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Weshow that log-dividends (d) and log-prices (p) are cointegrated, but, instead of de facto assuming the station-
arity of the classical log dividend–price ratio, we allow the data to reveal the cointegration vector between d and
p. We define the modified dividend–price ratio (mdp), as the long run trend deviation between d and p. Using
S&P 500 data for the period 1926 to 2012, we show thatmdp provides substantially improved forecasting results
over the classical dp ratio. Out of sample, while the dp ratio cannot outperform the “simplistic forecast” bench-
mark for any useful horizon, an investor who employs the mdp ratio will do significantly better in forecasting
3-, 5- and 7-year returns with an ROS

2 of 7%, 26% and 31% respectively. In some sense mdp can be considered as
a de-noising of the classical ratio as it addresses the major weakness in dp, its presumed inability in revealing
business cycle variation in expected returns. Unlike dp, mdp exhibits positive correlationwith the risk free return
component, and can discern if a low dividend state coincides with a low yield state.
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1. Introduction

The ability to forecast returns can easily be regarded as themost sig-
nificant question for asset allocation, and one of the most important is-
sues in the entire financial economics. After an early period where
return predictability was approached with simplistic or brute-force
methods, during the late 80s and early 90s, the literature proposed
more sophisticated and smart ways to measure the ability of valuation
ratios, and other statistics in predicting aggregate stock returns. Moti-
vated mainly by practitioner views starting with the classic Graham
and Dodd (1934) that high valuation ratios should carry positive
information about future returns, Fama and French (1988) find that
economically substantial return predictability at a long horizon exists.
Long-horizon forecasts are the mechanical result of short horizon
same-direction forecastability combined with a highly persistent fore-
casting variable. The persistence of a predictor variable leads to in-
creased predictive slope coefficients for longer horizons.
is), ineokosm@econ.auth.gr
Miller and Modigliani (1961) argued that dividend policy is irrele-
vant, and that stock prices should be driven by the “real” variable
which is the earnings power of corporate assets. Yet, from early on div-
idend yields attained special importance as a forecasting variable due to
the straightforward participation of the dividend yield in return forma-
tion, and its highly persistent dynamics which could provide predict-
ability in long forecasting horizons via the mechanism outlined above.

Cochrane (1992, 2011) argues that for long horizons, long-run re-
turn and/or dividend growth predictability have to coincide with the
variability of the log dividend–price ratio (dp)2 Actually Cochrane
(2011) goes one step further in arguing that (surprisingly) dp has no in-
formation about future dividend growth, and that almost all variation in
dividend yields is driven by variation in discount rates. Powerful as it
may be, this finding is based on two main assumptions, a) the station-
arity of dividend yields and b) the assumed ability to recursively extend
the Campbell and Shiller (1988) approximation to infinity.3 Further-
more, there are somemajor problems with the predicting performance
2 In this paper lowercase letters always denote logs: dt= logDt, pt= logPt, and
rt= logRt.

3 Engsted, Pedersen, and Tanggaard (2012) study the error of the Campbell–Shiller ap-
proximation in the presence of a non-stationary dp.
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Table 1
Summary Statistics.
We present the summary statistics for annual returns, equity premia, risk free rates, classic
dividend–price ratio (dp) and our modified dividend–price ratio (mdp). The table shows
the correlation matrix between the series as well as themean, standard deviation and the
autocorrelation coefficient based on AR(1) fitted model. Data are annual from 1926 to
2012.

rt ret rft dpt mdpt Mean Std AR(1)

rt 1 0.09 0.20 0.06
ret 0.99 1 0.06 0.20 0.05
rft 0.03 −0.12 1 0.04 0.03 0.93
dpt −0.25 −0.24 −0.05 1 −3.35 0.45 0.87
mdpt −0.34 −0.39 0.35 0.69 1 −2.05 0.26 0.70
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of the dividend yield. Firstly, its weak performance in predicting returns
and risk premia outside the sample used to determine the slope coeffi-
cient. Secondly, an inability in revealing high to medium frequency var-
iation (i.e. business cycles) in expected returns and equity risk-premia.
Over shorter than 7–10 year horizons, dividend–price ratiosmainly pre-
dict themselves (Goyal & Welch, 2003). The poor Out-of-Sample (OS)
performance of dividend–price ratio is exhibited in Goyal and Welch
(2003); Welch and Goyal (2008) and Campbell and Thompson (2008).
1.1. The non-stationarity of the dividend yield

Econometrically, most researchers argue that dp is a stationary
process based on infinite sample or asymptotic arguments, and take dp
stationarity as a given assumption. But neither the data sets that we ac-
tually use, nor the time horizons that we use to evaluate our
models' performance are infinite. At the same time, the majority of
empirical studies on return predictability, cannot reject statistically
(if not economically) the hypothesis of the presence of a unit root
in the dividend–price ratio (Goyal & Welch, 2003; Lettau & Van
Nieuwerburgh, 2008; Lettau & Ludvigson, 2005 among others).

We can see from summary statistics presented in Table 1, that the
dividend–price ratio dp has an autocorrelation φ = .87. Clearly, this is
a local alternative that unit root tests have not enough power to detect.
Furthermore, it is known, as early as Kendall (1954) that typical estima-
tionmethodswill tend to highly underestimate true persistence infinite
samples.4 In the following sections, we present robust econometric
evidence against the stationarity of the classical dp. Not only is station-
arity rejected via a straightforward ADF testing for dp, but using the
more powerful test of a restriction on the cointegration vector for d
and p we reject the hypothesis that log-dividends and log-prices are
linked with a long run relationship of the form (d-p).5 Econometrically,
dp is at best a near non-stationary process.

Economically, the unquestionable requirement that stock prices
cannot be far from corporate fundamentals for too long has often been
interpreted in a strict sense that the log dividend–price ratio is station-
ary either in the full sample or at least in specific subsamples. The
classical thinking about the behavior of dividend yield ratios is that div-
idends should represent a more or less “fixed” fraction of earnings, and
earnings should represent a more or less “fixed” fraction of prices. Thus,
most contemporary literature de facto assumes that the classical dp is a
stationary process and should not include any trends. Generally speaking
though, this is an economic requirement, which depends on a particular
sample, rather than a hard fact. Actually, corporate officers have large
discretion over payout options, and such discretion might impart unex-
pected structure into the dynamics of the dividend yield.

The fact that, over any finite period of time, dividends (and dividend
growth) can be arbitrary, and delinked from asset prices, means we
4 Actually, even the Kendall bias correction for autocorrelation –(1+3φ)/T is low.
5 That the [1,−1] vector spans the cointegration space.
should neither be dogmatic about the time series properties of the div-
idend yield nor about its inability to predict dividend growth. Yet, gen-
erally speaking, both academia and practice have avoided tackling
head-on the possibility of non-stationary dynamics in valuation ratios
such as the dividend–price ratio, despite the fact that the hypothesis
of a unit root in long horizon samples cannot be statistically rejected.
The economical source of such non-stationarity in dividend yields is
not easily understood. It could be the result of changes in dividend pol-
icy such as dividend smoothing, use of share repurchases in lieu of cash
payments, or it could be induced by other changes of investors' attitudes
toward dividends and taxes.

In any case, such changes in dividend policy will emerge in the data
as a slope differential between dividends and prices. When we move
away from dividend yield stationarity, assuming a deterministic long
run equilibrium relation between dividends and prices is the next logi-
cal step still satisfying a “fundamentals” based asset pricing philosophy.
In this paperwemodify thedividend–price ratio by relaxing the station-
arity assumption for the classical dpt, and assuming a deterministic long
run relation between dividends and prices; i.e. assume a cointegration
vector of the form dt=α+βpt, and allow the data to reveal the “true”
cointegration vector [1,−β].

In the above long-run relation, we define the modified dividend–
price ratio as the stationary cointegration error of this long-run equilib-
rium, mdp = d–βp. We may then think of β as the unique population
parameter that “fine tunes” dp by revealing the stationary trend devia-
tion between dividends and prices. This modified ratio (mdp) is more
informative than its non-stationary counterpart, the classical dp ratio.
Effectively, in our analysis, the classical dp can be thought as the modi-
fied ratio, mdp, plus a (possibly) small I(1) noise term.

dpt ¼ mdpt þ β−1ð Þpt : ð1Þ

By not de facto assuming an unreliable rejection of the non-
stationarity null for dp, themodified ratio presents amore reliable alter-
native, which allows for a richer representation of the d.g.p. Also, atφ=
.70, mdp still has enough persistence in order to provide forecastability
in long horizons. Before diving into a set of econometric tests, that will
undoubtedly establish the superiority of using our trend-corrected
modified dividend–price ratio in forecasting long-run returns, it is
worth to first approach the economic ramifications of a non-stationary
dp from a qualitative point of view.

In our setup, β provides the drift ratio between d and p. Roughly
speaking, a β b 1 implies that dividends have been growing more slowly
than prices. Having motivated the possibility for such a slope differential,
and thus a non-stationary dp, the important question with respect to un-
derstanding the true dynamics of dp is whether such non-stationarity is
only due to a deterministic time trend or it includes a unit root. The prob-
lem is that, as is now well understood, this question is inherently unan-
swerable for any finite sample (see Blough, 1992) since for any unit
root process, and sample size T, there exists a stationary process that is in-
distinguishable. Anotherway to understand this issue is that the question
of the inclusion of a unit root in the process is equivalent to finding
whether the population spectrum at zero is zero or attains any positive
value. This is clearly unanswerable, since in any sample there is no infor-
mation about cycles of a period larger than the sample size. A realistic tar-
get for the financial economist should rather be to describe the data in a
parsimonious way with low order autoregressions, since they are easier
to estimate than high order moving average processes.

We show that an investor who employs the modified ratio
(mdp) will improve his Out-of-Sample forecasting of 3-, 5- and 7-year
returns with an ROS

2 of 7%, 26% and 31% respectively. Furthermore, an
investor who has seen enough of the small (due to super-consistency)
required early sub-sample to reliably infer population values for the
cointegration coefficient between d and p, will actually improve his
forecasts of the 5- and 7-year returns by an astonishing ROS

2 of 49%,
and even attain a 3-year ROS2 of 34%.



9 Seo (1999); Boswijk (2001); Kim and Schmidt (1993) among others suggest that the
standard procedures are asymptotically valid both for unit root and cointegration. Never-
theless, the unit root tests have size distortions in small samples. Rahbek, Hansen, and
Dennis (2002) find that the usual procedures in order to test for cointegration based on
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Finally, a competing approach that may also produce a good in-
sample fit to the data is to allow for occasional breaks to the levels or
the slope of an otherwise stationary process (e.g. Fama & French, 2002
consider a mean reverting dp within different regimes). Furthermore,
it is well known that existing breaks will lower the power of unit root
tests (Perron, 1989), thus making stationary processes with breaks
difficult to distinguish from those including a unit root. Yet, allowing
for breaks that are impossible to predict ex ante has little value for
return predictability and forecasting, and will produce a weak out of
sample R2 (see Lettau & Van Nieuwerburgh, 2008). This is clearly not
the case with our parsimonious approach that produces significant
out-of-sample forecasting gains.

2. Econometric methodology

In this paper, we employ the multivariate Johansen (1991, 1995)
methodology in order to formulate, estimate and test the modified
ratio. In order to provide comprehensive testing in the presence of mul-
tiple cointegrating relations,6 the Johansen test estimates a Vector Error
Correction (VEC) model. In the general setup, one may have n-
dimensional time series and there may be multiple cointegrating rela-
tions among the variables. At its core, the Johansen method uses the
size of the eigenvalues of an impactmatrix C=AB′ to infer its rank. Spe-
cifically, themethod infers the cointegration rank by testing the number
of eigenvalues that are statistically different from 0. Although themeth-
od may appear to be very different from the Engle and Granger (1987)
approach, Johansen's maximum likelihood approach is essentially a
generalization of the augmented Dickey and Fuller (1979) test for unit
roots in many dimensions.

If w is a two-dimensional vector wt=[dt pt]′, and there exists a
cointegrating vector b, then b ′wt−1 is the “error” in the data that quan-
tifies a deviation from the stationary mean at time t − 1. Error correc-
tion in our context manifests itself as the tendency of a cointegrated
dividend and price series to revert to a common stochastic trend. Then
themodified dividend–price ratio (mdpt) will be defined as the trend de-
viation from the established long-run equilibrium between dividends
and prices

mdpt ¼ dt−βpt : ð2Þ

The dividend and price series correct from the “disequilibrium” that
mdp represents at rates captured by a vector of their specific adjustment
speeds a, thus forming a multiplicative error-correction term ab ′wt−1

that needs to be added to a simple VAR model explaining jointly price
change (Δp) and growth (Δd) dynamics and thus produce the so-
called vector error-correction VEC(q) model

Δw tð Þ ¼
Xq

i¼1
BiΔw t−ið Þ þ a b 0wt−1 þ c0

� �þ c1 þ u tð Þ: ð3Þ

The Johansen test for deterministic cointegration above7 address-
esmany of the limitations of theworkhorse of cointegration estimation,
the Engle–Granger method. Since we are only using a two-dimensional
vector w = [d p]′, for us the main benefits of the Johansen method is
that it avoids the two-step procedure,8 and thus provides a framework
6 This is of no consequence here as we are dealing with a 2-dimensional vector.
7 Eq. (2) may be slightly different depending on whether we assume that are no inter-

cepts or trends in the cointegrating relations and there are no trends in the data. Here we
assume that the log series have linear trends but the cointegration relationship contains
only a constant. This specification is a model of deterministic cointegration, where the re-
lations eliminate both stochastic and deterministic trends in the data.

8 A concern related to the Engle–Grangermethod is that it is a two-stepprocedure,with
the 1st regression employed to estimate the residual series, and the 2nd regression to test
for a unit root. Errors in the 1st estimation are automatically carried into the 2nd. More-
over, the estimated, and not observed, residuals require different tables of critical values
for standard unit root tests.
for testing restrictions on the cointegrating relations b (and the adjust-
ment speeds a) in the VEC model.

While it is true that the trace and maximum eigenvalue co-
integrating rank tests in Johansen are derived under the assumption of
Gaussian iid innovations, it has been shown that the standard rank
tests based on asymptotic critical values remain asymptotically valid
even in the presence of conditionally heteroskedastic shocks,9 and in
particular the trace statistic is more robust to both skewness and excess
kurtosis.

3. Results

High quality return data for the S&P 500 index, with and without
dividends, are available from CRSP since 1926. Below we show how
we use (total and ex-dividend) monthly returns' data for the S&P 500
in order to formulate annual dividend and price level series, and the
classical dividend–price ratios. Our sample10 spans the most recent
87 year period that ranges from January of 1926 to December of 2012.
We only use nominal data throughout the paper.11

When constructing the classical log dividend–price ratio

dpt ¼ dt−pt ¼ log Dt=Ptð Þ

we need to employ an annual horizon in order to cancel dividend
seasonality. Depending on how one forms annual dividends at the end
of month t, from the 12 preceding monthly dividends, the dividend
price ratio may be computed with two different methodologies. The
most common annual dividend–price ratio is based on the following
computation

DPt ¼ Dt

Pt
¼

X11

i¼0
D t−ið Þ
Pt

: ð4Þ

When we are endowed with monthly gross returns, RðtÞ ¼ PtþDðtÞ
Pt−1

;

and the monthly returns due to price gain alone (without dividends)
X(t)=Pt/Pt−1 respectively, the monthly dividend for month (t) is
given by12

D tð Þ ¼ R tð Þ
X tð Þ−1

� �
Pt :

A secondary method is to form a dividend–price ratio by re-
investing interim dividends. This technique may be more appropriate
from a conceptual point of view, but transfers to dividends some of
themarket volatility for the year, andmay thus be of less value for prac-
tical purposes as it distorts true cash made available to shareholders
during the period.13 Thus the literature mainly employs the simpler
and less volatile annual sum construction above for DP, as it presumably
represents more purely dividend policy decisions of firms.
the multivariate settings are asymptotically valid in the presence of multivariate condi-
tional heteroscedasticity (for further analysis on this concept see Harris and Sollis, 2003).
10 The data are from the Goyal andWelch database, available at http://www.hec.unil.ch/
agoyal.
11 See also the discussion in Campbell and Shiller (1988). Engsted and Pedersen (2010)
find that long-horizon predictability depends on whether returns and dividend growth
are measured in nominal or real terms.
12 We should not confuse D(t) the monthly dividend for month t, with Dt the ending at
month t annual dividend.
13 Chen (2009)finds that the annual (frommonthly) dividendconstruction can have sig-
nificant implications on estimated dividend growth predictability, as the reinvestment as-
sumption makes dividends inherit a lot of the intra-year realized return volatility.

http://www.hec.unil.ch/agoyal
http://www.hec.unil.ch/agoyal


Table AI
Cointegration Test and The null Hypothesis of [1−1].
We apply the Johansen testing procedure assuming trending series and no trend on
cointegration relationship. The pair [d p] tests for a cointegration relationship between
the 12 month summed-up dividends (d) and prices. The 2nd panel presents results for
the restriction test that [1 −1] spans the cointegration space between (d,p). A (*,**) de-
notes the 5% and 1% rejection level respectively. Data are overlapping annual spanning
the period, 1926–2012.

Panel A #Coint.vec Trace test stat
0 19.35*
≤1 0.24

5% critical value
0 15.49
≤1 3.84

Panel B H0: [1 −1] χ2-stat
10.42**
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3.1. Integration and co-integration of the series

In our notation,wt=[dt pt]′ represents the vector of underlying log
dividend and price series, and stationarity of the classical dp is robustly
tested in a straightforwardmanner as a restriction b=[1−1]′. In order
to test for cointegrationwemust specify, as afirst step, thedeterministic
components which are involved in both the short and long run dynam-
ics and the optimal lag length (q). As shown in Eq. (3), we proceed by
considering that the log series have linear trends but the cointegration
relationship contains only a constant. This specification is characterized
as testing for deterministic cointegration among trending series.

For the optimal lag selection,we first estimate the abovemodel in an
unrestricted form like a VAR model in levels with a high initial number
of auto-regressive lags and then we test for significance in the higher
order autoregressive coefficients. Estimating an initial VAR in levels is
crucial for the convergence properties of the usual test statistics. An ex-
tended reference on this subject can be found in Hamilton (1994, ch.18)
and Toda and Yamamoto (1995). We start by assuming a maximum
order of 12 lags and after we condition down to a more parsimonious
representation based on the Hannan–Quinn criterion. We conclude on
using 7 optimal lags for VAR and thus 6 lags for VECM.

Table AI presents the results. Trace tests14 show that the series are
cointegrated with a cointegration relationship of the form,

mdpt ¼ dt−0:8017pt : ð5Þ

The second panel of Table AI presents results for testing the restric-
tion that the vector [1−1] spans the cointegration space based on the
Johansen procedure on [d p], and it is shown that [1 −1] does not
span the cointegration space. As the Johansen procedure is essentially
a multivariate generalization of the augmented Dickey–Fuller test for
unit roots, this is more powerful empirical proof of the nonstationary
behavior of dp that deals with the low power of unit root tests against
highly persistent alternatives.

Finally, in order to measure the exact error correction feedback
mechanism we estimate the entire VECM in Eq. (3) and present the re-
sults in Table AII. We see that both dividends and prices exhibit valid
speed of adjustment dynamics (correction sign) and significant
coefficients.

3.2. In-sample predictability

In this section, we present the main univariate forecasting regres-
sions based on the classical dividend–price ratio (dp) and the modified
ratio (mdp) respectively. We formulate continuously compounded
returns, equity premia, and dividend growth for 1, 3, 5 and 7-year hori-
zons (h=1,3,5,7) using monthly S&P 500 data.

Table 2a presents the results of return, equity premiumand dividend
growth predictability for S&P 500 based on the following forecasting re-
gression. For return predictability, the left hand variable is the time-t fu-
ture log return (r), for one, three, five and seven years ahead15

rt hð Þ ¼ aþ cxt þ ut hð Þ:

In the above regression, the predictor variable represents either the
classical dp ratio or the modified ratio mdp. Standard errors are GMM
corrected based on the Hansen–Hodrick formula.16

As we can see, for both ratios (classical andmodified) aswe increase
the horizon moving from 1 to 7 years out, the slope coefficient and the
coefficient of determination are increasing for returns. Long-horizon
14 We also calculated Maximum-Eigenvalue test statistics and had similar findings.
15 Similarly for the h-year realized equity premium (ret(h)) or realized dividend growth
(Δdt(h)).
16 In order to correct heteroskedasticity and correlation effects Newey–West estimates
of the standard errors have also been tried with no change on the significance of the
findings.
forecasts are the mechanical result of short horizon same-direction
forecastability combined with a highly persistent forecasting variable.
This is a well understood effect in the literature starting as early as
Fama and French (1988), and explains how the persistence of a predic-
tor variable leads to increased slope coefficient for longer horizons.

The new insight of this paper is that part of the high persistence of a
non-stationary dp is due to the small embedded unit root in dpt=
mdpt+(β−1)pt. This extra persistence though, unlike the “useful”
persistence inmdp, carries no real predicting power. Thus, the true fore-
casting horizon is determined by the lower mdp persistence. The artifi-
cially longer horizon of dp, that one gets by mechanically extending
short period dp predictability into the distant future, is an artifact of
the non-stationary noise embedded in dp and of no real forecasting
value.

For all return horizons, modified ratios achieve impressive improve-
ments in all three dimensions: slope size (c), significance (t-stats), and
log-return explanatory power (R2). Modified ratio performance strictly
dominates classical ratios in all horizons, and furthermore, thismodified
ratio dominance gets more pronounced with an increasing horizon. For
example, in forecasting returns five years out, andwhile classical slopes
are about 0.40, the modified slopes have already attained their
Cochrane17 “theoretical limit” of 1. When extending the forecast hori-
zon to seven years, classical slopes have gone from roughly 0.40 to
0.50, still only half the size of their Cochrane limit. Furthermore, with
a t-statistic as large as three times the classical t-statistic,modified ratios
explain an impressive 40% of the five year future return, and an even
more impressive 50% of the 7-year future return.
3.3. A first attempt at an economic explanation

While the Miller–Modigliani irrelevance theorem implies no reason
for dividends to play a role in determining equity price levels or equity
returns, in reality dividends have always been at the center focus of
many investors. At the same time there is a substantial amount of recent
evidence that suggests that share repurchases have substituted for div-
idend payments over the last 20 to 25 years. If dividend and repurchase
policies are not independent and in fact substitute each other, the classi-
cal dividend yield will not correctly account for such substitution and
misinterpret gradual long-run changes in payout policy as business cycle
variation. It seems plausible, that the mdp ratio explains long run
returns better by removing a stochastic trend in the classical dp and cap-
turing the business cycle variation in expected returns.18

In order to better understandhowmdpworks, it is instructive to plot
both ratios against future realized returns. Fig. 1 plots the 5-year future
17 Cochrane (2011) forcibly argues that all dp variability comes from expected return
volatility, and none from dividend growth; “…What we expected to be zero is one; what
we expected to be one is zero.”
18 Another methodology suggested by scholars is to use a repurchase-adjusted dp. We
report in the last subsection some preliminary findings.



Table AII
VECM results between dividends and prices.
This table presents the results from the VECM estimation between dividends (d) and prices (p) using the multivariate Johansen methodology. Data are overlapping annual spanning the
period, 1926-2012. (*) and (**) denote significance at the 5% and 1% rejection level respectively.

a Δw(t-1) Δw(t-2) Δw(t-3) Δw(t-4) Δw(t-5) Δw(t-6) c1

Δd(t) -0.009770 0.001761 0.026325 0.284771 0.061383 0.059586 0.216636 0.001098
(0.00251)** (0.03050) (0.03039) (0.03031)** (0.03029)* (0.03035)* (0.03045)** (0.00065)

0.014078 0.013924 -0.000125 -0.011817 0.013378 0.020326 R2

(0.01126) (0.01127) (0.01127) (0.01125) (0.01126) (0.01128) 0.226167
Δp(t) 0.013824 0.008963 0.089282 0.050096 0.097928 -0.193692 -0.148287 0.004256

(0.00704)* (0.08533) (0.08504) (0.08481) (0.08475) (0.08491)* (0.08519) (0.00182)*
0.098233 0.004153 -0.086519 0.046227 0.083947 -0.039416 R2

(0.03151)** (0.03154) (0.03154)** (0.03147) (0.03151)** (0.03155) 0.038372
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realized long run returns against current dp and mdp levels. In particu-
larwe note the surprising ability of mdp to avoid the excessively low dp
print in the early 2000s. This happens because, in a world where some
dividend policy trend (e.g. an increasing use of share repurchases) has
induced non-stationarity in dp yields, mdp captures the true deviation
from long run equilibrium between prices and fundamentals, by prop-
erly factoring out the non-stationarity inducing dynamic.

The strong performance of mdp, in predicting future returns, is con-
siderably toned down when using mdp in explaining equity premia.
Actually, the performance of mdp in forecasting equity premia is com-
parable to the performance of the classical ratios. Since total equity re-
turn is composed of the risk free return plus the realized equity
premium, we can intuitively deduce that the enhanced performance
of mdp in predicting future returns comes from its robust capacity in
predicting the return component frommoney invested in risk free secu-
rities. Indeed as shown in Table 2b, in all tested horizons, 1-,3-,5-, and 7-
year risk free returns are forecasted by mdp but not dp.

It is important to economically discuss the positive correlation of
mdp with future risk free returns. We know that, given the high persis-
tency of short term yields, T-bill returns are highly forecastable. If inter-
est rates (and hence one-year risk free returns) are currently low, they
are likely to remain low for the next years aswell. If companies that con-
sistently pay dividends attract a certain type of investor (clientele) then
such companies can get away with low dividend yields when such low
payouts coincide with low current and future (due to their high persis-
tency) risk free yields. In such low-yield states of the economy, income
seeking investors will not allocate their portfolios out of low dividend
yield stocks because they have nowhere to go. This reasoning could be
at the heart of the strong forecasting power of our modified dp. As
mdp is driven by a strong positive correlation with risk free returns
(0.35), a low mdp print can discern that a low dividend state coincides
with a low yield state. This should be compared with the near orthogo-
nality of the classical dp (−0.05). One way to understand why the
Table 2a
Predictability of returns, equity premia and dividend growth.
Standard errors are GMM corrected. (Data are annualized constructed from monthly ob-
servations from 1926 to 2012.)

c t(c) R2 c t(c) R2

rt(1) dpt 0.09 1.57 0.03 rt(3) 0.27 3.10 0.11
mdpt 0.21 2.84 0.07 0.65 5.03 0.23

rt(5) dpt 0.42 4.19 0.19 rt(7) 0.51 3.48 0.25
mdpt 1.04 9.23 0.41 1.16 12.51 0.49

ret(1) dpt 0.09 1.67 0.04 ret(3) 0.28 3.19 0.12
mdpt 0.17 2.20 0.04 0.53 3.17 0.16

ret(5) dpt 0.44 3.67 0.21 ret(7) 0.55 3.23 0.30
mdpt 0.83 4.19 0.26 0.89 4.52 0.29

Δdt(1) dpt 0.02 0.63 0.00 Δdt(3) 0.01 0.13 0.00
mdpt 0.08 1.28 0.02 0.08 0.71 0.01

Δdt(5) dpt 0.04 0.50 0.00 Δdt(7) 0.00 0.04 0.00
mdpt 0.18 1.23 0.02 0.12 0.93 0.01
classical ratios don't share such forecasting ability with their modified
counterparts is if we view the modified dp as a de-noised dp. Even
though this yield information is embedded in the classical ratio as well
(as its stationary part), the I(1) “noise” component needs to be removed
before such information can be harnessed to enhance return forecasts.

3.4. Out-of-sample performance

In this section,we evaluate the ability ofmodified dividend–price ra-
tios to forecast Out-of-Sample (OS) returns and equity premia. The eval-
uation is done by comparing against the forecasting ability of a simple
benchmark for a real time investor. Campbell and Thompson (2008),
who summarize the forecasting power for a pool of common financial
and accounting variables, introduce the Out-of-Sample coefficient of
determination via their ROS2 statistic,

R2
OS ¼ 1−

Xτ
k¼1

rtþk−r̂tþk
� �2

=
Xτ
k¼1

rtþk−rtþkð Þ2
" #

:

This measure compares the OS performance of a predictor variable
that predicts r against the “simplistic forecast” benchmark that utilizes
the simple average of past returns r as forecast. The OS coefficient of
determination ROS

2 effectively asks if we could do a better forecasting
job than someone who just expects that “…returns will always be the
same”. When comparedwith the squared Sharpe ratio, a positive ROS2 di-
rectlymeasures thewelfare benefits (for amean–variance investorwith
a given risk aversion coefficient) of the increased portfolio returns
achieved by using the predictor variables.
Fig. 1. Evolution of dp and mdp against forward looking 5-year returns.



Table 2b
Univariate forecasting of long run risk free rates.

We run univariate regressions between long run risk free rates,r f tðhÞ ¼ ∑h
j¼1r f tþ12 j, with

the competing dividend–price ratios ( dpt,mdpt) as regressors. Data are annualized con-
structed from monthly observations with an overlapping rolling window from 1926 to
2012. Standard errors are GMM corrected.

c t(c) R2

rft(1) dpt −0.00 −0.69 0.00
mdpt 0.04 2.71 0.11

rft(3) dpt −0.01 −0.48 0.01
mdpt 0.12 2.02 0.13

rft(5) dpt −0.02 −0.39 0.00
mdpt 0.21 2.08 0.15

rft(7) dpt −0.04 −0.49 0.01
mdpt 0.27 2.02 0.14
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Wepresent the Campbell–Thomson OS coefficient of determination,
for predicting returns and equity premia for 3-, 5- and 7-year horizons.
We divide the data sample in two periods. Initially, we utilize a 15-year
minimal estimation period (1926–1941). The remaining sample, ex-
tending beyond the estimation period (until 2012), constitutes the eval-
uation period. We choose 15 years for the initial estimation period as it
is necessary to have enough initial data in order to provide reliable OLS
estimators, and at the same timea large evaluation period for reliableOS
appraisal (see the discussion in Welch & Goyal, 2008).

While calculating dp from current data is straightforward, in order
for the econometrician to construct mdp, the true long-run coefficient
(β) between d and p needs to be estimated first. On a first approach,
the straightforward method is to re-estimate the cointegration coeffi-
cient on a recursive (R) basis, each time using only data up to a certain
point t. This means a two-step procedure for every time t: a) a
cointegration coefficient bt with d and p data only up to time t is esti-
mated, and b)mdp(R)=d−btp for this period is formed, so that finally
a forecasting regression of returns against that mdp can be run.

Aswe can see, the classical dp ratio cannot provide positive ROS2 values,
meaning that it fails to outperform the simplistic forecast benchmark for
all short- to medium-term horizons. To get the dp ratio to (marginally)
outperform the “simplistic forecast” we need to utilize a long 7-year
horizon. On the other hand, the modified ratio provides forecasting
benefits as fast as in predicting the 3-year forward return. An investor
who employs the modified ratio (mdp) will improve his Out-of-
Sample forecasting of 3-, 5- and 7-year returns with an ROS

2 of 7%, 26%
and 31% respectively.

Thus, use of the mdp addresses a major weakness in dp, namely its
presumed inability in revealing high tomedium frequency (i.e. business
cycle) variation in expected returns. As the investing horizon gets lon-
ger, the modified ratio ROS

2 is increasing and reaches a 31% strong gain
for seven years ahead. The statistical significance of ROS2 does not matter
here because we believe that the sign is clear. Even a small ROS2 can
provide great investment benefits for investors who would otherwise
Table 3
Out Of Sample (OS) evaluation.
We present OS results for classical and the two modified dp ratios: one with a recursive
procedure mdp(R) and one where the entire sample is used to estimate the cointegrating
coefficient mdp(P). Data are overlapping annual spanning the period, 1926–2012.

Realized future returns rt(3) rt(5) rt(7)

dp −0.03 −0.02 0.14
mdp (R) 0.07 0.26 0.31
mdp (P) 0.34 0.49 0.49

Realized future premia ret (3) ret (5) ret (7)

dp −0.01 0.00 0.16
mdp (R) −0.11 −0.01 0.03
mdp (P) 0.20 0.28 0.26
think that “…returns will be as they always have…” (see Campbell &
Thompson, 2008; Rapach, Strauss, & Zhou, 2010).

3.5. Performance of the population mdp

Actually even the strong performance of mdp(R) depicted in Table 3
is conservative, and the true forecasting benefit of mdp for a large sam-
ple is probably even higher. Although it ismore agreeable from an infor-
mational point of view, the recursive procedure carries great sampling
errors, and puts the predicting power of mdp(R) at a disadvantage.
This happens because, when estimating bt recursively, we run forecast-
ing regressions of future returns against an mdp proxy, and not against
the truemdp that would be produced by the use of the population coef-
ficient β.

Furthermore, due to the super-consistency of the cointegration esti-
mator only a small early sub-sample is required to reliably infer popula-
tion values for the cointegration coefficient between d and p. Thus,
in Table 3 we not only present the recursive performance of mdp(R),
but also estimate a population (or long-run) mdp(P) where the co-
integration coefficient is estimated using the full sample. Effectively,
the difference between mdp(P) and mdp(R) measures the forecasting
gain for an investorwhohas seen enough data to recover the population
coefficient β. As shown in Table 3, an investor who has seen enough of
this early subsample, will actually improve his forecasts for the 5- and
7-year returns by an astonishing ROS2 of 49%, and even attain a surprising
34% Out-of-Sample 3-year R2 statistic.

A concern with evaluating the performance gain of the popula-
tion mdp(P) is whether a practitioner operating in the early part of
our sample, and estimating cointegration coefficients without access
to enough historical data, could have exploited the full forecasting
power of mdp(P) to his advantage. This “look ahead” concern, when
we try to examine the out-of-sample power of our modified ratios, is
well documented by Lettau and Ludvigson (2001) in the similar case
of evaluating the performance of their cay variable. There is an inherent
difficulty in addressing this issue, since subsample analysis (such as out-
of-sample forecasting tests) entails a loss of information, andmay fail to
reveal the full forecasting ability measured with in-sample tests. For
reasons explained also in Lettau and Ludvigson (2001), the appropriate
estimation strategy for measuring the full forecasting power of the
modified ratios, could be to use the full sample, because sufficiently
large samples of data are necessary to recover the true cointegration co-
efficients. Assuming that the investor knows the population coefficient
is not a heavy requirement because cointegration coefficients are
Fig. 2. Convergence of a recursively estimated cointegration b coefficient to its population
value β.
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super-consistent, converging to their true values at a rate proportional
to the sample size T.

Fig. 2 shows a graph of recursively estimated b coefficients over the
sample. As shown in Fig. 2, an investor who has seen as little as 30 years
of data may treat estimated coefficients as long-run b values during the
second-stage forecasting regressions.

Besides the econometrics, on a practical level we feel that the true
performance gain should be thought of as somewhere between the per-
formance of mdp(R) and that of mdp(P); i.e. we view them more as a
low and high limit on the forecasting gain of modifying dp. In any
case, and regardless of whether one uses the recursive or population
methodology tomeasure theperformance of ourmodified ratio, compa-
rable levels of OS performance to the tune of 30% (or 50% for the popu-
lation statistic) have not been achieved by any other forecasting
indicator that we know of.

3.6. Further robustness checks

a) One robustness check,19 is to consider single-equation, multivariate
regressions of the form rt(h)=a+b1dt+b2pt+ut(h) instead of
using the trend deviationmdp as the single right-hand side variable.
Under the null hypothesis that the left-hand-side variable is station-
ary, while the right-hand side variables are I(1) with a single
cointegrating relation, the limiting distributions for b1 and b2 will
be standard, implying that the above forecasting regressionwill pro-
duce valid R2 and t-statistics. Since this procedure does not require
any first-stage estimation of cointegration parameters, it is clear
that the forecasting R2 statistics, are true indications of forecasting
power. The R2 of the multivariate regressions on long run returns
for one, three, five and seven years ahead are 7%, 23%, 41%, and
49% respectively, showing that modified ratios have true forecasting
power and do not carry “forward looking” information by being es-
timated in afirst stage, evenwhenusing data from thewhole sample
period (as in our long-run mdp).

b) A second important robustness check is to test the performance of
mdp and dp in economically meaningful subsamples. One such sub-
sample is the period after 1965. Even though we leave this exercise
along with other robustness checks for a follow-up study, a first
analysis for the 3-year horizon reveals that the performance gain
of mdp becomes stronger in the 1965–2012 subperiod. Specifically,
in the 1965–2012 multivariate subsample regression rt(3)=
a+c0dpt+c1mdpt, the coefficient of mdp is significant while for dp
we cannot reject the null hypothesis.

c) As a third robustness check, we investigate the possible role of stock
repurchases. Some scholars argue that as there were persistent
changes in firm payout policies in the 1990s, we should adjust divi-
dend–price ratios for repurchases (Fama & French, 2001; Grullon &
Michaely, 2002; Boudoukh et al., 2007). We run multivariate regres-
sions for 3-, 5- and 7-year horizons with both a repurchase adjusted
dividend–price ratio andmdpon the right hand side competing to ex-
plain returns. In all three horizons,mdp “wins” as it comes out strong-
ly significant while the repurchase adjusted dp is not significant.

4. Conclusion

While dividends are a critical component of the total return an in-
vestor enjoys fromher stock holdings, and dividend–price ratio can pre-
dict returns, extant literature has largely avoided tackling head-on the
possibility of a nonstationary dividend–price ratio. After failing to reject
the null of a unit root in the classical dividend–price ratio (dp), we as-
sume away dividend yield stationarity, and show that a cointegrating
19 This approach was initially proposed in Lettau and Ludvigson (2005) for the case of
cay.
relationship, not spanned by [1,−1], between dividends and prices ex-
ists.We estimate a relation of the type d=α+βp, and define themod-
ified dp ratio as the stationary cointegration error of this long-run
equilibrium. We think of β as the unique parameter that “fine tunes”
dp, and reveals the true long-run equilibrium between d and p, by re-
moving a possibly small I(1) “noise” component. Indeed, using S&P
500 data for the period 1926 to 2012, we show that mdp is more
informative than classical dp, and provides substantially improved fore-
casting results over the classical dp ratio for medium and long horizons
from 3 to 7 years. As we show, one source for the gain of the modified
ratio in forecasting returns is due to its enhanced ability to forecast
their risk free component. Depending on whether one uses the recur-
sive or population methodology to form mdp, the performance gain of
modifying dp lies between a low of 30% and a high limit to the tune of
50% for the population method.
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