Petri 
net theory is one of the theories used for timetable modeling, 
and has been previously applied to train timetable modeling and 
analysis [2,17,18]. The timed Petri net (TPN) theory is one of the 
important branches of Petri net theory, and can be divided into 
the timed transition Petri net (TTPN), timed place Petri net (TPPN), 
and timed arc Petri net (TAPN) theories, according to the different 
temporal factor distributions involved [2]. Considering that only 
the time delay in TTPN is satisfied, and that the state marking of 
the subsequent places can be changed, the state marking can be 
easily misunderstood. Therefore, we adopted TPPN as the mode-
ling tool to ensure that the state marking at any time in the model 
can be explained in an unambiguous way. A high-speed railway 
train timetable can be modeled based on TPPN as follows:

                        N = {P, T, Pre, Post, TD, K, W, M0}�  (1)

where,
•	N is the TPPN model of a high-speed railway train timetable;
•	P = {p1, p2,…, pm}, the finite place set, representing the tempo-

ral constraints between adjacent train actions and satisfying 
the conditions that P T P T= = ;
•	T = {t1, t2,…, tn}, the finite transition set, representing the 

train operations at station and satisfying the conditions that 
P T P T= = ;
•	Pre: P × T → {0, 1}, the preceding related functions;
•	Post: T × P → {0, 1}, the posterior related functions;
•	TD: P → time, the mapping function from the place of the 

time interval; and
•	K, W, and M0 are the place capacity function, directed arc 

weight function, and initial identification, respectively. In 
this model, K = W = 1, which means that a train only has one 
accurate statement at any time.

Fig. 1 is an example of a high-speed railway train timetable for 
three trains (Tr1, Tr2, Tr3) and four stations (S1, S2, S3, S4). We build 
the TPPN model shown in Fig. 2 for this timetable. In this figure, 
the subscripts using Arabic numerals represent trains or stations 
and the subscripts using Roman numerals represent sections.

As seen in this example, any train operation plan is a sequence 
of operational stations and time intervals between adjacent op-
erations. Given these characteristics of a train timetable, its TPPN 
model has the following features. First, there are three types 
of transitions, representing train departures, train arrivals, and 
trains passing through. Two place types exist: the state of a train 
being at a station, where the delay time is the time interval be-
tween adjacent train operations; and the state of a train being in 
the section between stations, where the delay time is the running 
time at that interval. Second, a preceding train operation (the 
preceding transition) imposes restrictions on a train’s succeeding 
operation (the succeeding transition) or on that of an adjacent 
train. In the meantime, the succeeding transition is restricted 

Fig. 1. A sample of high-speed railway train timetable.

Fig. 2. Model of train timetable sample.
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corded and their mean value µ and normalized variance σ can be 
calculated. Assuming that the values are normally distributed, the 
confidence interval at a confidence level α can be predicted by 
the following formula:

 
                                2 2( , )z z

n nα α
σ σµ µ− × − × �  (3)

where, zα/2 can be achieved by querying the standard normal distri-
bution chart based on the confidence level α. Then the trapezoidal  

time function of this time interval is 2 2( , , , )t r z t r t t z
n nα α
σ σµ µ∆ − + − × ∆ − ∆ ∆ + − ×

2 2( , , , )t r z t r t t z
n nα α
σ σµ µ∆ − + − × ∆ − ∆ ∆ + − × , where r is the preset buffer time in this time  

interval.

3. Conflict prediction

3.1. Conflict types and judgment condition

In China, the minimum interval between adjacent train opera-
tions in high-speed railway train timetables, Imin, is typically 5 min 
[19]. As defined in the literature [16], a train operation conflict 
occurs when two trains need to use the same technical equip-
ment or train path at the same time. Based on this definition and 
considering the temporal constraints in a high-speed railway 
train timetable, a conflict is taken in this paper to be a situation in 
which a train cannot satisfy the minimum time interval require-
ment. Depending on whether a conflict occurs, the conflicts in a 
train timetable can be divided into two types, as described below.

3.1.1. Potential conflict
A potential conflict (PC) is the state in which the preset buffer 

time is sufficient to dissipate the influence of the train’s delay so 
that the minimum interval is still satisfied. The hidden trouble 
is still present and may evolve into a certain conflict after delay 
propagation.

Fig. 4(a) illustrates an example in which the occurrence time 
of transition t1 is later than the planned time stamp, which leads 
to the actual train path deviating from the planned one. Assum-
ing that the fuzzy occurrence times of transition t1 and transition 
t2 are o(t1) = (A, B, C, D) and o(t2) = (E, F, G, H), respectively, the 
requested minimum interval is Imin, and the actual interval is I. A 
diagram of transition t1, transition t2, and the actual interval I is 
shown in Fig. 4(b). If and only if the condition I ≥ Imin is satisfied, 
the conflict is temporarily avoided. However, as the delay of tran-
sition t1 still exists, it cannot be taken as certain that the delay 
propagation will not result in any other conflicts.

3.1.2. Certain conflict
A certain conflict (CC) is the state in which all of the measures 

that can reduce a train’s delay have been perfectly used, yet the 
actual interval still cannot meet the minimum interval require-
ment. As a result, a conflict will occur. As shown in Fig. 4(c), there 
is a conflict between transition t1 and transition t2, even though 
the delay in the arrival of transition t2 weakens the influence of 
transition t1. It can be concluded that a CC can occur when the 
constraint I < Imin is satisfied.

3.2. Conflict measurement index

When a train is delayed because of some internal or external 
disturbance, the succeeding trains will be influenced due to delay 
propagation, and the scope of influence will gradually expand. 
Conflicts may occur to different degrees during this process. Con-
flict possibility measurement can be performed in two ways, as 
described below.

only by the preceding transition at the station and the schedule 
time of the train operation. Based on these characteristics, the 
transformation from a train graph to a TPPN model is simple and 
direct and lays the foundation for simulating the fuzzy temporal 
knowledge reasoning process.

2.2. Trapezoidal fuzzy number and fuzzy processing

In real-world systems, the total duration of any event can be 
a certain value or a time interval that encompasses the earliest 
finish time and the latest finish time. Obviously, the time interval 
expresses more information than a certain value. Furthermore, 
fuzzy processing of a planning time interval is the objective re-
flection of uncertainty in a system’s actual operation, which can 
improve system compatibility and better reflect system perfor-
mance. The fuzzy trapezoidal time function, which is transformed 
from a time interval, can be defined as follows:

                                       T = h(a, b, c, d)� (2)

where, h is the maximum possibility of T; c is the latest finish 
time; b is the earliest finish time, and section (a, b), (c, d) is the 
time interval range. Fig. 3 is a graphical representation of a trape-
zoidal fuzzy number.

Considering that the trapezoidal time function can express 
more information and provide a sound basis for the fuzzy tem-
poral knowledge reasoning method, how the time interval can be 
transformed to a trapezoidal time function should be studied.

2.2.1. Transformation from a certain value to a time interval
As modeled in Section 2.1, the time interval between adjacent 

train operations in a train timetable is a certain value and is as-
signed to the corresponding place. Considering the preset buffer 
time, which is the difference between two adjacent trains’ depar-
ture time at a station, should be added into a timetable.

2.2.2. Transformation from a time interval to a trapezoidal time 
function

As the train timetable is operated periodically, the related op-
erating units can collect a large quantity of operational data from 
the actual use of the train timetable. Every train’s arrival and de-
parture time at each station can be recorded for the experimental 
period, such as one month or two months. In particular, it should 
be explained that the train timetable should remain constant in 
the experimental period, in which the daily operation can be re-
peated and no special status occurs. When all the historical time 
data are prepared, the statistical analysis can be done. Taking 
one time interval Δt as an example, it is observed and recorded n 
times in the experimental period. After subtracting the planned 
time interval from the observed one n times, the values are re-

Fig. 3. Fuzzy trapezoidal time function.
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3.2.1. Deviation of a single train
For any single train, the planned operation time in a high-

speed railway train timetable is expressed by the time stamp π(τ). 
When any delay occurs, the degree of deviation from the planned 
train path can be seen as the consequence of the initial delay and 
the primary cause of the succeeding conflicts. We assume that the 
planned train operation time stamp and the actual time stamp of 
train i for operation j are ( ) ( , , , )j

i A B C Dπ τ =  and ( ) ( , , , )j
i E F G Hπ τ′ = , 

respectively. When the condition ( ) ( )j j
i iπ τ π τ′ ≠  is satisfied, we can 

conclude that train i at operation j has deviated from the plan, as 
shown in Fig. 5. In this case, the degree of deviation of train i at 
operation j can be calculated according to the following formula:

                            
( )1 100%

( )
j

i

S ABCD EFGH
S ABCD

η = − ×   � (4)

where, S(ABCD) is the area of trapezoid ABCD; S(ABCD∩EFGH ) is 
the overlapping part of the areas of trapezoids ABCD and EFGH. The 
average degree of deviation of train i can be calculated as follows:

                                        
1 100%

j
i

j
i

η
η

Δ

== ×
Δ

∑ �
 (5) 

where, Δ is the sum of train i’s operations. Apparently, the greater 
the degree of deviation is, the higher the conflict possibility can 
be.

3.2.2. Conflict possibility between adjacent train operations
In this case, the train operation conflict occurs between adja-

cent transitions. According to the judging rules, when the condi-
tion I < Imin is satisfied, a headway conflict may occur. Therefore, 
the first task is to identify the conflict type when a train delay 
occurs. If the conflict is a PC, it can be avoided, and possibility 
conflict measurement is unnecessary. Otherwise, possibility 
measurement is performed in the following way.

Fig. 6(a) shows an example of a temporal constraint between 
transition t1 and transition t2. We assume that the fuzzy occur-
rence time of transition t1 and the fuzzy enabling time of transi-
tion t2 are o(t1) = (A, B, C, D) and o(t2) = (E, F, G, H), respectively, 
and that the condition I < Imin is satisfied. In this case, the mini-
mum buffer time requested to resolve the conflict can be com-
puted as R = Imin – I. The available buffer times of transition t1 and 
transition t2 are 

1t
r C B= −  and 

2t
r G F= − , respectively. The fuzzy 

time functions of transition t1 and transition t2 should be updated 
as described below.

According to the rules of buffer time usage for train operation 
adjustment, the previous buffer time takes priority and is used 
first. The surplus buffer time 

1t
r′ of transition t1 is { }1 1

max ,0t tr r R′ = − .  
If 1

0tr R− ≥ , the conflict has been resolved, and the buffer time 2t
r  

remains unchanged. Otherwise, the surplus redundancy time 2t
r′ of 

transition t2 is { }2 1 2
max ,0t t tr r r R′ = + − . After the maximum possible 

conflict is resolved, the updated time interval between the two Fig. 5. Deviation of a single train.

Fig. 6. Conflict possibilities between adjacent trains. (a) Before conflict reduction; (b) after conflict reduction.

Fig. 4. Conflict type judgment. (a) Potential conflict (PC); (b) actual interval, I; (c) certain conflict (CC).
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transitions is 
1 2 mint tI r r R I′ = + − − , and the updated fuzzy time func-

tions of the two transitions are 
1 11( ) ( , , , )t to t A B B r B r D C′ ′= + + + −  and 

2 2 22( ) ( , , , )t t to t E r r F r r G H′ ′= + − + − , respectively, as shown in Fig. 6(b). 
The change in the shaded area reflects the conflict resolution 
results. By this time, the conflict possibility between transition t1 
and transition t2 is as follows:

                                   12
( ) 100%
( )

S E F J K
S E F G H

δ
′ ′ ′ ′

= ×
′ ′ ′ ′  � (6)

The higher the conflict possibility is, the greater the likelihood 
is that the succeeding train will suffer from delay propagation.

3.3. Conflict prediction algorithm

In this study, conflict prediction for a high-speed railway train 
timetable was conducted using a Structured Query Language (SQL) 
server and the C# simulation platform. The SQL server was used 
to store the initial train timetable, actual operational data, and 
the fuzzy delay times of the time intervals after fuzzy processing, 
based on the actual operational data. The C# simulation platform 
was used to import the original data from the SQL server, trans-
form the original data into incidence relations between transi-
tions and places in the TPPN model, assign the fuzzy delay times 
to places, predict conflicts based on fuzzy temporal knowledge 
reasoning, record the simulation data, calculate the values of the 
evaluation indexes, and output the results. Conflict prediction is 
performed according to the following steps:

Step 1: The original data is collected and pre-processed, in-
cluding the train timetable and its actual operational data. Before 
proceeding to the next step, the time intervals in the train timeta-
ble should be obscured based on the actual operational data and 
distributed to the corresponding places as fuzzy delay times.

Step 2: Conflict prediction is performed, based on fuzzy tem-

poral knowledge reasoning, from left to right and from top to bot-
tom. If there is a temporal constraint between two adjacent tran-
sitions, a conflict judgment should be performed. If the conflict is 
a CC, the fuzzy time function of the two related transitions should 
be updated, and the conflict possibility δ should be calculated and 
recorded. After this updating, the conflict prediction continues 
until all of the transitions are checked. As an example, we take the 
conflict prediction between transition t11 and t′2′2 in Fig. 7; namely, 
the conflict check between the arrival of train Tr1 and the passing 
through of train Tr2 on S2. For this case, the occurrence time of 
transition t11, o(t11) = (0, 0, 0, 0), and the fuzzy delay times of the 
related places are shown in Table 1, and the reasoning process is 
shown in Fig. 7.

Step 3: Statistical analysis of the simulation results is per-
formed. Based on the output results, the values of the evaluation 
indexes—that is, the average deviation degree ηi and the conflict 
possibility δ—are calculated and analyzed. The usage of the preset 
buffer time can be recorded as well and can provide helpful in-
formation for use in further train timetable adjustment decision 
making.

4. Simulation examples

4.1. Simulation experiment design

It is difficult to collect the actual operational data of an active 
high-speed railway train timetable in China. Therefore, we gen-
erated a high-speed railway train timetable including 6 stations 
and 15 trains based on the track data of the Beijing South–Jinan 
West railway line, as shown in Fig. 8 and Fig. 9. For the historical 
time data of the virtual train timetable, we simulated the time in-
terval range by random number: The value range of the left-side 
time interval is 1–2 min and that of the right-side time interval 

Table 1 
Fuzzy delay times of related places.

Fuzzy delay, d(τ) Value Fuzzy delay, d(τ) Value

d(p121) (8,9,11,12) d(p122) (5,6,6,7)

d(p1I) (19,20,23,24) d(p12) (7,8,11,13)

d(p2I) (16,17,18,20)

Fig. 7. Fuzzy temporal knowledge reasoning process.
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is 1–3 min. Even though we replaced the fuzzy processing of the 
time interval with random numbers in this example, the pre- 
processing method proposed in Section 2.2 is still effective when 
it is applied to the actual train timetable if we can get the histor-
ical operation time data. Besides, the virtual train timetable and 
random trapezoidal fuzzy numbers do not affect the presentation 
of the fuzzy temporal knowledge reasoning process.

Based on these early initial data, a fuzzy train timetable where 
the time interval is presented as a trapezoidal fuzzy number 
can be modeled as a TPPN system and the fuzzy time interval 
is distributed to the corresponding place as a fuzzy delay time 
function. The simulation experiment consists of two scenarios. In 
Scenario 1, the conflict prediction is done in the fuzzy train time-
table without any additional disturbances. As the time interval 
is fuzzy processed, headway conflict may occur and the conflict 
prediction results can reflect the train timetable quality and per-
formances. In Scenario 2, additional disturbances are assigned to 
train G203, which departs from Beijing South Station 10 min later 
than planned. Even though the presentation of the conflict pre-
diction results in two scenarios that are almost the same, simu-
lating under two scenarios permits the train timetable to be eval-
uated and also allows the flexibility of the fuzzy train timetable 
to be highlighted by comparing the results of the two scenarios, 
while eliminating the influence of the train timetable itself.

4.2. Analysis of simulation

The analysis of the two simulation results is divided into three 
parts. In Part 1, the conflict prediction result is presented in dia-

grams, which can be executed and updated once when the oper-
ational circumstance changes, such as when a new delay occurs 
or the dispatcher tries to do some operational adjustment. The 
updated conflict results will assist the dispatchers by warning of 
current and follow-up PCs including information about where 
the conflict may occur and how great the conflict possibility is. 
As for the operational adjustment, the two successive conflict 
results will evaluate its effect in advance. Part 2 compares the 
conflict prediction results of the fuzzy temporal knowledge rea-
soning method and the in-use method. As mentioned earlier, in 
the current method, the subsequent operation plan is assumed to 
be constant and only the current conflict shows in the operating 
screen when the dispatcher is trying to resolve a current conflict. 
The difference in the amount of available information in the two 
different methods is discussed in this part. In Part 3, the compari-
son between the two scenarios is done. 

Part 1: Conflict prediction result presentation. The conflict pre-
diction result is expressed based on the two evaluation indexes pro-
posed in Section 3.2. When the conflict prediction is executed once, 
the deviation degree of a single train and the conflict possibility of 
adjacent train operations are calculated and displayed in the diagram. 
As shown in Fig. 10, the deviation degree of every train in the time-
table is displayed, and every time interval of a train operation plan 
can be illustrated in detail if needed. Take train G203 as an example:  
Fig. 10(b) shows the deviation degree of every time interval, which 
will help the dispatcher understand the reasons for the whole devi-
ation. Regarding the conflict, one PC consists of four factors: Where 
the conflict occurs, how great the conflict possibility is, how much 
allowance time is needed to resolve the conflict completely, and how 
much of the buffer time is used here to eliminate the conflict. Overall, 
the dispatcher also needs to know the number of PCs. As shown in 
Fig. 11(a), all the PCs are displayed, and every conflict can be refined, 
as shown in Fig. 11(b), including the four factors of concern.

Part 2: Comparison of the two different methods. As dis-
cussed earlier, the conflict prediction result is informative and 
includes operational detail according to the requirement. This is 
important for dispatchers, in that dealing with too much infor-
mation at the same time can be stressful, although dispatchers 
sometimes require more details in order to make decisions. In the 
real world, when the dispatcher needs to do some operational  
adjustment, the operational system will warn the dispatcher of 
the current conflict resolution progress by assuming that the 
subsequent operational train plan will be executed as a plan, and 
no additional perturbations will be considered. Therefore, the 
information about operational conflict that the in-use method 
provides only focuses on the current operational environment 
and on the result of the conflict; not on the reason for the conflict. 
The amount of available information these two different methods Fig. 8. Schematic diagram of the Beijing South–Jinan West railway line.

Fig. 9. An example of train timetable.
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provide is compared in Table 2.
We can conclude that the fuzzy temporal knowledge reasoning 

method used in this paper is much more informative and bene-
ficial to the dispatchers, as it permits them to know what is hap-
pening in the present time and how to keep the train timetable 
flexible and robust.

Part 3: Comparison between two different scenarios. As 
shown in Fig. 10 and Fig. 11, the fuzzy train timetable without any 
additional perturbations still has PCs, even though the planned 
train timetable has no conflicts at all. The reason for this is that 
fuzzy processing of the time interval broadens the planned oper-
ation time interval, causing the time interval between adjacent 
train operations to be less than the minimum headway. This 
phenomenon leads to a new problem: How can dispatchers dis-
tinguish whether the PCs provided by fuzzy temporal knowledge 
reasoning are caused by the train timetable itself, by the new 
additional perturbations, or by both? Therefore, a comparison be-
tween these two different scenarios is necessary. Fig. 12 displays 
the conflict possibility distribution calculated by the two scenari-
os in a scatter diagram.

It is interesting to note that the conflict possibility in Scenario 2  
may descend or even descend to zero compared to Scenario 1.  

This means that additional disturbances in the fuzzy train time-
table can contribute to eliminating or resolving the headway 
conflict. For example, transition pairs (DT008, DT0024) and 
(DT0022, DT0028) represent two adjacent train operations that 
need inspection of the conflict possibility. Transition pair DT008 
and DT0024 means that train G201 arrives at Dezhou East Railway 
Station while G205 passes through Dezhou East Railway Station. 
Transition pair DT0022 and DT0028 means that trains G205 and 
G207 pass through Tianjin Railway Station. As shown in Fig. 13, the 
conflict of transition pair (DT008, DT0024) is resolved completely 
in Scenario 2, and the conflict possibility of transition pair (DT0022, 
DT0028) is down sharply in Scenario 2. This performance pro-
vides the insight that additional delay is not always a bad thing; 
a certain amount of habitual delay can somehow be incorporated 
into the preset buffer time in order to avoid or resolve headway 
conflicts. It must be said, however, that the additional delay in-
creases the PC possibility and complicates the train operation  
environment.

5. Conclusions and future work

Compared to random disturbances, the fuzzy processing of 

Fig. 10. Index of deviation degree. (a) Overall deviation degree of all trains; (b) deviation degree distribution of Train G203.

Fig. 11. Index of conflict possibility. (a) Conflict possibility distribution; (b) conflict content of transition pair (DT008, DT0024).

Table 2
Comparison of the amount of available information.

In-use method Fuzzy temporal knowledge reasoning

Conflicts that have happened, including:
•	 Where the conflict was
•	 How much allowance time was needed to resolve it completely

Conflicts that have happened or may happen later including:
•	 Where the conflict was
•	 How much allowance time was needed to resolve it completely
•	 How much buffer time was used to eliminate it
•	 How likely it was that the potential conflict will occur
Overall influence on train operation plan:
•	 Deviation degree of every planned time interval
•	 Deviation degree of every train operation plan
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time intervals in a train timetable based on historical time statis-
tics is closer to the actual conditions. This is the foundation for 
obscuring the train timetable and predicting PCs based on the 
fuzzy temporal knowledge reasoning method. The simulation 
experiment was designed under two different scenarios and, ac-
cording to the result comparison and analysis, we can draw the 
following conclusions.

(1) A fuzzy train timetable may have PCs, and the indexes pro-
posed by this paper will help traffic management units to know 
the quality of the planned train timetable and what the causes of 
conflict are. This knowledge will assist in timetabling, especially 
in the preset buffer time distribution.

(2) Conflict prediction based on fuzzy temporal knowledge 
reasoning provides more available information for the dispatch-
ers, compared to the in-use method, which deviates from the 
actual state by assuming that the subsequent train plan will not 
be disturbed at all. The conflict prediction simulated by this new 
method will help the dispatcher to master the comprehensive in-
fluence of the new operational circumstance and to evaluate the 
adjustment effect by traversing the prediction algorithm.

(3) An interesting finding during the simulation result analysis 
was that additional delay may eliminate a PC; this finding goes 
against the common-sense assumption that a delay is always 
a bad thing and the chief culprit in reducing the flexibility and 
robustness of a train timetable. This finding provides us with the 
insight that a certain amount of habitual delay can somehow be 
incorporated into the preset buffer time in order to avoid or re-
solve headway conflicts.

Future research is recommended in the following directions: 
First, an impact analysis should be performed on the size and net-
work distribution of the time allowance and the time intervals on 
train delay propagation; and second, an examination should be 
done on how to use fuzzy temporal knowledge reasoning results 
to effectively support train rescheduling in real time.
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Fig. 13. Conflict possibility comparisons. (a) transition pair (DT008, DT0024);  
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