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Abstract

The direct position determination (DPD) approach is a single-step method which uses the Maximum Likelihood estimator to localize sources
emitting electromagnetic energy using combined data from all available sensors. The DPD is known to outperform the traditional 2-step methods
under low Signal to Noise Ratio (SNR) conditions. We propose an improvement to the DPD approach, using the well known minimum-variance-
distortionless-response (MVDR) approach. Unlike Maximum Likelihood, the number of sources need not be known before applying the method.
The combination of both the direct approach and MVDR yields unprecedented localization accuracy and resolution for weak sources. We
demonstrate this approach on the problem of multistatic radar, but the method can easily be extended to general localization problems.
© 2016 The Korean Institute of Communications Information Sciences. Production and Hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The localization of sources emitting electromagnetic or
acoustic energy is needed in wild-life tracking, radio-
astronomy, seismology, medical-diagnosis, communications,
and other engineering applications. Common localization meth-
ods use two estimation steps. First, intermediate parameters are
estimated. Intermediate parameters are usually time of arrival,
direction of arrival, Doppler frequency shift or signal strength.
These estimated parameters are then used, in a second step, to
estimate the actual location of the emitter. The Direct Position
Determination (DPD) approach has been recently proposed [1]
as a single-step Maximum Likelihood localization technique.
A single-step approach is a technique in which the estimator
uses exactly the same data as used in two-step methods but
estimates the source location directly, skipping the intermedi-
ate (first) step. This can be viewed as searching for the emitter
location that best explains the collected data. From estimation
theory point-of-view the two-step approach is inferior, since in
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the first step the parameters are measured independently, ig-
noring the constraint that the measurements relate to the same
emitter location. Indeed, this method has been shown to be su-
perior to the two-step methods for low SNR. In addition, the
DPD method has been shown to be more robust by inherently
selecting reliable observations without the need for a goodness-
of-fit test (such as the chi-square test). This method was also
extended to radar scenarios in [2], where the Maximum Like-
lihood target location estimation was developed as well as the
Cramer—Rao lower bound for the estimation error.

When there are multiple sources the DPD is no longer equiv-
alent to the Maximum Likelihood Estimator (MLE). The exact
MLE can be derived but it requires a multi-dimensional search
which is usually impractical. An alternative for the Maximum
Likelihood parameter estimator is the Minimum Variance Dis-
tortionless Response (MVDR) estimator. It was originally pro-
posed by Capon [3] for frequency—wavenumber power spectral
density analysis, but has since been used extensively as a high
resolution method. The idea is to adaptively select the weight
vector in order to fix the response for the parameter value of
interest while minimizing the output power. Unlike the Maxi-
mum Likelihood approach, the MVDR approach does not need
to know a-priori the number of targets (or model order) and
therefore it is a robust approach with good resolution and im-
munity to jamming and interference.

Our test case is multistatic radar, which is a generalization
of the classical mono-static radar system. In a multistatic
radar system multiple cooperative receivers are used for target
localization. This could be generalized further with the addition
of multiple transmitters (a scheme usually termed MIMO radar,
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e.g. [4]), but we limit our demonstration to a single transmitter,
thus ignoring difficulties caused by mutual interference of the
transmitted signals.

The focus of this paper is the demonstration of the single-
step (direct) MVDR concept for source localization. As an ex-
ample, we use a simplified multi-static radar model, neglecting
radar clutter for brevity. Future work includes the full blown
radar model. Note that MVDR is applied to the target’s loca-
tion estimation in a single step, and not for intermediate param-
eters estimation. Some previous publications touch upon our
proposed approach but in no way cover the full potential of
this method (see for example [5—7]). Other papers use MVDR
for Angle of Arrival Estimation but titles that refer to local-
ization [8]. We show that the estimation method proposed here
can significantly improve target resolution compared with the
single-source MLE. Fine target resolution can prove very use-
ful for target localization within many dense decoys.

2. Problem formulation

Consider a transmitter and L widely separated receiving
arrays. Each receiving array consists of M, elements. The array
aperture is typically a few signal wavelengths. The transmitted
signal s(¢) is confined to the time interval ¢+ € [0, T']. It is
assumed that the signal s(¢) is perfectly known, which is usually
the case when there is line of sight from the transmitter to the
receiving array. In the following analysis the signal impinges
on a single target whose coordinates vector is denoted by py,
and is reflected by the target towards the receiving arrays. We
assume that the transmitter, arrays and target are all confined to
a plane, and the transmitter and receiving arrays locations are
known while the target location needs to be estimated.

The £-th array output is given by the M, x 1 vector,

ro(1) = ag(py)ags(t — to(p;))e! /P! 4 ny(r) (1)

where o is the signal attenuation at the £-th array, 7, is the sig-
nal delay associated with the propagation from the transmitter
to the target and then to the £-th array, which satisfies,

_Ipe :pzll n lpr — prxll 2)

T (pr) =
c

where prx is the transmitter’s location, py is the £-th array loca-
tion, and c is the speed of propagation. Further, ny(¢) isa M, x 1
wide-sense stationary, white, zero mean, complex Gaussian
noise, a;(p;) is a M, x 1 vector representing the ¢-th array re-
sponse to a target at p;, and fp ¢ is the Doppler frequency shift.
We note that without loss of generality we can impose the con-
straint ||ag (p,)ll2 = 1. Since the transmitter and arrays coop-
erate the signal transmission time is perfectly known. This can
be accomplished by direct interception of the transmitted signal
or by synchronization of the transmitter and receiving arrays.
Finally, we assume the target is illuminated by M, consecutive
pulses. To simplify the exhibition, it is assumed that the target
speed is small enough to neglect the Doppler effect. Note that
this formulation can be modified to describe somewhat different
localization problem. For example, in source localization, such
as smart phones localization, assuming the transmitted signal is

known, the only change is in the dependence of t; on the target
position. A similar derivation was performed in [9]. Further, if
the signal is not known, it could be incorporated into the esti-
mation problem, but this is beyond the scope of this work.

The DFT of the received jth pulse is given by

tox () = ag (pr) ag (j) spe 2w ®) Ly () A3)

where f; = % fs is the frequency associated with the kth
coefficient, K is the number of samples, f; is the sampling
frequency, and Iy x, 5x and ng y are the kth Fourier coefficients
of re(t), s(¢) and ng(t), respectively, and where it is assumed
that the observation time is longer than the received signal
interval plus its delays at all sensors.

Define
T () 2, () B, () By (DT
i (j) £ [y, (), By, () ooy g (D17 @
Ag(py) & diag(e /217 7K @ ay (py)
- A - - T
s = [Sla"‘ysK]

where the dependence of 7, on p; is suppressed and where
® denotes the Kronecker product. We can now write (3) in a
vector form

re () = o (j) Ag (p) S+ (). (&)

In the next section we derive the (single-source) Maximum
Likelihood estimator for p,;, where {ay (j)} are treated as
unknown parameters. As explained in the introduction, it is
possible to derive an exact Maximum Likelihood estimator.
However, such an estimator needs to know a-priori the num-
ber of targets, and it requires a multi-dimensional search. In
Section 2.2 we use the single-source Maximum Likelihood es-
timator to obtain the multi-source MVDR estimator, which is
our main goal.

2.1. Target localization using the maximum likelihood estima-
tor

Using (5) and the fact that {n,(j)} are statistically indepen-
dent complex Gaussian vectors, the Maximum Likelihood cost
function is

Mp

L
Q) =) D lIEe () — e () Ae (p) 51 (6)
=1

=1

The signal attenuation {«, (j)} is assumed to be independent
from pulse to pulse, as is suggested by the well known Swerling
IT and IV target models, which assume the target radar-cross-
section (RCS) is independent from pulse to pulse (see [10]).
The attenuation coefficient that minimizes the cost function (6)
is given by

-1
G () = (S"AY @) AcS)  STAT )T ()

= 797 's7A (p) e ()) )
where we used

AH () A¢ (p) = Iy kllael* = Ing, k- )
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Substituting (7) back into (6) we get

OmL(pr)

2
e - @S A @R ) H

.

M,

2
(nu DI =€ A @) Fe () ) ©)
=1 j=1
where
e 255 (10

Since ||ry (j)II2 is constant, minimization of this expression is
equivalent to the maximization of

~ 1 &Y 2
OwiP) = =D Y e Al (o Fe (/)
P =1 j=1
L
=Y e 's"A7 PO ReA: (p)§ (11)

where the sample covariance matrix is defined as

R, =—Zre G - (12)

.Djl

Note that it is always possible, through proper normalization of
the received signals, to set € = 1.
Finally, we can express the ML estimator as

= arg max Omr (p;) = arg max Z oM (py) (13)

P: =1

where the individual cost functions are given by

H ,
oM ) 2 (W™ @) Rewd™ (po) (14)
and
Wy (pr) £ Ar(p)S. (15)

This ends the derivation for the Maximum Likelihood estima-
tor of the target position assuming a single target and no other
interference. This expression can be seen as focusing on the hy-
pothesized target location using the weight vectors {WIL}’H‘ (pt)},
then combining the responses.

2.2. Target localization using MVDR

We now turn to the derivation of the MVDR estimator for
this case. As discussed in the introduction, high resolution DOA
(Direction of Arrival) or frequency—wavenumber estimation
can be achieved by replacing the Maximum Likelihood weight
vector with a weight vector designed to minimize the array
output power while maintaining a constant response for the
hypothesized parameter value. The same idea is implemented
here for the target’s position estimation.

First, note that the Maximum Likelihood cost function (11)
can be expressed as

OwmL (pr) = vit, (pr) Tvme (pr) (16)
where

T 17
vML(pz)é[(w?“L) ) } (a7

where the dependence of wlfL on p; is suppressed, and where

I is a block diagonal matrix given by

R; 0

rsl: - . (18)
0 R,

Note that

~

H
Vi @) v () = Y (W) Wit = L (19)

where we used

H
(WIE/IL) WML —

The proposed MVDR weight vectors should satisfy

(Ae (p) 9T Ar ()5 = 1. (20)

VMVDR = arg min v f‘v, 21
A\

subject to

vivmL (p) = L. (22)

This is a minimization of a quadratic function under a linear
constraint, which can be solved using the complex gradient
operator [11]. The solution is given by

A—1
' v
VMVDR (Pr) = L ML@) 23)

A—1
Vl\H/[L PHT vme (pr)

The MVDR location estimator is therefore given by

PVPR — arg max [Vﬁ\/DR (p:) T'vmvpRr (Pz)]
P:
L2
= arg max —
Pyl ()T v (pr)
= argmin QnmvpR (/) (24)
P:
where
- A H A—1
OMvDR (Pr) = Vyr, P T v (po) - (25)

This expression can be further simplified, using the fact that the
inverse of I" is a block diagonal matrix as well, given by

n—1
. R' -~ 0
A T (26)

A

0o ... Rzl
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Fig. 1. MVDR target position cost function in dB.
Substituting (26) and (17) back in (25) we get
_ L
Omvor () = Y _ Q¢ (p) 27)
=1
where
Q¢ (p) £ 5"AY (p)R;'A¢ (p))s. (28)

This ends the derivation of the MVDR target location estimator.
To summarize, the proposed estimator uses the raw data gath-
ered at the sensors to evaluate the exact MVDR cost function
of the target’s position in a single step. Thus, MVDR is used
for direct localization and not the estimation of the Direction
of Arrival (DOA). It is important to note that no assumption
was made on the number of targets during the derivation of the
MVDR estimator.

3. Simulation and analysis

Fig. 1 demonstrates the resolution capabilities of the pro-
posed algorithm, by showing the heat map for the inverse of the
MVDR cost function defined in (27) for the case of two closely
located targets at {—0.5, —50} and {0.5, —50}. The simulated
layout consists of a transmitter at {300, 0} and four single el-
ement arrays (M, = 1) distributed evenly from {100, 150} to
{100, —150}. All dimensions are in kilometers. The simulated
signal sampling frequency is f; = 488 (kHz), the number of
samples is K = 128, the signal spectrum is flat with band-
width of 150 (kHz), and the number of pulses is M, = 2. It
is clearly seen that the MVDR method succeeds in separating
the targets. For comparison, Fig. 2 shows the heat map for the
(single-target) Maximum Likelihood cost function defined in
(11), which fails to resolve the two targets.

Fig. 3 shows the location-root-mean-square-error (LRMSE)
as a function of SNR for both estimation techniques. The
estimated targets’ positions are the peaks closest to the actual
targets’ position of the corresponding cost functions. Thus,
we ignore the problem of target detection, which could be
addressed in future work. The LRMSE is evaluated separately
for each target. However, performance for both targets is

=
£
>
-52 ' )
-2 -1 0 1 2
X[km]
Fig. 2. ML target position cost function in dB.
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Fig. 3. Single element arrays layout: LRMSE as a function of SNR.

equivalent so only the LRMSE of one target is shown. Clearly,
the single-target Maximum Likelihood does not improve with
SNR while the MVDR shows excellent performance. We note
that for high SNR the LRMSE in logarithmic scale depends
linearly on the SNR in dB units. Also shown in Fig. 3 is the
performance of the two proposed estimation methods when
only a single target is present at {0, —50}, as well as the
theoretical small-error analysis for the MVDR estimator for this
case. It is expected that in such a scenario the performance
of the MVDR estimator would be inferior to the Maximum
Likelihood estimator, which is designed with the purpose of
minimizing the RMSE. We note that both estimation techniques
converge to the theoretical analysis and to one another at high
SNR for a single target. This is a pleasing result, since the
DPD method was shown in [2] to converge to the Cramer—Rao-
Lower-Bound for this estimation problem. We also note that
even for moderate SNR, both estimation methods yield similar
results. Finally, note that the LRMSE for two close targets does
not converge to the LRMSE for one target. This is because
the two targets interfere with each other, causing an estimation
bias.
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4. Conclusion

In this paper we proposed a single-step direct position de-
termination (DPD) using the MVDR approach rather than the
single target Maximum Likelihood approach. The proposed
method is an adaptive method, using the returns from several
consecutive pulses for computation of the target’s location di-
rectly without first estimation of direction of arrival and delay.
We presented DPD based on single target Maximum Likelihood
and DPD based on MVDR for multistatic radar, but our ap-
proach may easily be extended to other localization problems.
We demonstrated that the MVDR approach achieves superior
resolution with respect to the Maximum Likelihood by analyz-
ing multiple near targets localization. The targets used in the
analysis can represent a single target with multiple, resolvable
scatterers or represent separate, small targets. The fine resolu-
tion can be employed to resolving real targets from many de-
coys.

References

[1] A. Amar, A.J. Weiss, Localization of narrowband radio emitters based
on Doppler frequency shifts, IEEE Trans. Signal Process. 56 (11) (2008)
5500-5508.

[2] O. Bar-Shalom, A.J. Weiss, Direct positioning of stationary targets using
mimo radar, Signal Process. 91 (10) (2011) 2345-2358.

[3] J. Capon, High-resolution frequency—wavenumber spectrum analysis,
Proc. IEEE 57 (8) (1969) 1408-1418.

[4] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, R. Valenzuela,
Mimo radar: an idea whose time has come, in: Radar Conference, 2004.
Proceedings of the IEEE, IEEE, 2004, pp. 71-78.

[5] J.J. Handfield, R.M. Rao, S.A. Dianat, Near-field mvdr source
localization, in: SPIE Defense and Security Symposium, International
Society for Optics and Photonics, 2008, 698000-698000.

[6] D.W. Rieken, D.R. Fuhrmann, Generalizing music and mvdr for
multiple noncoherent arrays, IEEE Trans. Signal Process. 52 (9) (2004)

2396-2406.
[7]1 L. Xu, J. Li, P. Stoica, Target detection and parameter estimation for

mimo radar systems, IEEE Trans. Aerosp. Electron. Syst. 44 (3) (2008)
927-939.

[8] A. Hassanien, S. Shahbazpanahi, A.B. Gershman, A generalized capon
estimator for localization of multiple spread sources, IEEE Trans. Signal
Process. 52 (1) (2004) 280-283.

[9] AJ. Weiss, Direct position determination of narrowband radio
frequency transmitters, IEEE Signal Process. Lett. 11 (5) (2004)

513-516.

[10] P. Swerling, Probability of detection for fluctuating targets, IRE Trans.
Inform. Theory 6 (2) (1960) 269-308.

[11] D. Brandwood, A complex gradient operator and its application in
adaptive array theory, in: IEE Proceedings H (Microwaves, Optics and
Antennas), Vol. 130, IET, 1983, pp. 11-16.


http://refhub.elsevier.com/S2405-9595(15)30080-1/sbref1
http://refhub.elsevier.com/S2405-9595(15)30080-1/sbref2
http://refhub.elsevier.com/S2405-9595(15)30080-1/sbref3
http://refhub.elsevier.com/S2405-9595(15)30080-1/sbref4
http://refhub.elsevier.com/S2405-9595(15)30080-1/sbref5
http://refhub.elsevier.com/S2405-9595(15)30080-1/sbref6
http://refhub.elsevier.com/S2405-9595(15)30080-1/sbref7
http://refhub.elsevier.com/S2405-9595(15)30080-1/sbref8
http://refhub.elsevier.com/S2405-9595(15)30080-1/sbref9
http://refhub.elsevier.com/S2405-9595(15)30080-1/sbref10
http://refhub.elsevier.com/S2405-9595(15)30080-1/sbref11

	Application of capon method to direct position determination
	Introduction
	Problem formulation
	Target localization using the maximum likelihood estimator
	Target localization using MVDR

	Simulation and analysis
	Conclusion
	References


