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Abstract

This paper presents a sensor fusion method for a Wi-Fi-based indoor positioning system, named the KAist Indoor LOcating System (KAILOS),
which was developed to realize a global indoor positioning system (GIPS) that utilizes crowd-sourced fingerprints. KAILOS supports the
deployment of indoor positioning systems in buildings by collecting indoor maps and fingerprint DBs of buildings for the GIPS. Thereby,
KAILOS provides a method based on sensor fusion for volunteers to develop indoor positioning systems for their buildings. KAILOS has been
made available online for public use. In addition, various location-based applications can also be developed using KAILOS.
© 2016 The Korean Institute of Communications Information Sciences. Publishing Services by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The KAist Indoor LOcating System (KAILOS) has various
unique features that distinguish it from other indoor position-
ing systems. One of these features is the positioning algorithm
it employs to provide an accurate positioning service [1]. An ex-
tended Viterbi algorithm was developed to track a user by using
historical data comprising Wi-Fi fingerprints, magnetic finger-
prints, and sensing data from inertial sensors such as a three-
axis accelerometer, a gyroscope, a compass, and a barometer.

The extended Viterbi algorithm integrates the readings from
the various smartphone sensors into its probabilistic framework
for a more accurate positioning. Moreover, the algorithm
uses a novel Wi-Fi fingerprinting scheme, named the Signal
Fluctuation Matrix (SFM), to extract optimized performance
from sparsely collected fingerprint data.

In this paper, we briefly introduce the process of deploying
an indoor positioning system using KAILOS. This system
provides methods, tools, and interfaces to register indoor maps,
construct radio maps, visualize signal distributions, and more.
Among the many methods and tools of KAILOS, we focus
especially on its sensor fusion method, which is designed to
incorporate various sensors, and the SFM method to further
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improve the performance of Wi-Fi based indoor positioning.
The techniques have been integrated in the Viterbi tracking
framework, the construction of which is based on a Hidden
Markov Model (HMM).

The effectiveness of KAILOS was evaluated by integrating
the Wi-Fi and sensor signals within the extended Viterbi
tracking algorithm. This was found to greatly improve the
performance of indoor positioning in experiments performed
using the seventh floor of the N1 building of KAIST as the
experimental setting.

2. KAILOS
2.1. Tools to deploy an indoor positioning system

KAILOS contains various methods and tools to enable
volunteers to register indoor and radio maps of any
building. These tools are available on the KAILOS web site
(http://kailos.io). Selected web pages depicting the KAILOS
user interface are shown in Fig. 1. Once the indoor map of a
building is registered, the Wi-Fi and magnetic fingerprints of
the building can be collected and input into KAILOS by using
a point-by-point manual calibration [2], a walking survey [1],
or a reference-free calibration [3].

The ability to construct radio maps is another feature
distinguishing KAILOS from other indoor positioning systems.
It supports all kinds of radio map construction methods
including a novel unsupervised learning-based reference-free
calibration method [3]. The method automatically labels the
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Fig. 1. Deployment process of indoor positioning system.

locations of crowd-sourced fingerprints that are collected
without location information. Because the reference-free
calibration method does not require any explicit effort from
participants or additional information from GPS and inertial
sensors for calibration purposes, it can be effectively used for
constructing radio maps of buildings all over the world.

Volunteers who want to deploy indoor positioning systems
in their buildings can choose from one of three calibration
methods considering the construction cost and accuracy of the
system. The point-by-point manual calibration method can be
used to implement a highly accurate positioning system for
a particular indoor space such as exhibition and convention
centers, discount stores, and indoor shopping malls. Despite the
cost of the reference-free calibration method being almost zero,
it may result in a less accurate positioning system. This method
is either suitable for large-scale or remote buildings of which
the crowd-sourced fingerprints are available.

2.2. Probabilistic framework for user-tracking and sensor
fusion

The accuracy of positioning algorithms changes the way the
available data, such as radio maps [4], inertial sensor readings,
the results of trajectory-tracking [5], and map matching, is
incorporated. The fusion of these diverse types of data is also
one of the key issues that need to be addressed [6]. KAILOS
overcomes this problem in the probabilistic framework of the
extended Viterbi algorithm on HMM, which was used to model
an indoor area. In KAILOS, the topology of the HMM is
automatically constructed based on the structures of a building,
such as its walls and barriers, which are specified on the indoor
map. This topology is used to estimate user movements in the
particular indoor space, and to perform map matching.

Meanwhile, sensor data is categorized into two types: the
first type is used to estimate an absolute position, and the
second to estimate changes in the relative positions of users.
The absolute positions of users are estimated using Wi-Fi and
magnetic fingerprints, which are used to calculate the emission
probabilities of the HMM. The transition probabilities of the
HMM are calculated during run-time using inertial sensor
readings to estimate the change in the relative position. The

emission and transition probabilities of the HMM are then
used to fuse the two types of sensor data in the probabilistic
framework of the HMM to provide accurate trajectory tracking
and user positioning.

2.2.1. Signal fluctuation matrix

Traditionally, radio maps have represented the characteris-
tics of signals from the respective APs at a particular location
in the form of a histogram, Gaussian distribution, or lognormal
distribution of the Received Signal Strength (RSS) [6]. These
strategies typically require a large number of samples at each
location in order to precisely represent the characteristics of
the signals with the RSS distributions. Here, we propose a new
method to represent the characteristics of fingerprints using an
SFM. This method mitigates the need for a large number of
samples that cannot be satisfied by crowd-sourced fingerprints.
The method ignores the differences between the RSS distribu-
tion patterns for each location and AP, and considers the proba-
bility of fluctuation between two RSS values at a location. The
universal patterns of the fluctuations are represented in a two-
dimensional SFM. Because the fluctuation in a particular pair
of RSS values can be observed at any location, a reliable SFM
can be obtained even if only a small number of samples are
available at each location.

Fig. 2 illustrates the difference between radio maps
represented by an SFM and a normal histogram. We collected
20 samples at each location in our experimental setting on the
seventh floor of the N1 building of KAIST for the experiment.
As shown in Fig. 2, the histogram that was constructed from
only 20 samples was unreliable because many bins were empty.
However, the SFM could overcome the lack of training samples
and proceeded to fill all of the cells in the matrix with frequency
values. An SFM can be regarded as a universal histogram
of RSS values irrespective of locations and APs. The SFM
calculates the probability of observing an online RSS i of an
AP at a location / as a log-odd probability,

P@, J) )
PO P()H)’

where j is the mean RSS of the AP trained at [, P(i, j) is the
observed fluctuation probability of an RSS pair (7, ) stored in

P () = 10g( ey
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Fig. 2. Comparison of SFM- and histogram-based Wi-Fi fingerprints.

the SFM, and P (i) P(j) is the expected fluctuation probability
of the pair [7]. The emission probability P (o|l) of an online
Wi-Fi fingerprint o is simply calculated by [[;., P (il]).

Magnetic fingerprints can also be represented in a structure
similar to that of an SFM. However, we use a Gaussian distri-
bution for the magnetic fingerprints because the fluctuation of
the magnetic norm at a location is not as severe as that of Wi-Fi
signals. When a magnetic norm m is measured along with o in
the online phase, the emission probability of the measurements
P (0, m|l) is simply calculated by P (o|l) x P (m|l).

2.2.2. Fusion of inertial sensor data

The Viterbi algorithm can use the calculated emission prob-
abilities to track a user if the transition probabilities are pro-
vided by the inertial sensors in a device. The inertial sensors in
a smartphone usually provide a deterministic relative position
change with considerable errors in distance and heading cal-
culations. Hence, the deterministic results should be converted
to a probabilistic distribution at each location, and the errors
should be compensated to some extent. The extended Viterbi
tracking algorithm addresses these problems by accumulating
the distributions of errors in the distance and heading calcula-
tions. The errors are estimated under the assumption that the
tracking results fairly closely approximate the correct answers.

Fig. 3 illustrates the process by which the transition
probability is calculated. Suppose a trajectory tracking from
time £y to 73 has been performed as shown in the figure. The bold
arrows depict the tracking results, whereas the dotted arrows
denote the distance and heading information provided by the
inertial sensors at each point in time. At time 7y, the probability
distribution of the transitions out of the first location is depicted
by a gray circle, of which the center is indicated by the inertial
sensor readings. However, a mismatch can happen between
the inertial sensor readings and the tracking results. The error
resulting from this mismatch should be attributed to the inertial
sensors, and should be compensated for in the calculation of
the next transition probabilities. As time proceeds, the errors in
the distance and heading calculations are gradually mitigated,

Fig. 3. Transition probability calculation and error compensation.
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Fig. 4. Extended Viterbi algorithm for sensor fusion.
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as shown in the figure. As a result, at time #4, the tracking
algorithm can utilize the corrected probability distributions
depicted by the dark circle.

Fig. 4 presents an overview of the KAILOS positioning
framework. The measured Wi-Fi signals and magnetic-norms
are used to compute the emission probabilities and the sensor
readings are used to compute the transition probabilities. The
Viterbi tracking algorithm incorporates the various probabilities
to estimate the final location.

3. Evaluation

We performed experiments to confirm the effectiveness
of the methods. An experiment was performed by using the
seventh floor of the N1 building of KAIST as our experimental
setting to compare the performance of the Euclidean, Gaussian,
histogram, and SFM methods. Fig. 5 shows the results of the
comparison in the form of a CDF graph. As shown in the graph,
the SFM-based method outperformed the existing positioning
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Fig. 5. Cumulative Distribution Function (CDF) of positioning errors of
probabilistic positioning algorithms using various fingerprint types.

methods, indicating that SFM is able to effectively improve the
accuracy of positioning.

An additional experiment was performed to test the effec-
tiveness of sensor fusion on the same floor of the same building.
When the sensor fusion method was used for positioning, the
accuracy was improved by more than 100%. The average error
in the distance was improved from 2 to 3 m using only Wi-Fi
signals to less than 1 m using various sensors. The incorpora-
tion of the magnetometer was the most effective in improving
the accuracy once the particles of the particle filter were merged
into a group. On the other hand, the Wi-Fi signals were the most
effective in finding the initial location. The inertial sensors were
effective for detecting a change in direction.

4. Conclusion

This paper presents two techniques: SFM and sensor fusion,
both of which were shown to be highly effective in improving

the positioning accuracy of Wi-Fi-based indoor positioning
systems. The techniques are now available in KAILOS, which
is a crowdsourcing-based global indoor positioning system that
we have made publicly available on the Internet. The greater
the number of users who deploy indoor positioning systems on
KAILOS, the sooner a global indoor positioning system could
be realized.
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