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This study investigates the relationship between U.S. state-level CO2 emissions and two measures of income in-
equality: the income share of the top 10% and the Gini coefficient. Each of the inequality measures, which focus
on unique characteristics of income distributions, is used to evaluate the arguments of different analytical ap-
proaches. Results of the longitudinal analysis for the 1997 to 2012 period indicate that state-level emissions
are positively associatedwith the income share of the top 10%,while the effect of the Gini coefficient on emissions
is non-significant. The statistically significant relationship between CO2 emissions and the concentration of in-
come among the top 10% is consistent with analytical approaches that focus on political economy dynamics
and Veblen effects, which highlight the potential political and economic power and emulative influence of the
wealthy. The null effect of the Gini coefficient is generally inconsistent with the marginal propensity to emit ap-
proach, which posits that when incomes becomemore equally distributed, the poor will increase their consump-
tion of energy and other carbon-intensive products as they move into the middle class.
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1. Introduction

Inequality has become a salient political issue in the United States,
following the emergence of Occupy, the publication of Piketty's Capital
in the Twenty-first Century, and continuing economic distress in many
parts of the country. Over this same time period, researchers across var-
ious disciplines have begun to paymore attention to the role of inequal-
ity in climate change. The bulk of attention has been given to
international and global inequalities, such as global North-South differ-
ences in historic CO2 emissions (Chancel and Piketty, 2015; Jorgenson,
2014; Rosa andDietz, 2012), disproportionate impacts of climate effects
(IPCC, 2014; Roberts and Parks, 2006) and power imbalances between
nations in the global North and South with respect to climate policy
(Ciplet et al., 2015; Dunlap and Brulle, 2015). A relatively unexplored
question is the role that income inequality plays as a driver of anthropo-
genic CO2 emissions. Does the existence of income inequality itself con-
tribute to the volume of emissions? Are societies with more inequality
higher emitters? Or is greater income equality associated with higher
levels of emissions because there are more middle-class people with
carbon-intensive lifestyles?

To the extent that this question has been addressed, most of the
studies have taken their unit of analysis as the nation state, asking
how domestic measures of income inequality affect CO2 emissions
across countries and over time (Ravallion et al., 2000; Grunewald et
al., 2012; Jorgenson, 2015; Jorgenson et al., 2016). The results of these
studies are mixed, with findings differing by group of countries, time
periods, and modeling techniques (Borghesi, 2006). This is not surpris-
ing, as there are a number of different pathways through which income
inequality might affect emissions.

In this study, we shift the analysis of CO2 emissions and income in-
equality to a different scale—the sub-national, and more specifically
the U.S. state level. We analyze anthropogenic emissions across all 50
U.S. states and the District of Columbia, over the period 1997–2012, ask-
ing how the level of income inequality within a state is associated with
its CO2 emissions. To our knowledge, with the exception of a prelimi-
nary analysis using a more restricted measure of emissions (Jorgenson
et al., 2015), the present study is the first to analyze the relationship be-
tween CO2 emissions and inequality in a longitudinal, U.S. cross-state
context.1 Furthermore, we focus on two measures of income inequality
that capture different characteristics of inequality within income distri-
butions: the Gini coefficient and the income share of the top 10%. As we
note in the following literature review, each of these measures is well
suited for empirically evaluating the arguments of different analytical
approaches.
Jorgenson et al. (2015) conduct a preliminary U.S. state-level analysis of the effect of
one measure of income inequality – the Theil index – on CO2 emissions from just the res-
idential sector. Their estimated models include a limited number of control variables, and
the literature review and theoretical discussion are short and relatively narrow in scope.
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2. Literature Review

There are a variety of pathways through which income inequality
can potentially affect emissions. The research literature, while relatively
small, includes multiple approaches that identify different possibilities.
The first approach, attributable originally to Boyce (1994, 2007; Boyce
et al., 1999), is a political-economy explanation in which income con-
centration operatesmainly via political influence on environmental pol-
icy. Boyce argues that the wealthy reap disproportionate economic
benefits frompolluting activities, both via their ownership of companies
that engage in them and because they are better able to protect them-
selves from negative impacts. They convert their preference for less en-
vironmental protection into influence in the political sphere. Studies in
this tradition were originally about environmental policies and out-
comes other than greenhouse gases, although there are a few recent
analyses which address climate change. A second approach, which we
term “propensity to emit,” argues that at different levels of income, in-
dividuals' or households' propensity to consume carbon-intensive
goods varies as consumption patterns change (Borghesi, 2006;
Grunewald et al., 2012; Ravallion et al., 2000). For this reason, changes
in the income distribution across households yield changes in emis-
sions. A third approach posits that greater concentrations of income at
the top of the distribution lead to heightened consumption competition
and longer hours of work, which in turn increases energy consumption
and emissions (Bowles and Park, 2005; Schor, 1998). This is a kind of
Veblen (1934) effect in which the wealthy consume expensive, publicly
visible goods and services to gain status. We discuss these three ap-
proaches in turn.

The political economy approach developed by Boyce (Boyce, 1994,
2007; Boyce et al., 1999) argues that inequality is likely to be associated
with higher levels of energy use (e.g., fossil-fuels), pollution and environ-
mental degradation. Increased fossil-fuel consumption has both global
and local consequences, given that it leads to higher levels of CO2 emis-
sions as well as other pollutants with more localized effects, including in-
creases in the emission of carbon monoxide (CO) and nitrogen oxides
(NOx). While Boyce offers a number of arguments about these relation-
ships, a primary one is that the wealthy prefer more pollution. This is
both because they aremore likely to be owners of polluting firms and be-
cause they consume more goods and services, which are in themselves
polluting. Thus, environmental protection is costlier for the wealthy, and
thewealthy are better equipped to protect themselves fromenvironmen-
tal harmswhile shifting such burdens onto the poor. Boyce concludes that
thewealthy are likely to use their economic power to gainpolitical power,
which they use to dominate the policy environment.

Boyce identifies a “power-weighted social decision rule” in which
thosewithmore economic power, and thus political power, have a larg-
er influence on policy outcomes and use that power to prevent environ-
mental protection. It is worth noting that these dynamics can be
occurring even under the standard assumption that the environment
is a normal good, that is, people want to consumemore “environmental
amenities” and by extension “environmental policy,” as their income
rises. Boyce's hypothesized effects operate alongside the increasing de-
mand for “the environment” as income rises.

Using data from across the U.S. states, Boyce and collaborators
(Boyce et al., 1999) estimated a model in which income inequality pre-
dicts political power, political power predicts environmental policies,
and environmental policies predict environmental stress and subse-
quently public health outcomes. Environmental sociologists have simi-
larly argued that reducing environmental harms may first require a
shift toward greater political and economic equality (Ciplet et al.,
2015; Downey, 2015; Roberts and Parks, 2006).

In the second approach,which focuses on themarginal propensity to
emit (MPE), there is not a single hypothesis, although Ravallion et al.
(2000) find that higher levels of within-country inequality are associat-
ed with lower emissions. Thus, they argue, there is a conflict between
distributional policies to enhance equality and climate policy to reduce
emissions. One argument is that the MPE declines with income, an em-
pirical finding from previous research (Ravallion et al., 2000, citing
Holtz-Eakin and Selden, 1995; Schmalensee et al., 1998; Heil and
Selden, 1999). However, Ravallion et al. (2000) identify a variety of pos-
sible effects operating in different directions such that the relationship
between within-country inequality and emissions is theoretically am-
biguous. These include the factors identified by Boyce as well as an
Ostrom-type effect on the ability to cooperate to achieve policy out-
comes (see also Heerink et al., 2001).

In these studies, it is generally argued that consumption demand is
the key factor determining MPE. However, this approach does not con-
sider one class of Keynesian effects. In a Keynesianmodel, lower-income
households have a highermarginal propensity to consume than higher-
income households, so increases in inequality that lower incomes for
the poor should reduce emissions. Accordingly, there is an additional
mechanism by which higher inequality may reduce emissions, which
is that the poor have a higher propensity to consume.

Finally, the relationship may not be linear. If there are three classes
of households—poor, middle class, and wealthy—the propensity to con-
sume and emit may rise and then fall, which would make the relation-
ship between inequality and emissions curvilinear. This is partly
supported by the results of Grunewald et al. (2012), who find that the
inequality-emissions link varies with the level of inequality. In high in-
equality countries, reductions in inequality yield lower emissions; in
low inequality countries, less inequality yields higher emissions.

The third approach argues that higher inequality leads to more con-
sumption competition (Schor, 1998),which in turn increases emissions.
There are two pathways for this effect. The first, a Veblen effect, is that
inequality induces status consumption as households increase their
spending to keep up with the visible lifestyles of high-income house-
holds. (Veblen, 1934; Schor, 1998). Second, growth in inequality has
been shown to increase working hours (Bowles and Park, 2005), and
cross-national research suggests that longer working hours are drivers
of energy consumption and CO2 emissions via both their impacts on
economic growth and on households' consumption choices (Fitzgerald
et al., 2015; Knight et al., 2013).

In addition to these approaches to inequality and emissions, there is
a growing body of research that investigates howCO2 emissions are dis-
tributed across households.While these studies do not explicitly test for
the impact of inequality, amainfinding in this research is that higher in-
comehouseholds emitmore CO2 than lower incomehouseholds. For ex-
ample, Pattison et al. (2014) find that counties in the U.S. with the
highest average household incomes have greater consumption-based
CO2 emissions but lower production-based emissions than less affluent
counties. They conclude that rich communities are able to avoid some of
the consequences of their carbon-intensive consumption by shifting
carbon-intensive industrial activities into poorer areas, which is similar
to arguments in the international inequality literatures within environ-
mental sociology and ecological economics on the outsourcing of envi-
ronmental harms from wealthier nations to poorer nations (Dunlap
and Brulle, 2015; Martinez-Alier and Muradian, 2015). Weber and
Matthews (2008) alsofind large differences by income,with the highest
expenditure households emitting 10 times that of the lowest (see also
Boyce and Riddle, 2009; Kunke and Kammen, 2011).

In this study of U.S. state-level emissions, we explore these questions
by focusing on twomeasures of income inequality: the income share of
the top 10% and theGini coefficient.We suggest the former is amore ap-
propriate measure for capturing political economy and Veblen effects
than the Gini coefficient, because the potential effect of the top 10%
measure depends on the economic and political power and the emula-
tive pull of thewealthy. By contrast, the Gini coefficient does not direct-
ly capture the location in the distribution where inequality is occurring,
and variation in Gini coefficients can be due to differences between low
and middle income households. For the MPE approach, the Gini coeffi-
cient remains relevant, although as noted, that approach does not
yield clear theoretical predictions.
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3. Methods

3.1. Sample

The dataset contains annual observations from 1997 to 2012 for all
50 U.S. states as well as the District of Columbia. These are the years in
which comparable data suitable for longitudinal analyses are currently
available for the dependent variable and the key independent variables.
This yields an overall sample of 816 observations.
3.2. Model Estimation Techniques

To estimate the majority of reported models, we use a time-series
cross-sectional Prais-Winsten regression model with panel-corrected
standard errors, allowing for disturbances that are heteroskedastic and
contemporaneously correlated across panels (Beck and Katz, 1995).
We correct for AR(1) disturbances (i.e., first-order autocorrelation)
within panels, and since we have no theoretical basis for assuming the
process is panel specific, we treat the AR(1) process as common to all
panels. We control for both year-specific and state-specific effects, the
equivalent of a two-way fixed effects model (Allison, 2008). We note
that this technique controls out between-state variation in favor of esti-
mating within-state effects, a common approach in panel analyses of
the human drivers of emissions (Rosa and Dietz, 2012; Marquart-Pyatt
et al., 2015).

To estimate the few reported models that include time-invariant
control variables, we use generalized least squares random effects re-
gression (Cameron and Trivedi, 2009). The random effects models also
include a correction for first-order autocorrelation (i.e., AR[1] correc-
tion) as well as year-specific intercepts.

All non-binary variables are transformed into base 10 logarithmic
form (labeled “LG” in Tables 1–4), an established approach in research
on the drivers of anthropogenic emissions (Rosa and Dietz, 2012). For
such variables, the regression models estimate elasticity coefficients
where the coefficient for the independent variable is the estimated net
percent change in the dependent variable associated with a 1% increase
in the independent variable (York et al., 2003).
Table 1
Descriptive statistics.

Mean

CO2 emissions 112.412
Gini coefficient 0.593
Income share of top 10% 43.627
Population size 5,765,477.941
GDP per capita 41,646.320
Percent of population in urban areas 73.084
Manufacturing as percent of GDP 13.204
Fossil-fuel production 998,037.747
State environmentalism 51.900
Midwest census region 0.235
South census region 0.314
West census region 0.255
Northeast census region 0.196
CO2 emissions (LG) 1.855
Gini coefficient (LG) 0.202
Income share of top 10% (LG) 1.637
Population size (LG) 6.543
GDP per capita (LG) 4.602
Percent of population in urban areas (LG) 1.854
Manufacturing as percent of GDP (LG) 1.099
Fossil-fuel production (LG) 3.663
State environmentalism (LG) 1.660

Notes: all continuous variables are reported in both original values and base 10 logarithmic for
(800 total observations).
3.3. Dependent Variable

The dependent variable is annual CO2 emissions from fossil fuel
combustion,measured inmillions of metric tons. This measure includes
emissions from the commercial, industrial, residential, transportation,
and electric power sectors. We obtained these emissions data from
theUnited States Environmental Protection Agency's (EPA) “State Ener-
gy CO2 Emissions” online database (https://www3.epa.gov/
statelocalclimate/resources/state_energyco2inv.html, accessed July 2,
2015). These state-level measures of CO2 emissions are analogous to
country-level measures of “production-based emissions”, rather than
“consumption-based emissions”, which are trade-adjusted measures
that account for the emissions generated in the processes of production,
which are then attributed to the consuming rather than producing
country using input-output analysis techniques. Like prior cross-nation-
al studies (e.g., Knight and Schor, 2014), we would prefer to analyze
both production-based and consumption-based measures of state-
level CO2 emissions, but to the best of our knowledge the latter are cur-
rently unavailable in longitudinal form for U.S. states and the District of
Columbia.
3.4. Key Independent Variables

In this study we focus on two measures of income inequality: the
Gini coefficient and the income share of the top 10%. We obtained the
Gini coefficient data from the “U.S. State-Level Income Inequality” data-
base, hosted by Mark Frank, Professor of Economics at Sam Houston
State University (http://www.shsu.edu/~eco_mwf/inequality.html,
accessed July 15, 2015). The values of estimated Gini coefficients can
range from zero (perfect equality) to 1 (perfect inequality). Thus, we
added a constant of one to each score before transformation into loga-
rithmic form.

We gathered the income share of the top 10% data from the World
Wealth and Income Database (WWID), which were developed by
Mark Frank and colleagues (http://www.wid.world/#Database:,
accessed July 16, 2015). These data aremeasured in percentages. The in-
equality measures are constructed from individual tax filing data
Standard deviation Minimum Maximum

113.784 2.710 712.940
0.036 0.520 0.760
4.905 33.560 62.260
6,426,923.470 480,000.000 38,000,000.000
15,576.883 25,224.000 151,257.000
14.984 37.992 100.000
6.086 0.210 30.590
1,982,492.732 0.000 13,339,833.000
21.610 6.500 90.000
0.424 0.000 1.000
0.464 0.000 1.000
0.436 0.000 1.000
0.397 0.000 1.000
0.453 0.433 2.853
0.010 0.182 0.245
0.047 1.525 1.794
0.449 5.681 7.580
0.110 4.401 5.180
0.096 1.580 2.000
0.245 0.080 1.500
2.756 0.000 7.125
0.247 0.813 1.954

m (labeled “LG”); 816 total observations for each variable except State Environmentalism

https://www3.epa.gov/statelocalclimate/resources/state_energyco2inv.html
https://www3.epa.gov/statelocalclimate/resources/state_energyco2inv.html
http://www.shsu.edu/~eco_mwf/inequality.html
http://www.wid.world/#Database:


Table 2
Pairwise correlations.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

CO2 emissions (LG) 1.
Gini coefficient (LG) 2. 0.126
Income share of top 10% (LG) 3. 0.219 0.629
Population size (LG) 4. 0.856 0.173 0.411
GDP per capita (LG) 5. −0.281 0.183 0.290 −0.139
Percent of population in urban areas (LG) 6. 0.218 0.209 0.431 0.417 0.525
Manufacturing as percent of GDP (LG) 7. 0.463 −0.237 −0.114 0.404 −0.615 −0.313
Fossil-fuel production (LG) 8. 0.512 0.147 −0.049 0.208 −0.247 −0.028 0.069
State environmentalism (LG) 9. −0.053 −0.111 0.287 0.274 0.128 0.200 0.149 −0.458
Midwest census region 10. 0.151 −0.231 −0.335 0.053 −0.070 −0.066 0.296 0.053 0.140
South census region 11. 0.249 0.105 0.057 0.210 −0.108 −0.180 0.044 0.172 −0.188 −0.375
West census region 12. −0.151 0.115 −0.029 −0.193 0.024 0.254 −0.329 0.187 −0.363 −0.324 −0.395
Northeast census region 13. −0.287 −0.002 0.324 −0.090 0.175 0.003 −0.006 −0.462 0.465 −0.274 −0.334 −0.289

Notes: all continuous variables are in base 10 logarithmic form (labeled “LG”); 816 total observations for each variable except State Environmentalism (800 total observations).
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available from the Internal Revenue Service. For in-depth information
on the creation of the income inequality measures, see Frank et al.
(2015).

3.5. Control Variables

We include population size, measured in the number of persons,
which we obtained from the United States Census Bureau database for
state-level population estimates (https://www.census.gov/popest/
data/intercensal/index.html, accessed July 10, 2015). We also include
Gross Domestic Product (GDP) per capita by state (reported in chained
2007 dollars), whichwe gathered from theUnited States Department of
Commerce Bureau of Economic Analysis database (http://www.bea.
gov/itable/, accessed July 10, 2015). Population size and GDP per capita
are included in all estimated models. Consistent with past research on
anthropogenic emissions (Dietz, 2015; Jorgenson and Clark, 2012;
Lamb et al., 2014; Rosa and Dietz, 2012; York et al., 2003), we anticipate
that both population size and GDP per capitawill exhibit positive effects
of state-level CO2 emissions.

Many of our reported models include state-level measures of the
percent of the population in urban areas, manufacturing as a percent
of GDP, and total fossil-fuel production (coal, natural gas, and crude
oil) in billions of British thermal units (Btu). Theurban data are obtained
from United States Census (https://www.census.gov, accessed July 10,
Table 3
Fixed effects longitudinal models of the effect of income inequality on CO2 emissions in all
50 U.S. states and District of Columbia, 1997 to 2012.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Gini coefficient (LG) 0.163 0.117 −0.040 −0.071
(0.335) (0.289) (0.351) (0.300)

Income share of top
10% (LG)

0.134* 0.120* 0.138* 0.125*
(0.061) (0.056) (0.066) (0.060)

Population size (LG) 0.511** 0.427** 0.512** 0.432** 0.512** 0.432**
(0.107) (0.120) (0.097) (0.109) (0.097) (0.109)

GDP per capita (LG) 0.257** 0.231** 0.248** 0.228** 0.247** 0.226**
(0.062) (0.064) (0.062) (0.064) (0.063) (0.065)

Percent of population
in urban areas (LG)

0.954** 0.913** 0.916**
(0.296) (0.285) (0.281)

Manufacturing as
percent of GDP (LG)

−0.005 −0.010 −0.010
(0.019) (0.019) (0.019)

Fossil-fuel production
(LG)

0.003 0.003 0.003
(0.003) (0.003) (0.003)

R2 0.996 0.996 0.996 0.996 0.996 0.996
rho 0.591 0.595 0.561 0.571 0.561 0.569

Notes: estimatedwith Prais-Winsten regression; 16 annual observations for 51 cases in all
models; 816 total observations in all models; coefficients flagged for statistical signifi-
cance; **−b 0.01 *−b 0.05 (two-tailed tests of statistical significance); panel-corrected
standard errors in parentheses; models includes AR(1) correction (labeled as “rho”);
models include unreported case-specific and year-specific intercepts (two-way fixed
effects); all continuous variables are in base 10 logarithmic form (labeled “LG”).
2015), and are only available each decade. Using the measures for
2000 and 2010,we interpolated values for all other years in the dataset.2

Scholars have highlighted how urbanization could be more or less
carbon-intensive (Jorgenson et al., 2014). For example, Rees and
Wackernagel (1996) argue that the organization of urban areas—which
use extensive amounts of energy and other natural resources—are envi-
ronmentally unsustainable. In contrast, some bodies of research under-
score ecologically beneficial aspects of urbanization, such as energy
efficiencies associated with higher population concentration (Dodman,
2009). Of particular relevance for the current study, the relative size of
urban populations has been found to be a significant predictor of in-
creased energy consumption and CO2 emissions in recent U.S. state-
level analyses (Clement and Schultz, 2011).

Themanufacturing data are gathered from the United States Depart-
ment of Commerce “Bureau of Economic Analysis” database (http://
www.bea.gov/index.htm, accessed September 21, 2015). The fossil-
fuel production data are obtained from the United States Energy Infor-
mation Administration (EIA) “State Energy Data System” database
(http://www.eia.gov/state/seds/seds-data-complete.cfm?sid=
US#Production, accessed February 5, 2016). The EIA database provides
production measures for each of the three fossil-fuels individually,
which we summed to create the total measures. Conventional wisdom
would suggest that both the relative size of a state's manufacturing sec-
tor and its level of fossil-fuel production could increase overall state-
level emissions, and both have been found in past comparative-interna-
tional research to be significant predictors of national-level emissions
(Dunlap and Brulle, 2015; Rosa and Dietz, 2012). Thus, we consider
them to be important control variables in our state-level study.

We include Dietz et al.'s (2015) measure of state environmentalism
in the random effects models. These data measure pro-environmental
voting by states' Congressional delegations. Dietz et al. create an average
of House and Senate scores that are based on the League of Conservation
Voters' rating (ranging from 0 to 100) for each member of Congress
based on her or his votes on environmental issues as identified by the
League for the 1990 to 2005 period. Dietz et al. (2015) find that state-
level carbon emissions are negatively associated with their measure of
state environmentalism. While these measures cover a fifteen-year pe-
riod, they are technically time-invariant and perfectly correlated with
the state-specific fixed effects. The District of Columbia is not included
in thesemeasures and thus excluded from the dataset for the estimated
models that include the state environmentalism measure.

In the final random effects model we include dummy variables for
Census Region, which consist of Midwest Census Region, South Census
Region, West Census Region, and Northeast Census Region.
2 We acknowledge the limitations with these urban measures and recognize that there
are a variety of techniques for missing data imputation, each of which has relative
strengths and weaknesses. We therefore report estimated models that include urbaniza-
tion as well as estimated models that do not.

https://www.census.gov/popest/data/intercensal/index.html
https://www.census.gov/popest/data/intercensal/index.html
http://www.bea.gov/itable/
http://www.bea.gov/itable/
https://www.census.gov
http://www.bea.gov/index.htm
http://www.bea.gov/index.htm
http://www.eia.gov/state/seds/seds-data-complete.cfm?sid=US#Production
http://www.eia.gov/state/seds/seds-data-complete.cfm?sid=US#Production


Table 4
Random effects longitudinalmodels of the effect of income inequality on CO2 emissions in
all 50 U.S. states, 1997 to 2012.

Model 7 Model 8

Gini coefficient (LG) −0.126 −0.106
(0.222) (0.220)

Income share of top 10% (LG) 0.097* 0.101*
(0.042) (0.042)

Population size (LG) 0.823** 0.735**
(0.043) (0.047)

GDP per capita (LG) 0.238** 0.252**
(0.065) (0.065)

Percent of population in urban areas (LG) −0.030 0.286
(0.178) (0.191)

Manufacturing as percent of GDP (LG) 0.004 −0.005
(0.021) (0.021)

Fossil-fuel production (LG) 0.010** 0.009**
(0.003) (0.003)

State environmentalism (LG) −0.455** −0.426**
(0.077) (0.088)

Midwest census region 0.222**
(0.054)

South census region 0.196**
(0.059)

West census region 0.001
(0.061)

R2 0.842 0.874
rho 0.736 0.736

Notes: estimatedwith GLS random effects regression; 16 annual observations for 50 cases
(excludes District of Columbia); 800 total observations; coefficients flagged for statistical
significance; **−b0.01 *−b0.05 (two-tailed tests of statistical significance); standard er-
rors in parentheses; models includes AR(1) correction (labeled as “rho”); models include
unreported year-specific intercepts; all continuous variables are in base 10 logarithmic
form (labeled “LG”); Northeast Census Region is reference category in Model 8.
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3.6. Descriptive Statistics and Bivariate Analysis

Table 1 provides descriptive statistics (in both regular and base 10
logarithmic form for all non-binary variables), and Table 2 reports
pairwise correlations for the variables included in the regression
models. As noted in Table 2, for the analyzed longitudinal data (yearly
point estimates from 1997 to 2012, all non-binary variables in base 10
logarithmic form), state-level CO2 emissions is positively associated at
0.126 with the Gini coefficient and 0.219 with the income share of the
top 10%.

To provide better context of the bivariate associations across the U.S.
states and District of Columbia, Fig. 1 is a scatterplot of the association
between percent change from 1997 to 2012 in CO2 emissions and per-
cent change from 1997 to 2012 in the Gini coefficient. Similarly, Fig. 2
is a scatterplot of the association between percent change in emissions
and percent change in the income share of the top 10%. Values of the
3 change scores for all states and the District of Columbia are provided
in the Appendix A. For these measures, percent change in state-level
emissions are positively correlated with percent change in the Gini co-
efficient at 0.195, and positively correlated at 0.220with percent change
in the income share of the top 10%.

According to Fig. 1, and for example, Wyoming is a state that experi-
enced relatively large percent increases in both emissions and the Gini
coefficient, while Alaska experienced the greatest percent decrease in
the Gini coefficient, and amodest decrease in emissions aswell. Turning
to Fig. 2, Arkansas and North Dakota experienced relatively large per-
cent increases in both CO2 emissions and the income share of the top
10%, while relative to other states, Delaware andMaryland experienced
notable percent decreases in both emissions and income share among
the top 10%.

4. Results

Table 3 provides the estimates for six fixed effects models of CO2

emissions in all 50 U.S. States and the District of Columbia, from 1997
to 2012. We note that the close to perfect R-squared statistic for these
models is largely due to the case-specific and year-specific intercepts,
which by themselves explain the majority of variation in the outcome.
Models 1 and 3 each consist of one of the two income inequality mea-
sures as well as the controls for population size and GDP per capita.
The inequality measure in Model 1 is the Gini coefficient, and in
Model 3 it is the income share of the top 10%. The estimated effect of
the Gini coefficient in Model 1 is non-significant, while in Model 3 the
effect of income share of the top 10% is positive and statistically signifi-
cant. For the latter, a 1% increase in the income share of the top 10% is
associated with a 0.134% increase in emissions. As expected, the effects
of population size and GDP per capita are positive and statistically
significant.

Models 2 and 4 expandModels 1 and 3, and include the other three
time-variant controls: percent of the population in urban areas,
manufacturing as a percent of GDP, and fossil-fuel production. With
the inclusion of the additional measures, the estimated effect of the
Gini coefficient remains non-significant, while the estimated effect of
income share of the top 10% on CO2 emissions remains statistically sig-
nificant, but slightly decreases in value (elasticity coefficient = 0.120).
Population size and GDP per capita continue to have positive effects
on emissions. The effect of percent of population in urban areas on
CO2 emissions is positive and statistically significant in both models,
while the estimated effects of the other two additional controls are
non-significant. The null finding for the manufacturing measure, we
suspect, is at least partly due to the analysis of CO2 emissions from the
commercial, industrial, residential, transportation, and electric power
sectors combined. The state-level measures of fossil-fuel production
are relatively time-invariant and thus highly correlated with the case-
specific fixed effects, which could explain their non-significant effect
in both models.
Model 5 includes both of the income inequality measures as well as
population size and GDP per capita, while Model 6 adds the other three
time-variant controls. The findings of interest remain the same: the ef-
fect of the income share of the top 10% is positive and statistically signif-
icant in bothmodels (elasticity coefficient=0.138 inModel 5 and 0.125
in Model 6), while the effect of the Gini coefficient continues to be non-
significant. The findings concerning the control variables are consistent
with the prior four models. Overall, the results reported in Table 3 sug-
gest that the relationship between state-level CO2 emissions and the
Gini coefficient is non-significant, while the effect of income share of
the top 10% on emissions is positive and nontrivial in magnitude.
Based on the point estimates for the elasticity coefficients from these
models, a 1% increase in the income share of the top 10% is associated
with between a 0.120 and a 0.138% increase in CO2 emissions, net of
the various time-variant controls and the two-way fixed effects. Using
the emissions data for the year 2012, this range of elasticity coefficients
suggests that a 1% increase in the income share of the top 10% is associ-
ated with between 812,325.4 and 934,174.4 metric tons of additional
CO2 emissions for Texas (the largest state-level emitter), between
89,175.2 and 102,551.9 metric tons of additional emissions for South
Carolina (the median level of emissions in 2012 compared to the
other states and the District of Columbia), and between 3251.3 and
3738.4metric tons of additional CO2 emissions for theDistrict of Colum-
bia (lowest level of emissions in 2012 compared to the 50 US states).

Table 4 reports the findings for the random effects analysis, labeled
as Model 7 and Model 8. The two estimated models include all the
time-variant predictors as well as the time-invariant measure of state
environmentalism.Model 8 also includes the census region dummyvar-
iables, where the Northeast census region is the reference category. The
results of interest are consistent with the fixed effects analysis reported
in Table 3: the estimated effect of the Gini coefficient on CO2 emissions
is non-significant, while the elasticity coefficient for the effect of income
share of the top 10% is positive and statistically significant. InModel 7, a
1% increase in the income share of the top 10% is associated with a
0.097% increase in emissions, while in Model 8, a 1% increase in this



Alabama

Alaska

Arizona

Arkansas

California

Colorado

Connecticut

Delaware

District of Columbia

Florida

Georgia

Hawaii

Idaho

Illinois

Indiana

Iowa

Kansas

Kentucky

Louisiana

Maine

Maryland

Massachusetts

Michigan

Minnesota

Mississippi

MissouriMontana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Ohio

Oklahoma

Oregon

Pennsylvania

Rhode Island

South Carolina

South Dakota

Tennessee

Texas

Utah

Vermont

Virginia
Washington

West Virginia

Wisconsin

Wyoming

-
4
0

-
2
0

0
2
0

4
0

P
e
rc
e
n
t 
C
h
a
n
g
e
 i
n
 E
m
is
s
io
n
s
, 
1
9
9
7
 t
o
 2
0
1
2

-10 0 10 20 30

Percent Change in the Gini Coefficient, 1997 to 2012

Fig. 1. Scatterplot of the association between CO2 emissions and the Gini coefficient (both measured as percent change scores for 1997 to 2012).
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Fig. 2. Scatterplot of the association between CO2 emissions and the income share of the top 10% (both measured as percent change scores for 1997 to 2012).
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Table 5
Fixed effects longitudinal models of the effect of income inequality on CO2 emissions in all
50 U.S. states and District of Columbia, 1997 to 2012.

Model 9 Model 10 Model 11 Model 12 Model 13 Model 14

Income share of
top 5% (LG)

0.096* 0.088* 0.092*
(0.047) (0.044) (0.046)

Income share of
top 1% (LG)

0.069* 0.062* 0.066*
(0.030) (0.028) (0.030)

Gini coefficient
(LG)

−0.059 −0.090
(0.300) (0.301)

Population size
(LG)

0.519** 0.436** 0.437** 0.524** 0.441** 0.442**
(0.098) (0.110) (0.110) (0.097) (0.110) (0.110)

GDP per capita
(LG)

0.239** 0.218** 0.216** 0.232** 0.212** 0.208**
(0.062) (0.065) (0.066) (0.062) (0.065) (0.066)

Percent of
population in
urban areas (LG)

0.928** 0.931** 0.924** 0.929**
(0.287) (0.284) (0.287) (0.283)

Manufacturing as
percent of GDP
(LG)

−0.009 −0.008 −0.008 −0.008
(0.019) (0.019) (0.019) (0.019)

Fossil-fuel
production (LG)

0.003 0.003 0.003 0.003
(0.003) (0.003) (0.003) (0.003)

R2 0.996 0.996 0.996 0.996 0.996 0.996
rho 0.564 0.572 0.570 0.562 0.572 0.569

Notes: estimatedwith Prais-Winsten regression; 16 annual observations for 51 cases in all
models; 816 total observations in all models; coefficients flagged for statistical signifi-
cance; **−b0.01 *−b0.05 (two-tailed tests of statistical significance); panel-corrected
standard errors in parentheses; models includes AR(1) correction (labeled as “rho”);
models include unreported case-specific and year-specific intercepts (two-way fixed ef-
fects); all continuous variables are in base 10 logarithmic form (labeled “LG”).
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measure of income inequality is associated with a 0.101% increase in
CO2 emissions.

Turning briefly to the controls, the results indicate that CO2 emis-
sions are negatively associated with state environmentalism. In Model
8, the dummy variables for the Midwest and South census regions are
positive and statistically significant, suggesting regional variation. The
effect of fossil-fuel production is positive and statistically significant in
both models, while the effect of urban population is non-significant,
which contrasts with the results of the fixed effects analysis in Table 3
and could be the result of heterogeneity bias in the random effects
models. The effects of all other time-variant controls are consistent
with the fixed effects model estimates.

In additional fixed effects models and random effects models we in-
cluded quadratics for both income inequality measures, a standard ap-
proach to testing for curvilinear relationships. Both quadratics yielded
non-significant effects on emissions, the main effect of the Gini coeffi-
cient remained non-significant, while the main effect of income share
of the top 10% continued to be positive and statistically significant. In
other analysis, using robust regression, a relatively conservative ap-
proach that down-weights the influence of outliers in residuals
(Hamilton, 1992), we estimated logged and differenced models (also
known as relative change models) of change in emissions from 1997
to 2012 on change in both inequality measures from 1997 to 2012,
while controlling for change in population size and change in GDP per
capita. The results indicate that the estimated effect of change in the in-
come share of the top 10% (from 1997 to 2012) on change in CO2 emis-
sions (from 1997 to 2012) is positive and statistically significant
(estimated coefficient = 0.606, p b 0.05), while the estimated effect of
change in the Gini coefficient (from 1997 to 2012) is non-significant.
Based on these findings, a 1% increase in the income share of the top
10% from 1997 to 2012 is associated with a 0.606% increase in emis-
sions. These results suggest that the positive association between
state-level emissions and the income share of the top 10% also occurs
over relatively longer periods of time, and in general, the estimated lon-
ger-term effect of the income share of the top 10% on CO2 emissions ap-
pears to be relatively larger than the shorter-term effects reported in
Tables 3 and 4.

At the request of an anonymous reviewer, we estimated two-way
fixed effects longitudinal models of emissions that include alternative
measures of income inequality: the income share of the top 5% and
the income share of the top 1%. These two variables, whichwe obtained
from the same source as the other two income inequality measures, are
highly correlatedwith the income share of the top 10%. For the analyzed
sample, the Pearson's correlation coefficient for income share of top 10%
and top 5% is 0.981, and the Pearson's correlation coefficient for income
share of top 10% and top 1% is 0.925. Table 5 reports the findings for
these models, which we structured similarly to the models reported in
Table 3.

According to Models 9 through 11, the effect of income share of the
top 5% on state-level emissions is positive and statistically significant,
while Models 12 through 14 suggest the same for the income share of
the top 1%. Based on the estimated elasticity coefficients for these
models, a 1% increase in the income share of the top 5% is associated
with between a 0.088 and a 0.096% increase in CO2 emissions, while a
1% increase in the income share of the top 1% is associatedwith between
a 0.062 and a 0.069% increase in state-level emissions. The effect of the
Gini coefficient remains non-significantwhen including these two alter-
native inequality measures, and the estimated effects of all other con-
trols are consistent with the findings from the fixed effects models
reported in Table 3.

5. Conclusion

This study contributes to multidisciplinary research on the human
dimensions of climate change by analyzing the associations between
CO2 emissions and different types of income inequality at the U.S.
state level. Global and international inequalities of various types have
been widely studied. However, there is limited research on income in-
equality and CO2 emissions, and it has been primarily conducted at
the nation state level, focusing on how income inequality across nations
influences national-level emissions. While potentially illuminating,
cross-national research might overlook heterogeneity within nations,
including the association between income inequality and CO2 emis-
sions. Thus, the present study advances climate change research by in-
vestigating if and how multiple characteristics of income inequality
are associatedwith emissions, and the analysis is conducted at a sub-na-
tional level, providing amore nuanced view of these socio-environmen-
tal relationships.

The results of the longitudinal analysis indicate that a higher concen-
tration of income among the top 10% (as well as the top 5% and the top
1%) is positively associated with U.S. state-level emissions, while the
Gini coefficient's effect of CO2 emissions is not significantly different
than zero. Our findings concerning the concentration of income
among the top of the distribution are consistent with analytical ap-
proaches that focus on political economy dynamics and Veblen effects,
which highlight the potential economic and political power and the em-
ulative influence of the wealthy. The null effects of the Gini coefficient
are generally inconsistent with the marginal propensity to emit ap-
proach, which suggests that when incomes become more equally dis-
tributed, the poor will increase their consumption of energy and other
products as they move into the middle class, leading to an overall in-
crease in anthropogenic emissions. These results hold across multiple
model specifications, and net of the effects of other established econom-
ic, demographic, and political drivers of CO2 emissions.

Given the urgency of reducing carbon emissions, policy approaches
that combine equality-enhancing effects with direct reductions in emis-
sions are promising. Prior research on cap-and-dividend programs,
which combine an emissions cap with permit auctioning and per capita
revenue disbursement, suggests they are amore progressive policy than
carbon taxes or cap-and-trade schemes which do not explicitly reim-
burse lower-income households. According to Boyce and Riddle
(2009), with a $200 per ton carbon tax and no dividend, income loss
among the bottom quintile of households is estimated at 10.2%, or
twice the loss for the top quintile. By contrast, with a dividend, the top
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quintile loses 2.4% and the bottom gains 14.8%. If the findings for our
present study are valid, a cap-and-dividend scheme would have a sec-
ond pathway for emissions reductions, namely the impact of reduced
inequality. However, because cap-and-dividend schemes would likely
have more impact on the Gini coefficient than the income share of the
top 10%, the additional emissions reductions are likely to be modest.
Larger impacts on emissions may come frommeasures targeted at con-
centrations at the top of the distribution, such as wealth taxes, a finan-
cial transactions tax, and steeply progressive income taxes.

We conclude by suggesting future steps in this research area. First,
given the findings for our study, it is important to conduct analyses
that more closely identify the specific pathways through which
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inequality affects emissions. Second, future analyses should investigate
the relationship between income inequality and CO2 emissions at sub-
national levels within other large nations, such as the province level
within China and the state level within Brazil. Third, a related set of is-
sues to consider is if and how recessions might influence the relation-
ship between CO2 emissions and income inequality, and the extent to
which this might differ between nations and between sub-national
units. Finally, future research on other environmental outcomes, such
as land cover change and industrial water pollution, should investigate
the effects of income inequality as well.3 We hope this study will en-
courage other scholars to join us in pursuing such future empirical
investigations.
Appendix A. Percent Change Scores (1997 to 2012) for CO2 Emissions and Both Income Inequality Measures
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