
Available online at www.sciencedirect.com

ScienceDirect
ICT Express 2 (2016) 23–27

www.elsevier.com/locate/icte

Sparsity-aware target localization using TDOA/AOA measurements in
distributed MIMO radars✩

Rouhollah Amiri∗, Hojatollah Zamani, Fereidoon Behnia, Farokh Marvasti

Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

Received 30 October 2015; received in revised form 24 January 2016; accepted 5 February 2016
Available online 11 February 2016

Abstract

In this paper, a sparsity-aware hybrid target localization method in multiple-input-multiple-output (MIMO) radars from time difference of
arrival (TDOA) and angle of arrival (AOA) measurements is proposed. This method provides a maximum likelihood estimate of target position by
employing compressive sensing techniques. A blockwise approach is addressed in order to achieve better accuracy for a constant computational
complexity. The mismatch problem due to grid discretization is also tackled by a dictionary learning technique. The Cramer–Rao lower bound for
this model is derived as a benchmark. Numerical simulations are included to corroborate the theoretical developments.
c⃝ 2016 The Korean Institute of Communications Information Sciences. Production and Hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The problem of determining the location of a radiating or
reflecting target has drawn considerable attention in various ap-
plications, such as radar [1], sonar [2], communications [3] and
wireless sensor networks [4]. Many different approaches have
been proposed in the literature to estimate the target location
based on time of arrival (TOA) [5], time difference of arrival
(TDOA) [3], angle of arrival (AOA) [6] or frequency difference
of arrival (FDOA) [7]. Recently, this topic has gained popu-
larity in multiple-input-multiple-output (MIMO) radar systems
[8–13]. MIMO radar with colocated antennas provides wave-
form diversity and that with widely-separated antennas pro-
vides spatial diversity [14,15]. The aforementioned diversity
makes the targets to be better detected and localized.

There is a rapidly growing literature on the localization in
MIMO radars. In [8], the performance of TDOA based localiza-
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tion has been studied. Godrich et al. have proposed a best linear
unbiased estimator (BLUE) by linearizing the elliptic equations
using Taylor series [9]. A closed-form method has been pro-
posed in [12] for TDOA based localization in MIMO radar,
while a two-step weighted least square approach is derived
in [13]. Rossi et al. have proposed an AOA estimate employ-
ing the sparse representation of spatial angles [6]. In [10], the
centralized direct positioning algorithm is derived for localizing
the stationary targets which do not require data association.

Generally speaking, accuracy of target localization can be
improved by jointly utilizing different types of measurements.
The authors of [11] have proposed a compressive sensing (CS)
based algorithm by exploiting joint TDOAs and FDOAs. In
[16,17], two hybrid algorithm based on TDOA/AOA measure-
ments has been derived for single-receiver scheme and has been
shown to outperform TDOA only methods. In addition, data as-
sociation with TDOA/AOA measurements is also more reliable
in comparison with use of TDOA only measurements. As a mat-
ter of fact, two targets located on a single transmitter–receiver
ellipsoid cannot be resolved with TDOAs while they can be eas-
ily separated by adding the angular information. Thus, hybrid
TDOA/AOA is found to be a good choice for target localization
in realistic MIMO radar systems.

In this paper, we model the problem of target localization
in MIMO radars with use of TDOA and AOA measurements
in a sparse representation framework. The proposed method
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solves the sparsity-aware maximum likelihood (ML) estimation
problem of target position and incorporates an iterative trick
to enhance accuracy while keeping low complexity. We will
address a dictionary learning based method in order to mitigate
the off-grid mismatch due to discretization.

The rest of paper is organized as follows. The Section 2 de-
scribes the system model. In Section 3, we elaborate our pro-
posed method by formulating the problem as a sparsity-aware
ML estimation. Section 4 is devoted to investigate the perfor-
mance of the proposed method. Finally, Section 5 concludes
the paper.

The notation is introduced as follows. Matrices, vectors and
scalars are denoted by bold upper-case, bold lower-case and
italic, respectively. The ℓp norm of x is denoted by ∥x∥p. The
(.)T and (.)−1 denote matrix transpose and inverse. The i th
element of x and the (i, j)th element of A are denoted by [x]i ,
and [A](i, j), respectively.

2. System model

Consider that there are M transmitters and N receivers
distributed over a 2D surface which is discretized into K grid
points, whose positions are denoted by xt

m =

x t

m, yt
m

T
, m =

1, . . . , M and xr
n =


xr

n, yr
n

T
, n = 1, . . . , N , respectively.

We aim to find the position of a target, which is located
at x = [x, y]T . Note that although we assume 2D case,
extension to the 3D localization is straightforward. Denoting
the wave propagation speed by c, the noisy TDOA and AOA
measurements can be modeled as (1) and (2), respectively.

τm,n = τ t
m(x) + τ r

n (x) + ϵτ
m,n, (1)

αn = αr
n(x) + ϵα

n , (2)

where τ t
m(x) =

1
c

xt
m − x


2 , τ r

n (x) =
1
c

xr
n − x


2, m =

1, . . . , M, n = 1, . . . , N denote the delay equations between
target and the mth transmitter and the nth receiver, respectively

and αr
n(x) = tan−1


y−yr

n
x−xr

n


denotes the angle of arrival

equation in the nth receiver. TDOA and AOA measurements are
perturbed by independent zero mean Gaussian noises of ϵτ

m,n
and ϵα

n with the standard deviation of σ τ
m,n and σα

n , respectively.
By multiplying τm,n by c, we can obtain the bistatic range

(BR) measurements, denoted by dm,n as follows.

dm,n = Rm,n(x) + ϵR
m,n, m = 1, . . . , M, n = 1, . . . , N

where Rm,n(x) =
xt

m − x


2 +
xr

n − x


2 and ϵR
m,n is zero

mean Gaussian measurement noise with standard deviation of
σ R

m,n .
We combine BR and AOA measurements in a vector as

b = [bT
R, bT

α ]
T , in which bR = [d1,1, d1,2, . . . , dM,N ]

T

and bα = [α1, α2, . . . , αN ]
T . In a similar way, we

form vector h(x) = [hT
R(x), hT

α (x)]T containing the
corresponding BR and AOA equations, in which hR(x) =

[R1,1(x), R1,2(x), . . . , RM,N (x)]T and hα(x) = [αr
1(x), αr

2(x),

. . . , αr
N (x)]T .
Now we form the sensing matrix A by computing h(.) in all

grid points

g(i)

K
i=1 in spatial domain as

A =


h(g(1)), h(g(2)), . . . , h(g(K ))


.

3. Proposed method

In this section, we aim to find the position of a single
target by comparing the received measurements with the values
of their equations computed in all grid points. By this way,
the problem of target localization can be expressed in the
sparse representation framework given by b = Az + ϵ, in
which ϵ is a (M + 1)N × 1 vector containing the TDOA and
AOA measurement noises, i.e. ϵ =


ϵT

R, ϵT
α

T
, where ϵR =

ϵR
1,1, ϵ

R
1,2, . . . , ϵ

R
M,N

T
and ϵα =


ϵα

1 , ϵα
1 , . . . , ϵα

N

T . Vector z
is a K × 1 vector with K − 1 zero elements and a one element
which is corresponding to the index of the grid point where the
target is located.

3.1. Sparsity-Aware maximum likelihood estimator

Since b = Az + ϵ has an underdetermined nature, accurate
positioning with the conventional maximum likelihood (ML)
estimator is not possible. A simple solution for this problem
is to compute the objective function of the ML estimation
for all grid points and select the minimum one (brute force).
This trivial method has high complexity and limited positioning
accuracy according to grid size. Instead, compressed sensing
techniques allow us to reconstruct z from b with much lower
complexity, by considering the target spatial sparsity. Thus,
the target localization problem can be formulated using the
following ℓ1 minimization.

ẑ = argmin
z

(Az − b)T C−1
ϵ (Az − b) + λ ∥z∥1 (3)

where λ is a regularization parameter that controls the sparsity
of z and Cϵ denotes the covariance matrix of ϵ.

In order to employ classical reconstruction methods, such
as orthogonal matching pursuit (OMP) [18], a whitening
technique is applied. To this end, we modify the first term

in (3) to the ℓ2 norm
Ãz − b̃

2

2
by multiplying b and A

by the weighting matrix W(M+1)N×(M+1)N . This matrix is

selected so that WT W = C−1
ϵ or equivalently W =


C−1

ϵ

where √
. denotes the square root operation. By applying this

transformation, (3) can be rewritten as

ẑ = argmin
z

Ãz − b̃
2

2
+ λ ∥z∥1 (4)

where Ã = WA and b̃ = Wb.

3.2. Blockwise complexity reduction

In classical localization methods, as long as the condition
of NT DO A + NAO A = (M + 1)N ≥ 4 was held, the target
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position in 2D can be uniquely estimated [19]. Furthermore,
compressive sensing imposes another necessary condition (M+

1)N > 2L for reconstruction in noise-free scenarios. In other
words, in order to reconstruct a L-sparse vector z (i.e. z has L
non zero elements, in our case L = 1), every 2L column subset
of A should be full column rank. Note that this is theoretical
lower bound and in the presence of noise, its value is more than
2L .

When the problem tends to a determined problem (assuming
z remains sparse) the position estimation will be more precise.
Furthermore, accuracy of grid-based methods is limited to the
grid size. On the other hand, decreasing the grid size for a
specific area increases the computational complexity and makes
the problem more under-determined.

In this subsection an efficient blockwise technique is
described for reducing the complexity and increasing the
localization’s accuracy simultaneously. In this method the
number of grid points in all steps is considered to be an
appropriate constant value K , which is chosen in a way to
provide sufficient sparsity and accuracy. As shown in Fig. 1(a),
we first solve (4) in the coarse grid points, which are located
in the center of each block. Then, the solution block is divided
into K smaller blocks and (4) is applied again. This procedure
is repeated until a certain accuracy is provided.

3.3. Off-Grid mitigation

In grid-based localizations, the targets which are not located
on the grids (off-grid) are not accurately localized. In order
to resolve the aforementioned problem, an algorithm based
on dictionary learning (DL) techniques is proposed which is
designed to minimize the following cost function.

F(x) = (b − h(x))T C−1
ϵ (b − h(x)) =

b̃ − h̃(x)

2

2
(5)

where h̃ denotes the column of Ã corresponding to the
estimated target position on the grids.

The cost function is convex with respect to x. Therefore, a
simple steepest decent can iteratively estimate the true target’s
location by learning from the matrix Ã. Note that, in the
following method we just employ TDOAs in order to satisfy
convexity condition. Thus b, h and C−1

ϵ are considered to be
the TDOA part of them. The steepest decent iteration equation
is

x(i+1)
= x(i)

− µ(i)
∇x F(x(i)). (6)

In Appendix A, it is proved that the final recursion for updating
the estimated location vector x at the (i + 1)th iteration can be
written as

x(i+1)
= x(i)

+ 2µ(i)eT C−1
ϵ Ψ (7)

where e = b − h(x(i)) and Ψ = [ψ1,1,ψ1,2, . . . ,ψM,N ] with

ψm,n =
x(i)

−xt
m

∥x(i)−xt
m∥2

+
x(i)

−xr
n

∥x(i)−xr
n∥2

.

The initial value of x, x(0) is chosen from the estimate of
x in the previous subsection. The value of µ(i) is selected
according to convergence issues, i.e. 0 < µ(i) < 2

λ
(i)
max

, in which
λmax denotes the maximum eigen value of h̃(x)h̃(x)T [20]. To
further clarify the localization procedure, in Algorithm 1 we
provide a pseudo-code that describes the individual phases of
the localization scheme.

The Cramer–Rao lower bound (CRLB) on the estimation
error is summarized in Appendix B.

Algorithm 1 Pseudo-Code of the Proposed Method
for n = 1:Block level do

1. Divide the nth block to K sub-blocks.
2. Solve ML estimation (4), find the solution sub-block
and use it for the (n + 1)th iteration.

end for
3. Set x(0) from the last estimated target’s grid point in step
2.
i = 0, x(1)

= in f .
while |x(i+1)

− x(i)
| < ϵ do

4. Find x(i+1) from (7).
end while

4. Simulation results

In this section, we aim to assess the performance of
the proposed method and compare it with other existing
algorithms and the CRLB. To this end, we consider the
area of interest with size of 10 × 10 km2 is divided
into K = 10 grid points and 5 transmitters and 5 re-
ceivers are located at {(1, 1), (1, 9), (5, 5), (6, 1), (6, 9)} and
{(5, 2), (2, 5), (5, 8), (7, 7), (7, 3)} in km, respectively. The tar-
get is located at (3.54, 6.23) km.

The estimate of target’s position is shown in Fig. 1(b). As
shown in Fig. 1(c), the mean square error (MSE) of the target’s
position is reduced in each iteration of the off-grid mitigation.

In the following, performance of the proposed method is
evaluated in the presence of TDOA and AOA noises. The MSE
of the target’s position versus the standard deviation of TDOA
and AOA noises was calculated using 1000-trial Monte-Carlo
runs. The proposed method is applied in 4 block-levels and in
each level a margin is added to the solution block to handle the
possible reconstruction error for the next level. For DL step, the
parameter µ is considered to be µ = 10−4 for all iterations. As
shown in Fig. 2(a), (b), the proposed method works close to the
CRLB. Moreover, it is shown that the off-grid mitigation step
enhances the performance of localization.

Now, we aim to compare the proposed method with prior
state of the arts. To the best of our knowledge, there is not any
TDOA/AOA localization algorithm in context of MIMO radar.
Thus, we compared TDOA-based version of the algorithm with
the existing methods. To this end, the combined linear least
squares method (CLLS) [12] and the two-step weighted least
squares method (WLS) [13] are utilized for comparison. As
shown in Fig. 2(c), the proposed method outperforms the others
in terms of MSE.

5. Conclusion

In this paper, we formulated the problem of target local-
ization in MIMO radars in sparse representation framework.



26 R. Amiri et al. / ICT Express 2 (2016) 23–27
Fig. 1. (a) Block search approach, (b) Estimate of target’s position, (c) Off-grid mismatch elimination by applying the proposed method.
Fig. 2. (a) MSE of target position versus the standard deviation of noise of TDOA measurements, (b) MSE of target position versus the standard deviation of noise
of AOA measurements, (c) Comparison with the existing algorithms.
The proposed method solves the sparsity-aware ML estima-
tion of target’s position by utilizing TDOA and AOA mea-
surements and employs an iterative blockwise technique to re-
duce complexity and enhance accuracy, simultaneously. Then
we proposed a dictionary learning based method to mitigate the
off-grid mismatch due to discretization. The effectiveness of the
proposed method was verified by simulation results.

Appendix A

By some mathematical manipulations, the cost function
F(x) can be formed as:

F(x) =


b̃ − h̃(x)

T 
b̃ − h̃(x)


= b̃T b̃ − 2b̃T h̃(x) + h̃(x)T h̃(x).

The derivation of the cost function with respect to [x]k , k =

{1, 2} is as follows:

∂ F(x)

∂ [x]k
= −2

∂

∂[x]k


b̃T h̃(x)


+

∂

∂[x]k


h̃(x)T h̃(x)


= −2b̃T ∂h̃(x)

∂[x]k
+


∂h̃(x)

∂[x]k

T

h̃(x) + h̃(x)T ∂h̃(x)

∂[x]k

= −2b̃T ∂h̃(x)

∂[x]k
+


h̃(x)T ∂h̃(x)

∂[x]k

T

+ h̃(x)T ∂h̃(x)

∂[x]k

= −2b̃T ∂h̃(x)

∂[x]k
+ 2h̃(x)T ∂h̃(x)

∂[x]k

= 2


h̃(x)T
− b̃T

 ∂h̃(x)

∂[x]k

= 2

h(x) − b  
e

T

C−1
ϵ

∂h(x)

∂[x]k
.

Also the derivation of h(x) with respect to [x]k can be obtained
as:

∂h(x)

∂[x]k
=


[x − xt

m]kx − xt
m


2

+
[x − xr

n]kx − xr
n


2


m=1,...,M
n=1,...,N

.

Appendix B

We aim to derive the CRLB for estimating x from the TDOA
and AOA observations. The CRLB is calculated using the
trace of the inverse of corresponding Fisher information matrix,
denoted by I in the case of Gaussian observations, with mean
vector µ and covariance matrix C, as given by [21]

[I(x)](i, j) =


∂µ

∂[x]i

T

C−1


∂µ

∂[x] j


+

1
2

tr


C−1


∂C
∂[x]i


C−1


∂C

∂[x] j


. (B.1)

In the present study, µ = h(x) and C is independent of x.
Thus the second term in (B.1) is equal to zero and the first term
yields:

cov(x̂) ≥ [I(x)]−1
=


∂h
∂x

T

C−1
ϵ


∂h
∂x

−1

. (B.2)

Since h =

hT

R, hT
α


, and ∂h

∂x =


∂hR
∂x

T
,


∂hα

∂x

T
T

. The

partial derivative of ∂hR
∂x and ∂hα

∂x as (B.3) and (B.4) respectively.

∂hR

∂x
=


ḣ(1,1)

R , ḣ(1,2)
R , . . . , ḣ(M,N )

R

T
(B.3)

∂hα

∂x
=


ḣ(1)

α , ḣ(2)
α , . . . , ḣ(N )

α

T
(B.4)
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where ḣ(m,n)
R =

x−xt
m

∥x−xt
m∥2

+
x−xr

n
∥x−xr

n∥2
and ḣ(n)

α =


−(y−yt

n)

∥x−xr
n∥

2
2

,

x−xr
n

∥x−xr
n∥

2
2

T

. Then CRLB is determined from tr[I−1
] in (B.2).
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