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Abstract

Cooperative localization introduces internode measurements to provide the node relative locations instead of absolute locations. This paper
decomposes the absolute locations into relative configuration and global transformation, where the former can be specified by the internode
measurements while the latter requires reference information. This decomposition can be used to investigate the relative localization which uses
only internode measurements and the absolute localization with the consideration of anchor location uncertainty. After deriving the coordinate
representations, error metric, and performance bounds for the global transformation, we evaluate the performance of a node location calibration
that uses the measurements from sources in unknown locations.
c⃝ 2016 The Korean Institute of Communications Information Sciences. Production and Hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Localization problems, such as array localization or sensor
network localization, involve a set of labeled nodes whose
locations are usually represented by their pointwise absolute
coordinates. However, in many applications [1], it is required
only the node relative locations or the network (central) location
and orientation, which needs other representations of the node
locations.

Decomposing the node locations into the relative configu-
ration and the global transformation separates the node rel-
ative locations and the network location and orientation [2].
The property of the relative configuration has been investigated
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in [3], which includes its coordinate representations, error met-
ric, and performance bounds. By using the relative configu-
ration, several problems in cooperative localization have been
solved.

This paper further investigates the global transformation,
including its coordinate representations, error metric, and
performance bounds. The performance bounds are composed
of the Cramér–Rao lower bounds (CRLBs) for the coordinate
representations and a CRLB-type bound for the error metric. By
using the CRLB-type bound, we evaluate the performance of
a localization problem that uses the time-difference-of-arrival
(TDOA) measurements from sources in known locations.
Compared with existing work [4,5], quantifying the error
on the relative configuration and the global transformation
significantly reduces the complexity of the analysis.

The remaining part of this paper is organized as follows.
Section 2 introduces the relative configuration and the
global transformation, including their definitions, coordinate
representations, and error metrics. For the error metrics,
Section 3 derives the CRLB-type bounds through the CRLBs
for the coordinate representations. An application of the CRLB-
type bounds is given in Section 4. In Section 5, we conclude this
paper.
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2. Relative configuration and global transformation

2.1. Definition

Suppose a network composed of n nodes, whose loca-
tions are si = [si,x , si,y]

T , i = 1, 2, . . . , n. The global
transformation is defined by the congruence/rigid transforma-
tion

T (si ) = Γ 0


si,x
si,y


+


x
y


, i = 1, 2, . . . , n (1)

where Γ 0 is a 2-by-2 orthogonal matrix indicating global
rotation/reflection operation, and x and y indicate the
translation parameter in x and y directions, respectively.
The relative configuration is defined as an object invariant
to the congruence/rigid transformation (1), which forms an
equivalence class with respect to the global transformation.

For easy derivation, we rewrite (1) in a vector form as

T (s) = Γ s + x1x + y1y (2)

where s = [sT
1 , sT

2 , . . . , sT
n ]

T
∈ R2n is the location vector,

1x = [1, 0, . . . , 1, 0]
T

∈ R2n , 1y = [0, 1, . . . , 0, 1]
T

∈ R2n ,
and total rotation/reflection matrix Γ = diag (Γ 0,Γ 0, . . . ,Γ 0)

is a 2n-by-2n block diagonal matrix whose 2-by-2 diagonal
blocks are Γ 0.

2.2. Coordinate representation

Given a reference vector r = [rT
1 , rT

2 , . . . , rT
n ]

T
∈ R2n , the

coordinate representation of the global transformation of s is
defined through the partial Procrustes coordinates [6]

rs = arg min
T (r)

∥s − T (r)∥ = Γ ⋆r + x⋆1x + y⋆1y (3)

which superimposes a known relative configuration, specified
by r, onto s. In (3),

Γ ⋆
= diag


Γ ⋆

0,Γ
⋆
0, . . . ,Γ

⋆
0


(4)

x⋆, y⋆
T

= µs − Γ ⋆
0µr (5)

where Γ ⋆
0 = VWT , WDVT is a singular value decomposition

(SVD) of the covariance matrix Σ r,s =
1
n

n
i=1(ri − µr)(si −

µs)
T , and the mean vectors µs =

1
n

n
i=1 si , µr =

1
n

n
i=1 ri .

A coordinate representation of the relative configuration of s
can be derived by superimposing the relative configuration of s
onto the reference r as

sr = arg min
T (s)

∥r − T (s)∥ (6)

where a closed form solution is given in [3].

2.3. Error metric

Let ŝ be an estimate of s, and ŝr and rŝ be the coordinate
representations of the relative configuration and the global
transformation estimates. The estimation error of the relative
configuration and the global transformation can be evaluated
Fig. 1. Relative and transformation error: The relative error ϵr is the lowest
squared distance from the location vector s to the trajectory with the same
relative configuration of ŝ. The transformation error ϵt is the squared distance
between the location vector s and its global transformation closest to ŝ.

through the squared distances between the coordinate represen-
tations, i.e., ∥ŝr − sr∥

2 and ∥rŝ − rs∥
2, respectively.

Particularly, when the reference r is set at the true location
s, ∥ŝr − sr∥

2 and ∥rŝ − rs∥
2 can be simplified as ∥ŝs − s∥2

and ∥sŝ − s∥2. For ŝs, we have ∥ŝs − s∥2
≤ ∥ŝ − s∥2, and the

coordinate representation ŝs owns the lowest squared distance
to s compared with other choices of the reference r [3]. For
convenience, ϵt , ∥sŝ − s∥2 is named transformation error in
this paper,1 ϵr , ∥ŝs − s∥2 is named relative error [2], and
ϵ , ∥ŝ−s∥2 refers to the location error. The relationship among
ϵt , ϵr , and ϵ can be found in Fig. 1.

3. Performance bounds

3.1. CRLBs for coordinate representations

Proposition 1 gives the CRLB for the coordinate representa-
tion of the relative configuration.

Proposition 1 (CRLB for the Coordinate Representation of the
Relative Configuration [3]). Suppose ŝr is an unbiased estimate
of sr, where sr and ŝr are the coordinate representations of the
relative configuration and its estimate, then

E

(ŝr − sr)(ŝT

r − sT
r )


≥ Ur


UT

r JrsUr

−1
UT

r (7)

where E[·] denotes the expectation operation, Jsr is a Fisher
information matrix (FIM) at s = sr, and Ur is a 2n-by-(2n −3)

matrix whose columns form an orthonormal basis of the null
space of [1x , 1y, vr]

T with

vr = [r1,y, −r1,x , r2,y, . . . ,−rn,x ]
T

∈ R2n . (8)

Proposition 2 gives the CRLB for the coordinate representa-
tion of the global transformation.

Proposition 2 (CRLB for the Coordinate Representation of the
Global Transformation). Suppose rŝ is an unbiased estimate of

1 The term transformation error is also used in [2], which refers to ϵ − ϵr .



16 P. Zhang et al. / ICT Express 2 (2016) 14–18
rs, where rs and rŝ are the coordinate representations of the
global transformation and its estimate, then

E

(rŝ − rs)(rT

ŝ − rT
s )


≥ Vr


VT

r Jrs Vr

−1
VT

r (9)

where Jrs is an FIM at s = rs, and Vr is a column orthonor-
malized version of [1x , 1y, ur] with

ur = det(Γ ⋆
0)


0 1

−1 0


Γ ⋆

0ri


i=1,2,...,n

∈ R2n . (10)

The proof can be found in the Appendix.

3.2. CRLB-type bound

After setting the reference r at s, the CRLB-type bounds for
the relative and the transformation errors can be derived directly
from Propositions 1 and 2, respectively.

Proposition 3 (CRLB-Type Bound for Relative Error [3]). Sup-
pose ŝs is an unbiased estimate of s, where ŝs is the coordinate
representation of the relative configuration estimate at the ref-
erence r = s, then

E [ϵr ] ≥ tr


UT
s JsUs

−1


(11)

where tr(·) denotes the trace operation.

Proposition 4 (CRLB-Type Bound for Transformation Er-
ror). Suppose sŝ is an unbiased estimate of s, where sŝ is the
coordinate representation of the global transformation estimate
at the reference r = s, then

E [ϵt ] ≥ tr


VT
s JsVs

−1


. (12)

Notably, when r = s, the columns of Us and Vs form an
orthonormal basis of R2n .

4. An application

The CRLB-type bounds for the relative configuration and the
global transformation errors are applied to investigate a node
location calibration problem.

In this problem, the nominal locations of n nodes are cal-
ibrated by the TDOA measurements from m sources in un-
known locations. The nominal locations s̃i = [s̃i,x , s̃i,y]

T ,
i = 1, 2, . . . , n, follow n independent Gaussian distributions
with mean si , i = 1, 2, . . . , n, and covariance τ 2I2. The TDOA
measurements from the sources located at u j = [u j,x , u j,y]

T ,
j = 1, 2, . . . , m, are modeled as

ri, j = di, j + ξi, j , i = 2, 3, . . . , n, j = 1, 2, . . . , m (13)

where di, j = ∥si − u j∥ − ∥s1 − u j∥, the noise vector ξ =

[ξi, j ]i=2,3,...,n, j=1,2,...,m is a Gaussian stochastic vector with
zero mean and covariance matrix Q. Since there exists corre-
lation among the measurements, the covariance matrix Q is set
as a block diagonal matrix with (n − 1)-by-(n − 1) diagonal
block σ 2

2


In−1 + 1n−11T

n−1


[7].
The nominal node locations and the TDOA measurements
determine the logarithm of the likelihood function of node
location vector s and source location vector u = [uT

1 , uT
2 ,

. . . , uT
m]

T
∈ R2m as

l(s, u) = −
1
2
(r − d)T Q−1(r − d) −

1

2τ 2 ∥s̃ − s∥2
+ c (14)

where the measurement vector r = [ri, j ]i=2,3,...,n, j=1,2,...,m ,
the noise-free TDOA vector d = [di, j ]i=2,3,...,n, j=1,2,...,m , the
nominal node location vector s̃ = [s̃T

1 , s̃T
2 , . . . , s̃T

n ]
T

∈ R2n , and
c is a constant independent of s and u.

After taking the negative expectation of the second
derivation of (14), we get the FIM of both u and s [8]

Ju,s = −

E

∂2l(u, s)
∂u∂uT


E


∂2l(u, s)
∂u∂sT


E


∂2l(u, s)
∂s∂uT


E


∂2l(u, s)
∂s∂sT




=


FT

u Q−1Fu FT
u Q−1Fs

FT
s Q−1Fu FT

s Q−1Fs + τ−2I2n


(15)

and thus the FIM of s

Js = τ−2I2n +Js (16)

where

Js = FT
s Q−1Fs − FT

s Q−1Fu


FT

u Q−1Fu

−1
FT

u Q−1Fs. (17)

Note that Js is invertible, the CRLB of s can be derived as

Cs = J−1
s . (18)

Here, Fu is a (n − 1)m-by-2m matrix stacked by
01×2( j−1),

uT
j − sT

i

∥u j − si∥
−

uT
j − sT

1

∥u j − s1∥
, 01×2(m− j)


(19)

in row, and Fs is a (n − 1)m-by-2n matrix stacked by
−

sT
1 − uT

j

∥s1 − u j∥
, 01×2(i−2),

sT
i − uT

j

∥si − u j∥
, 01×2(n−i)


(20)

in row.
It is worth pointing out that the columns of Vs belong to the

null spaceJs. Therefore, there exists an SVD

Js = UsΛUT
s (21)

where Λ is a (2n − 3)-by-(2n − 3) diagonal matrix whose
diagonal elements are the eigenvalues for the eigenvectors
composed of the columns of Us. From (16) and (21), the CRLB-
type bounds for the relative and transformation errors can be
represented as

cr = tr


τ−2I2n−3 + Λ
−1


, ct = 3τ 2 (22)

by using Propositions 3 and 4, respectively.
The CRLB-type bound cr indicates that the network rela-

tive configuration can be calibrated by using the TDOAs from



P. Zhang et al. / ICT Express 2 (2016) 14–18 17
(a) Four nodes. (b) Five nodes.

Fig. 2. CRLB-type bound for the relative configuration versus the measurement variance σ 2, under different node–source numbers.
(a) Four nodes. (b) Five nodes.

Fig. 3. Trace of the location CRLB versus the measurement variance σ 2, under different node–source numbers.
Table 1
Node&source locations.

Node No. i si,x si,y Source No. j u j,x u j,y

1 8.4872 6.6526 1 2.3338 3.6111
2 9.1316 4.5014 2 6.3346 9.8610
3 7.5480 0.3519 3 2.0716 7.5708
4 9.0272 3.8899 4 8.8633 4.7223
5 9.9812 9.4447 5 1.5891 8.1092

6 4.7651 1.1629

sources in known locations. Particularly, when Λ is nonsingu-
lar, the network relative configuration can be accurately cali-
brated through improving measurement accuracy. To guarantee
the nonsingularity, it is required that the rank ofJs is 2n−3, and
thus the node–source number should fulfill (n − 3)(m − 2) ≥ 3
when no collinearity exists. For the global transformation, the
CRLB-type bound ct shows that there is no improvement.

A numerical example exhibits the calibration performance
on the relative configuration, the global transformation, and the
locations. In this example, the node locations are chosen from
the first four and five node locations in Table 1, respectively,
and the source locations are selected successively from the six
source locations in Table 1. The variance of the nominal node
locations is set as τ 2

= 1.
Fig. 2 displays the calibration performance on the relative

configuration. Through the CRLB-type bound for the relative
configuration, it can be found that the error on the relative con-
figuration could be reduced. Especially, when the node–source
number fulfills (n − 3)(m − 2) ≥ 3, i.e., at least five for a four
node network (seen in Fig. 2(a)) and four for a five node net-
work (seen in Fig. 2(b)), the relative configuration can be cal-
ibrated to any desired accuracy through improving the TDOA
measurement quality. This indicates the possibility of the accu-
rate calibration of the relative configuration.

Fig. 3 displays the calibration performance on the node
locations. From the figure, it can be seen that the trace of the
location CRLB is lower bounded by the CRLB-type bound
for the global transformation, which can be asymptotically
achieved by improving TDOA measurement quality when
node–source number fulfills (n − 3)(m − 2) ≥ 3.

5. Conclusion

Decomposing the locations of labeled nodes into the rel-
ative configuration and the global transformation provides
another perspective on investigating some localization or cal-
ibration problems that involve the measurements between the
unknowns. This paper presents the coordinate representations,
error metric, and performance bounds for the global transfor-
mation, which completes the work initiated in [3]. We hope the
tools given in [3] and this paper could facilitate the study of
more problems related to the locations of labeled nodes.
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Appendix. Proof of Proposition 2

Given the reference r, the coordinate representation of the
global transformation can be viewed as a vector function of
three continuous variables η =


x⋆, y⋆, θ⋆

T where θ⋆ param-
eterizes Γ ⋆

0.
Using the reparameterization rs = rs(η), we get the FIM

of η

Jη =
∂rT

s

∂η
Jrs

∂rs

∂ηT (23)

and then the CRLB of rs

E

(rŝ − rs)(rT

ŝ − rT
s )


≥

∂rs

∂ηT


∂rT

s

∂η
Jrs

∂rs

∂ηT

−1
∂rT

s

∂η
(24)

where ∂rs
∂ηT =


1x , 1y, ur


with ur given in (10).
Note that Vr is a column orthonormalized version of ∂rs
∂ηT ,

(9) is proved. �

References

[1] J.P. Lynch, K.J. Loh, A summary review of wireless sensors and sensor
networks for structural health monitoring, Shock and Vibration Digest 38
(2) (2006) 91–130.

[2] J.N. Ash, R.L. Moses, On the relative and absolute positioning errors
in self-localization systems, IEEE Trans. Signal Process. 56 (11) (2008)
5668–5679.

[3] P. Zhang, Q. Wang, On using the relative configuration to explore cooper-
ative localization, IEEE Trans. Signal Process. 62 (4) (2014) 968–980.

[4] Y. Rockah, P. Schultheiss, Array shape calibration using sources in
unknown locations-part i: Far-field sources, IEEE Trans. Signal Process.
35 (3) (1987) 286–299.

[5] Y. Rockah, P. Schultheiss, Array shape calibration using sources in un-
known locations-part ii: Near-field sources and estimator implementation,
IEEE Trans. Signal Process. 35 (6) (1987) 724–735.

[6] I.L. Dryden, K.V. Mardia, Statistical Shape Analysis, Wiley, New York,
1998.

[7] K.C. Ho, L. Yang, On the use of a calibration emitter for source localization
in the presence of sensor position uncertainty, IEEE Trans. Signal Process.
56 (12) (2008) 5758–5772.

[8] K.C. Ho, X. Lu, L. Kovavisaruch, Source localization using tdoa and fdoa
measurements in the presence of receiver location errors: Analysis and
solution, IEEE Trans. Signal Process. 55 (2) (2007) 684–696.

http://refhub.elsevier.com/S2405-9595(15)30088-6/sbref1
http://refhub.elsevier.com/S2405-9595(15)30088-6/sbref2
http://refhub.elsevier.com/S2405-9595(15)30088-6/sbref3
http://refhub.elsevier.com/S2405-9595(15)30088-6/sbref4
http://refhub.elsevier.com/S2405-9595(15)30088-6/sbref5
http://refhub.elsevier.com/S2405-9595(15)30088-6/sbref6
http://refhub.elsevier.com/S2405-9595(15)30088-6/sbref7
http://refhub.elsevier.com/S2405-9595(15)30088-6/sbref8

	Performance bounds for relative configuration and global transformation in cooperative localization
	Introduction
	Relative configuration and global transformation
	Definition
	Coordinate representation
	Error metric

	Performance bounds
	CRLBs for coordinate representations
	CRLB-type bound

	An application
	Conclusion
	Acknowledgments
	Proof of Proposition 2
	References


