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 The applications of techniques from statistical (and classical) mechanics to model interesting problems in
economics and finance have produced valuable results. The principal movement which has steered this research
direction is knownunder the nameof ‘econophysics’. In this paper, we illustrate and advance some of thefindings
that have been obtained by applying the mathematical formalism of quantummechanics to model human deci-
sionmaking under ‘uncertainty’ in behavioral economics and finance. Starting from Ellsberg's seminal article, de-
cision making situations have been experimentally verified where the application of Kolmogorovian probability
in the formulation of expected utility is problematic. Those probabilitymeasures which by necessitymust situate
themselves inHilbert space (such as ‘quantumprobability’) enable a faithful representation of experimental data.
We thus provide an explanation for the effectiveness of the mathematical framework of quantum mechanics in
the modeling of human decision making. We want to be explicit though that we are not claiming that decision
making has microscopic quantummechanical features.
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1. Introduction

Roughly speaking, ‘econophysics’ concerns the application of
classical (and statistical mechanical) physics theories to model the be-
havior of economic and financial systems. The econophysics movement
has been leaded by several brilliant physicists (see, e.g., (Mantegna &
Stanley, 1995), (Mantegna & Stanley, 2000), (Roehner, 2002),
(McCauley, 2004), (Schinckus, 2013). This article aims to bring to the
attention of econophysicists a novel emerging domain where the appli-
cation of methods and techniques inspired by quantum physics has
been successful in the last years. This domain, known in the scientific
community as ‘quantum cognition’, was born as a bold proposal to
solve a specific problem.1

The quantum cognition domain applies themathematical formalism
of quantum mechanics to model situations and processes in human
cognition, decision making and language that have resisted traditional
modeling techniques by means of classical structures, i.e. Boolean logi-
cal structures, Kolmogorovian probability spaces, Bayesian update of
probabilities, commutative algebras, etc. (see Section 2). Therefore,
the results obtained in quantum cognition have a deep impact on be-
havioral economics and finance. This domain has attracted in the last
years the interest of high impact factor and top journals, media and
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popular science and funding institutions (Lambert Mogiliansky, Zamir,
& Zwirn, 2009), (Aerts, 2009), (Khrennikov, 2010), (Busemeyer,
Pothos, Franco, & Trueblood, 2011), (Busemeyer & Bruza, 2012),
(Aerts, Broekaert, Gabora, & Sozzo, 2013a), (Aerts, Gabora, & Sozzo,
2013b), (Haven & Khrennikov, 2013), (Aerts, Sozzo, & Tapia, 2014),
(Yukalov & Sornette, 2014), (Sozzo, 2014), (Sozzo, 2015). To better
clarify the boundaries of quantum cognition it is worth mentioning
two important aspects of it, which are as follows.

(i). The success of this quantummodeling is interpreted as due to the
‘descriptive effectiveness of themathematical apparatus of quan-
tum theory as a formal tool to model cognitive dynamics and
structures in situations where classical set-based approaches
are problematical’, ‘without any’ a priori direct or precise connec-
tion with the validity of quantum laws in the microscopic world.

(ii). There is no need, in order to guarantee the validity of the obtain-
ed results, to introduce any compelling assumption about the
existence of microscopic quantum processes at the level of the
human brain. Hence, quantum cognition should not be confused
with ‘quantum mind’ or ‘quantum consciousness’.
What are the possible advantages of quantum cognition in
economics? In this respect, the application of normative models
of decision making to the behavior of economic agents has pro-
duced a variety of sophisticated mathematical frameworks, the
most important of which are ‘expected utility theory’ (EUT)
(von Neumann & Morgenstern, 1944) and ‘subjective expected
utility theory’ (SEUT) (Savage, 1954). The former is designed
for decisions under ‘risk’, that is, a choice among different
ramework to model economic agents' decisions under uncertainty, In-
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gambles defined on an objective probability measure, whilst the
latter is designed for decisions under ‘ambiguity’, that is, a choice
amongdifferent acts defined on a subjective probabilitymeasure.
Both theories implicitly assume that ‘probabilities are
Kolmogorovian’, that is, probabilities are assigned to events ac-
cording to rules obeying the axioms of Kolmogorov. However,
since thework ofAllais (1953), decision economists systematical-
ly produce empirical situations where concrete human decisions
violate the axioms of EUT. Moreover, since the work of Ellsberg
(1961), decision economists are also able to generate empirical
situations where concrete human decisions violate the axioms
of SEUT. Finally, recent work of Machina (2009) reveals that the
most recognized extensions of EUT and SEUT able to cope with
‘Allais’ or ‘Ellsberg paradoxes’ are highly problematical in specific
decisionmaking situations, i.e. ‘Machina paradox’ (see Section 3).
Inspired by our quantum cognition approach, we have recently
elaborated a complete modeling of the ‘Ellsberg paradox’ by
using the mathematical formalism of quantum mechanics
(Aerts et al., 2014), (Khrennikov & Haven, 2009), (Aerts, Sozzo,
& Tapia, 2012). We have also faithfully represented the data
collected in an experiment we performed on a typical Ellsberg
paradox situation with real decision makers (Aerts et al., 2014).
In this paper we further inquire into our quantum-theoretic
framework for the Ellsberg paradox, showing that our results
go beyond the mere theoretical modeling and representation of
a set of empirical data. We also provide sufficient arguments to
claim that, not only in the Ellsberg paradox, but also in other
situations affected by ambiguity, such as the ‘Machina paradox’,
structurally there is a real need for a non-classical probability
model. We would like to advance two reasons.

(i). In an Ellsberg-type decisionmaking process, the agent's choice is
actualized as a consequence of an interaction with the cognitive
context, exactly like in a quantum measurement process where
the outcome of the measurement is actualized as a consequence
of the interaction of the measured particle with the measuring
apparatus. Therefore, in cognitive entities, as well as in
microscopic quantum entities, measurements do not reveal
preexisting values of the observed properties but, rather, they
actualize genuine potentialities. Classical Kolmogorovian proba-
bility can only formalize lack of knowledge about actualities,
hence it is generally not able to copewith a decisionmaking pro-
cess. We have proven that this is possible by using a complex
Hilbert space, and by representing probability measures by
means of ‘projection valued measures’ on a complex Hilbert
space (Aerts, 2009), (Sozzo, 2014), (Sozzo, 2015). A projection val-
ued measure is essentially different from a single Kolmogorovian
probability measure, since the latter is a σ–algebra valued mea-
sure, whilst the former is not.

(ii). The notion of ambiguity, as introduced in economics, is completely
compatible, both at amathematical and an intuitive level, with the
representation of states of cognitive entities as vectors of a Hilbert
space. Indeed, just like in standard quantum mechanics the state
vector incorporates the ‘quantum uncertainty’ of a microscopic
particle, also in an Ellsberg-type situation, the agent's subjective
preference towards ambiguity is naturally formalized by
representing the state of the cognitive entity under study by
means of such a Hilbert space vector (this perspective is getting
more and more accepted in the scientific community, including
mainstream psychologists (see Wang, Solloway, Shiffrin, &
Busemeyer, 2014). In this respect, it is worth mentioning that
Ellsberg called ‘ambiguity aversion’ the ‘irrational’ factor inducing
decisionmakers to deviate from SEUT. In our approach, ambiguity
aversion is only one – albeit an important one – of the conceptual
landscapes surrounding the decision maker's choice in a situation
where ambiguity is present. This result is compatible with the ex-
perimental findings confirming Ellsberg's prediction about the
Please cite this article as: Haven, E., & Sozzo, S., A generalized probability f
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human attitude towards ambiguity (Machina & Siniscalchi,
2014), but alsowith some recent experimentswhere such attitude
is more controversial (Charness, Karni, & Levin, 2013).
Points (i) and (ii) provide an intuitive explanation for the identifi-
cation of genuine quantum structures in the Ellsberg paradox.
Those structures are typically characterized by notions such as
‘contextuality’, ‘interference’ and ‘superposition’, which will be
discussed in more detail in Section 4.
In concluding this section, it is important to mention that our
model which aims to represent human decision making in eco-
nomics is a descriptive model: it describes what economic agents
actually do, not what they should do, under uncertainty. However,
it already contains some insights onhow the construction of an ax-
iomatic frameworkofwhatwe could call ‘contextual expectedutil-
ity’ as based on a non-classical probability can be able to copewith
human ambiguity, or ‘contextual risk’, as we could call it. If we
wanted to embed our approach into the fundamentals of micro-
economics, then a natural generalization of EUT and SEUT may
simply consist in requiring that economic agents maximize their
contextual expected utility. An important achievement in that re-
gard would require a representation theorem which provides for
a rigorous proof of the equivalence between the existence of a
preference relationship and an order inequality between utility
functions embedding this type of expected utility.
Our generalization of the probability models employed in an ex-
pected utility framework has a profound impact on any economics
or finance problemwhere this basic microeconomic framework is
used as an input in its modeling objectives. Indeed, an important
assumption in general equilibrium based macroeconomic models
is the ‘rational expectations hypothesis’ which exactly rests on
the expected utility hypothesis. The consistency of themodels im-
posed by rational expectations has profound implications on the
design and impact of macroeconomic policy-making (Hansen &
Sargent, 2010), (Mehra & Prescott, 1985).
2. On the effectiveness of quantummathematics in human cognition

Classical Boolean logic and Kolmogorovian (or Bayesian) probability
theory have exercised a long influence on theway inwhich scholars for-
malize human behavior under uncertainty. However, empirical evi-
dence, accumulated in the last thirty years in cognitive psychology,
clearly indicates that these classical structures do not provide the
most general modeling framework for human decision making.

There are three major domains of cognition where deviations from
classical logical and probabilistic structures have been observed.

The first of these two domains is ‘concept theory’. Cognitive scien-
tists know that concepts exhibit ‘graded’, or ‘fuzzy’, ‘typicality’,
e.g., humans estimate an exemplar such as Robin as more typical than
Stork as a typical example of the concept Bird. A problem arises when
one tries to formalize the typicality of the combination of two concepts
in terms of the typicality of the component concepts which form that
combination. One is intuitively led to think that the standard rules of
classical (fuzzy set) logic and probability theory apply in such combina-
tions. However, Osherson and Smith showed in 1981 that this intuition
is not correct for concept conjunctions. Humans score the typicality of
an exemplar such as Guppy with respect to the conjunction Pet–Fish as
higher than the typicality of Guppy with respect to both Pet and Fish
separately (‘Guppy effect’) (Osherson & Smith, 1981). One realizes at
once that typicality violates standard rules of classical (fuzzy set) logic.
A second set of human experiments on concept combinations was per-
formed by James Hampton. He measured the membership weight, i.e.
normalized membership estimation, of several exemplars, e.g., Apple,
Broccoli, and Almond, with respect to pairs of concepts, e.g., Fruits,
Vegetables, and their conjunction, e.g., Fruits and Vegetables, or
ramework to model economic agents' decisions under uncertainty, In-
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disjunction, e.g., Fruits or Vegetables. These membership weights again
showed systematic deviations from standard classical (fuzzy set) rules
for conjunction (Hampton, 1988a) and disjunction of two concepts
(Hampton, 1988b). The conclusion is immediate: one cannot express
conceptual gradeness in a classical (fuzzy) set-theoretic model. In
more general terms, one cannot represent experimental membership
weights in a single classical probability space satisfying the axioms of
Kolmogorov (Aerts, 2009).

The second set of empirical findings showing unexpected deviations
from classicality pertains to ‘decision theory’ and can be traced back to
the work of Kahneman and Tversky in the 1980's. Their famous experi-
ment on the ‘Linda story’ revealed that situations existwhere the partic-
ipants estimate the probability of the conjunction of two events as
higher than the probability of one of them, thus violating monotonicity
of classical probability (more generally, Bayes' rule) (Tversky &
Kahneman, 2015). This ‘conjunction fallacy’ is an example of a ‘human
probability judgment’ (a ‘disjunction fallacy’ has also been observed
where humans estimate the probability of the disjunction of two events
to be less than the probability of one of them) and classical
Kolmogorovian probability is again not applicable in these cases
(Busemeyer & Bruza, 2012). A ‘disjunction effect’ was also identified
by Tversky and Shafir in the nineties (Tversky & Shafir, 1992). In the lat-
ter effect, people prefer action A over action B if they know that an event
X occurs, and also if they know that X does not occur, but they prefer B
over A if they do not knowwhether X occurs or not. The disjunction ef-
fect violates a fundamental principle of expected utility theory, Savage's
‘Sure-Thing principle’ (Savage, 1954) (more generally, the total
probability law of classical probability), revealing that humans show
an ‘uncertainty aversion’, as detailed in Section 3.

These surprising findings led several scholars to explore alternatives
to traditional modeling approaches that could better cope with the ef-
fects, fallacies and paradoxes above. As we already have tried to argue
in Section 1, amajor alternative can be the so called ‘quantum cognition
approach’, which applies the conceptual and mathematical framework
of quantum mechanics to model cognitive processes (Lambert
Mogiliansky et al., 2009), (Aerts, 2009), (Khrennikov, 2010),
(Busemeyer et al., 2011), (Busemeyer & Bruza, 2012), (Aerts et al.,
2013a), (Aerts et al., 2013b), (Haven & Khrennikov, 2013), (Aerts
et al., 2014), (Sozzo, 2014), (Yukalov & Sornette, 2014), (Sozzo, 2015).

Quantummechanics provides a specific mathematical framework to
formalize microscopic phenomena. More concretely, any entity is de-
scribed in the quantum formalism by a specifically structured linear
space over complex numbers, called ‘Hilbert space’. The state of an enti-
ty is represented by a vector belonging to this Hilbert space, while a
measurement performed on an entity by means of a measurement ap-
paratus is represented by a specific operator, called ‘self-adjoint opera-
tor’, mapping a vector of this Hilbert space into another vector of the
same space. The measuring apparatus provides a ‘measurement con-
text’ for the measured entity and induces an ‘indeterministic change
of state’ of the entity itself, in which a single outcome is actualized in a
set of possible outcomes as a consequence of the interaction between
the measured entity and the measuring apparatus. Heisenberg called
this change of state a ‘transition from potential to actual’, since the
quantum state incorporates these intrinsic and unavoidable aspects of
‘contextuality’, ‘pure potentiality’ and ‘uncertainty’. The statistics of re-
peated measurements is described by a probabilistic rule, called the
‘Born rule’, and the ensuing quantum probability model does not satisfy
the restrictions of classical Kolmogorovian probability. This mathemat-
ical formalism naturally copes with very fundamental quantum effects,
such as ‘interference’, ‘superposition’ and ‘entanglement’.

What was a priori completely unexpected is that the mathematical
formalism sketched above, which we call ‘quantum mathematics’ to
emphasize that it is used for modeling purposes outside of physics,
has been very powerful to represent human decision making. In partic-
ular, the theoretical framework of quantum probability, which is more
general than classical Kolmogorovian probability, has been able, not
Please cite this article as: Haven, E., & Sozzo, S., A generalized probability f
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only to cope with all the cognitive situations above, where traditional
probability models are problematical, but it has also shown a capability
to predict the results of new experiments which have been performed
in recent years. In our opinion, those outcomes do show that there is a
serious rationale for arguing that genuine quantum structures may
exist in the mechanisms of conceptual combination (Aerts, 2009),
(Aerts et al., 2013a), (Aerts et al., 2013b), (Sozzo, 2014), (Sozzo,
2015), human probability and similarity judgments (Lambert
Mogiliansky et al., 2009), (Busemeyer et al., 2011), (Busemeyer &
Bruza, 2012), (Yukalov & Sornette, 2014), (Pothos & Busemeyer,
2009), and thereby also in behavioral economics/finance (Khrennikov,
2010), (Haven & Khrennikov, 2013), (Aerts et al., 2014), (Pothos &
Busemeyer, 2009), (Danilov & Lambert-Mogiliansky, 2010).

The success of the quantum cognition approach goes beyond its
modeling effectiveness. Indeed, there are deep analogies between the
interactions (of a physical nature) occurring in a quantum measure-
ment process, and the interactions (of a cognitive nature) occurring in
a decision process. More concretely, in a quantum measurement pro-
cess, the measurement context actualizes one outcome among the pos-
sible outcomes, thus provoking an indeterministic change of state of the
microscopic quantum particle that is measured. Similarly, whenever a
person is asked to give a preference, or tomake a choice, or to take a de-
cision, contextual influence (of a cognitive type) and a transition from
potential to actual occur in which an outcome is actualized from a set
of possible outcomes. One can say that, in both quantum and cognitive
realms, measurements ‘create’, rather than just ‘record’, properties of
the measured entities. A second important common aspect of quantum
and cognitive realms is that each measurement changes the state of the
measured entity in a different way, that is, the probability of getting a
given pair of outcomes in two sequential measurements depends on
the order in which the measurements are performed. One typically
says thatmeasurements are generally ‘non-commutative’, or ‘non-com-
patible’, in the quantum jargon. Cognitive experiments frequently pro-
vide significant examples of non-compatible sequential questions. At
variancewith classical Kolmogorovian probability, quantum probability
enables coping with this kind of contextuality, pure potentiality and
order effects occurring in both physical and cognitive realms (Aerts,
2009), (Busemeyer & Bruza, 2012), (Aerts et al., 2013b).

The result is that we are at a theoretical crossroad in human cogni-
tion, having either to continue relying on classical probability theory
and accept the observed deviations as fallacies or aversions, or to look
at alternative approaches that allow for the provision of better descrip-
tive and normative accounts of human decision making. The chosen
pathmay have an impact on human life in general, as economics, finan-
cial and political decisions strongly depend on decision makingmodels.

In this framework we can situate the third set of empirical difficul-
ties of traditional classical probabilistic approaches to human decision
making, namely, those characterizing behavioral economics. This will
be discussed in the next section.

3. The Ellsberg paradox

It is usually maintained that individuals behave in uncertainty situa-
tions in such away that theymaximize their wealthwhich, according to
‘expected utility theory’ (EUT) (von Neumann & Morgenstern, 1944),
(Savage, 1954), can be achieved by maximizing expected utility. The
simplicity, mathematical tractability and predictive success of EUT
make it the predominant economics model of decision making under
uncertainty. However, starting from the work of Maurice Allais (Allais,
1953), significant empirical deviations from this ‘expected utility maxi-
mization rule’ have been systematically observed in specific types of sit-
uations, and these deviations are traditionally referred to as paradoxes.

EUT was originally developed by von Neumann and Morgenstern
(1944)). They formulated a set of axioms that allow to represent deci-
sion maker preferences over the set of ‘acts’ (functions from the set of
states of nature into the set of consequences) by a suitable functional
ramework to model economic agents' decisions under uncertainty, In-
.irfa.2015.12.002
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Table 1
The payoff matrix for the typical Ellsberg paradox situation.

Act Red Yellow Black

f1 $12 $0 $0
f2 $0 $0 $12
f3 $12 $12 $0
f4 $0 $12 $12

Table 2
The payoff matrix for the ‘Machina reflection example with lower tail shifts’.

Act Red Yellow Black Green
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Epu(.), the ‘expected utility’, where u is a ‘Bernouilli utility function’ on
the set of consequences, and p is an objective probability measure on
the set of states of nature.

How does EUT copewith uncertainty? Knight pointed out the differ-
ence between ‘risk’ and ‘uncertainty’ reserving the term ‘risk’ for situa-
tions that can be described by objective probabilities, and the term
‘uncertainty’ to refer to situations in which agents do not know the
probabilities associated with each of the possible outcomes of an act
(Knight, 1921). Von Neumann and Morgenstern's formulation of EUT
did not contemplate the latter possibility, since all probabilities are ob-
jective in their scheme. For this reason, Savage extended EUT allowing
agents to construct their own subjective probabilities when objective
probabilities are not available (Savage, 1954). Hence, according to
Savage's extension of EUT, or SEUT, the distinction proposed by Knight
would be irrelevant. Ellsberg instead showed in a series of ‘thought ex-
periments’ that Knightian's distinction is empirically meaningful, thus
pointing out some limitations of Savage's SEUT (Ellsberg, 1961). In par-
ticular, Ellsberg presented the following experiment.

Consider one urnwith 30 red balls and 60 balls that are either yellow
or black, the latter in unknown proportion. One ball will be drawn at
random from the urn. Then, free of charge, a person is asked to bet on
one of the acts f1, f2, f3 and f4 defined in Table 1.

When asked to rank these gamblesmost of the persons choose to bet
on f1 over f2 and f4 over f3. This ‘Ellsberg preference’ cannot be explained
by SEUT. Indeed, preferences must be consistent under SEUT, in the
sense that f1 is preferred to f2 if and only if f3 is preferred to f4.
Rephrasing, individuals' ranking of the sub-acts [12 on ‘red’; 0 on
‘black’] versus [0 on ‘red’; 12 on ‘black’] depends upon whether the
event ‘yellow’ yields a payoff of 0 or 12, contrary to what is suggested
by the Sure-Thing principle, one of the axioms of Savage's SEUT.2 The
conclusion follows at once. There is no way to define an utility function
u, associatedwith the given payoffs, and subjective probabilities, associ-
ated with the events ‘red’, ‘yellow’ and ‘black’, such that the preferences
observed in the Ellsberg situation are satisfied. Nevertheless, these
choices have a direct intuition: f1 offers the 12 prize with an ‘objective
probability’ of 1/3, and f2 offers the same prize but in an element of
the ‘subjective partition’ {‘black’, ‘yellow’}. In the same way, f4 offers
the prize with an objective probability of 2/3, whereas f3 offers the
same payoff on the union of the unambiguous event ‘red’ and the
ambiguous event ‘yellow’. Thus, in both cases the unambiguous bet is
preferred to its ambiguous counterpart. This preference for known
probability over ambiguous bets is now called ‘ambiguity aversion’.
Interestingly enough, the deviation from classical logical reasoning ob-
served in the Ellsberg paradox is deeply connected with the disjunction
effect introduced in Section 2, both being characterized by a violation of
the Sure-Thing principle.

Extensions of SEUT were worked out to tackle the issues of SEUT
raised by Ellsberg-type preferences. These generalizations are primarily
axiomatically formulated and consist in replacing the Sure-Thing
principle by weaker axioms.We briefly summarize themost known ex-
tensions of SEUT, as follows.

(i). ‘Choquet expected utility’. This model considers a subjective
non-additive probability (or, capacity) over the states of nature
2 The Sure-Thing principle was presented by Savage by introducing the ‘businessman
example’ and can be rigorously formalized within SEUT, but it can be intuitively stated
as in Sect. 2.
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rather than a subjective probability. Thus, decision makers
could underestimate or overestimate probabilities in the Ellsberg
experiment, and ambiguity aversion is equivalent to the convex-
ity of the capacity (pessimistic beliefs) (Gilboa, 1987), (Gilboa &
Schmeidler, 1994), (Choquet, 2015).

(ii). ‘Max-Min expected utility’, or ‘expected utility with multiple
priors’. The lack of knowledge about the states of nature of the
decision maker cannot be represented by a unique probability
measure but, rather, by a set of probability measures. Then, an
act f is preferred to g if and only if minp∈PEpu( f)Nminp∈PEpu(g),
where P is a convex and closed set of additive probability mea-
sures. Ambiguity aversion is represented by the pessimistic be-
liefs of the agent which takes decisions considering the worst
probabilistic scenario (Gilboa & Schmeidler, 1989).

(iii). ‘Variational preferences’. In this dynamic generalization of the
Max-Min expected utility, agents rank acts according to the crite-
rion infp∈Δ{Epu( f)+c(p)}, where c(p) is a closed and convex
penalty function associated with the probability election
(Maccheroni, Marinacci, & Rustichini, 2006).

(iv). ‘Second order probabilities’. This is a model of preferences over
acts where the decision maker prefers act f to act g if
Eμϕ(Epu( f))NEμϕ (Epu(g)), where E is the expectation operator,
u is a von Neumann–Morgenstern utility function, ϕ is an in-
creasing transformation, and μ is a subjective probability over
the set of probability measures p that the decision maker thinks
are feasible. Ambiguity aversion is here represented by the con-
cavity of the transformation ϕ (Klibanoff, Marinacci, & Mukerji,
2005).
The approaches (i)–(iv) have been extensively applied in eco-
nomic and financial modeling. Given the enormous challenge of
formalizing human decision making, it does not come as a sur-
prise that the four above approaches do have shortcomings
((Machina, 2009), (Epstein, 1999)). It should also be stressed
that in fact none of these models can satisfactorily represent
more general Ellsberg-type situations, e.g., ‘Machina-type para-
doxes’ (Machina, 2009), (Baillon, O., & Placido, 2011)).
In 2009 Mark Machina proposed new thought experiments, the
‘50:51 example’ and the ‘reflection example’, which seriously
challenged the approaches (i)–(iv) (Machina, 2009), (Baillon
et al., 2011)). In particular, the reflection example questions the
‘tail separability’ assumption of Choquet expected utility exactly
as the Ellsberg three-color example questions the Sure-Thing
principle of SEUT. A version of the Machina reflection example
can be formalized as follows.
Consider one urn with 20 balls, 10 are either red or yellow in un-
known proportion, 10 are either black or green in unknown pro-
portion. One ball will be drawn at random from the urn. Then,
free of charge, a person is asked to bet on one of the acts f1, f2,
f3 and f4 defined in Table 2.

Machina introduced the notion of ‘informational symmetry’, that is,
the events “the drawn ball is red or yellow” and “the drawn ball is black
or green” have known and equal probability and, furthermore, the am-
biguity about the distribution of colors is similar in the two events.
Under informational symmetry, people should prefer act f1 over act f2
and act f4 over act f3, or they should prefer act f2 over act f1 and act f3
f1 $0 $50 $25 $25
f2 $0 $25 $50 $25
f3 $25 $50 $25 $0
f4 $25 $25 $50 $0

ramework to model economic agents' decisions under uncertainty, In-
.irfa.2015.12.002
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over act f4. This is in particular inconsistent with the predictions of
Choquet expected utility in (i). A recent experiment confirms the
preference of f1 over f2 and f4 over f3, consistently with informational
symmetry (O. & Placido, 2010).

We do not insist on the Machina paradox in the present paper, for
the sake of brevity – we will briefly come back to it in Section 4 within
our quantum-theoretic approach. We limit ourselves to mention that
further investigation is still needed towards the construction of a satis-
factory framework for representing ambiguity, ambiguity aversion and,
more generally, human preferences under uncertainty (O. & Placido,
2010).

4. Quantum structures in the Ellsberg paradox

We expose in this section our approach to economic agents decision
making based on the mathematical formalism of quantum mechanics.
We do not present the technical details of our modeling, but instead
we aim to be as intuitive and explicative as possible. The reader interest-
ed to the technical aspects of our approach can refer to our papers (Aerts
et al., 2014), (Khrennikov & Haven, 2009), (Aerts et al., 2012).

The first insight towards the elaboration of a quantum probabilistic
framework tomodel Ellsberg-type situations came from our conceptual
and structural investigation of how the approaches generalizing SEUT
cope with ambiguity and ambiguity aversion (Gilboa, 1987), (Gilboa &
Schmeidler, 1989), (Maccheroni et al., 2006), (Klibanoff et al., 2005).
As we know, ambiguity characterizes a situation without a probability
model describing it, while risk characterizes a situation where one pre-
supposes that a classical probability model on a σ–algebra of events ex-
ists. The generalizations in (i)–(iv), Section 3, consider more general
structures than a single classical probability model on a σ–algebra. We
are convinced that this is exactly the point: ambiguity, due to its contex-
tual nature, structurally needs a non-classical probability model. To this
end we have elaborated a general framework for this type of situations,
based on the notion of ‘contextual risk’ and inspired by the probability
structure of quantummechanics. The latter is indeed intrinsically differ-
ent from a classical probability on a σ–algebra, because the set of events
does ‘not’ form a Boolean algebra (see Section 2).

The second insight came from the application of our quantum cogni-
tion approach to the decision making process occurring in an Ellsberg-
type situation. In such a decision process, there is a contextual influence
of a cognitive, not physical, nature having its origin in the way themind
of the person involved in the decision, i.e. a choice between two acts, re-
lates to the situation that is the subject of the decision making, i.e. the
Ellsberg situation. This led us to represent both the Ellsberg and
Machina paradox situations by using the mathematical formalism of
quantum mechanics in Hilbert space (Aerts et al., 2014), (Khrennikov
& Haven, 2009), (Aerts et al., 2012).

Let us firstly introduce what we call the ‘cognitive Ellsberg entity’,
namely, the situation of an urn containing 30 red balls and 60 black
and yellow balls, the latter in unknown proportion. We assume that
this entity is in a specific state pv, represented by a unit vector |v〉 of
the Hilbert space ℂ3 on the field of complex numbers ℂ.3 Let us then
consider a ‘color measurement’ on the Ellsberg entity, with three possi-
ble outcomes, ‘red’, ‘yellow’ and ‘black’, which we describe by the con-
text g and represent by the self-adjoint operator G. The corresponding
probability of getting one of these three outcomes in a measurement
of g in the state pv can be interpreted as a subjective probability, but
such a probability is calculated by using standard rules for quantum
probability. Of course, the probability of getting ‘red’ must be 1/3, if
we want to represent the canonical three-color Ellsberg example. We
realize at once that, already at this stage, the presence of ambiguity is
formalized by means of a quantum state and a quantum probability
measure for the events occurring in this state. Moreover, this state can
3 The choice of a 3-dimensional space is justified by the fact that three elementary and
independent events appear in this Ellsberg urn.
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change under the influence of a specific cognitive context, which
reflects the different preference of agents towards ambiguity (this per-
spective is gettingmore andmore accepted in the scientific community,
including mainstream psychologists; please see (Wang et al., 2014)).
Let us then come to the acts f1, f2, f3 and f4. They are represented by
the self-adjoint operators F 1 , F 2 , F 3 and F 4 , respectively, on ℂ3.
We can calculate the expected utility associated with each act fi, i=
1,… , 4, in terms of the expected values of the operators F i in the
Ellsberg state pv, again by following standard quantum probabilistic
rules. One can then show that, while the expected utility associated
with the acts f1 and f4 is independent of the Ellsberg state, that is, this ex-
pected utility is ‘ambiguity-free’, the expected utility associatedwith the
acts f2 and f3 depends on this Ellsberg state, hence on subjective prefer-
ences towards ambiguity. This means that it is possible to find suitable
‘Ellsberg superposition states’, that is, superpositions of two states in-
corporating different attitudes towards ambiguity, such that the expect-
ed utility of f1 is greater (less) than the expected utility of f2 and the
expected utility of f4 is greater (less) than the expected utility of f3.
This is in perfect agreement with the typical pattern of response of
individual agents in Ellsberg-type paradoxes (Aerts et al., 2014),
(Khrennikov & Haven, 2009), (Aerts et al., 2012). One recognizes here
amajor novelty of our approach. The subjective probabilities are not cal-
culated through a fixed mathematical rule assigning to individual
events the same probability in each act. The subjective probabilities in-
stead ‘change’ depending on the state of the cognitive Ellsberg entity,
which incorporates subjective attitudes towards ambiguity.

The construction above shows that the Ellsberg situation can be rep-
resented in a quantum-mechanical probability framework. But, to have
an explicit representation we needed to perform a real experiment on
human participants. This is exactly what we did, reporting its results
in (Aerts et al., 2014). To perform the experiment we sent out a ques-
tionnaire to several people, including friends, relatives and students,
to avoid statistical selection biases. An extract of the text is as follows.

... Imagine an urn containing 90 balls of three different colors: red balls,
black balls and yellow balls. We know that the number of red balls is 30 and
that the sum of the black balls and the yellow balls is 60. The questions of
our investigation are about the situation where somebody randomly
takes one ball from the urn.

(i). The first question is about a choice to bemade between two bets: bet
f1 and bet f2. Bet f1 involves winning ‘10 euros when the ball is red’
and ‘zero euros when it is black or yellow’. Bet f2 involves winning
‘10 euroswhen the ball is black’ and ‘zero euroswhen it is red or yel-
low’. The question we would ask you to answer is:Which of the two
bets, bet f1 or bet f2, would you prefer?

(ii). The second question is again about a choice between two different
bets, bet f3 and bet f4. Bet f3 involves winning ‘10 euros when the
ball is red or yellow’ and ‘zero euroswhen the ball is black’. Bet f4 in-
volves winning ‘10 euros when the ball is black or yellow’ and ‘zero
euros when the ball is red’. The second question therefore is:Which
of the two bets, bet f3 or bet f4, would you prefer?
Let us now analyze the obtained results. Our test on the Ellsberg
paradox problem involved 59 participants.4 The answers of the
participants were distributed as follows: (a) 34 participants pre-
ferred acts f1 and f4; (b) 12 participants preferred acts f2 and f3;
(c) 7 participants preferred acts f2 and f4; (d) 6 participants pre-
ferred acts f1 and f3. This makes the weights with preference of
act f1 over act f2 to be 0.68 against 0.32, and the weights with
preference of act f4 over act f3 to be 0.69 against 0.31. Hence, 46
participants over 59, that is, 78%, chose the combination of act
f1 and act f4 or act f2 and act f3. This inversion of preferences
disjunction effect (Tversky & Kahneman, 2015; Tversky& Shafir, 1992).We think that am-
biguity aversion shares many features with these psychological effects, as discussed in
Sect. 2.
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cannot be explained by SEUT, and ourfinding replicated themost
commonly observed choice pattern in the three-color urn.
Participants' choices above can be represented in a quantum-
mechanical framework. Indeed, let us firstly consider the choice
to bet on f1 or on f2. This is a choice with two possible outcomes,
say o1 and o2, hence it can be described as a measurement giving
oi if act fi is chosen, i=1,2. The simplest outcomes are o1=+1
and o2=−1. We represent the measurement associated with
the first bet by the self-adjoint operatorO12. Let us then consider
the choice to bet on f3 or on f4. This is a choice with two possible
outcomes too, say o3 and o4, hence it can be described as a mea-
surement giving oi if act fi is chosen, i=3,4. The simplest out-
comes are o3=+1 and o4=−1. We represent the
measurement associated with the second bet by the self-adjoint
operator O34 . We proved in (Aerts et al., 2014) that the
operatorial relation O12 � O34 ¼ O34 � O12 holds. This means that
the corresponding ‘choice measurements’ are compatible, or
commutative, in the sense that they can be measured together,
and no order effects should appear if we reverse the order of
questions in our experiment (see Section 2). But, we also proved
that the possibility of representing our experimental data by
compatible measurements for the bets relies crucially on our
choice of the Hilbert space ℂ3 over complex numbers ℂ as a
modeling space. Indeed, if a Hilbert space over real numbers is
attempted, no compatible measurements for the bets and the
data can be constructed any longer (Aerts et al., 2014).
The above result is relevant, in our opinion, since it shows that
quantum structures can be validly invoked in the Ellsberg para-
dox. Indeed, the existence of compatiblemeasurements to repre-
sent decision makers' choices among the different acts in our
experiment is a direct consequence of the fact that we used a
complex Hilbert space as a modeling space. If one instead uses
a real Hilbert space, then the collected experimental data cannot
be reproduced by compatible measurements. Hence, two alter-
natives are possible. Either one requires that compatible mea-
surements occur in an Ellsberg-type situation, and then one has
to accept a complex Hilbert space representationwhere ambigu-
ity is incorporated into superposed quantum states, and these
superpositions are of the ‘complex type’. Hence entailing genuine
interference since whenever a superposed state vector is con-
structed with complex (non-real) coefficients, the quantum ef-
fect of interference is always at play. Alternatively, one can use
a representation in a real Hilbert space but, then, one should ac-
cept that an Ellserg-type situation cannot be reproduced by com-
patible measurements. In either case, the appearance of
quantum structures, i.e. interference due to the presence of gen-
uine complex numbers, or incompatibility due to the impossibil-
ity to represent the data by compatible measurements, seems
unavoidable in the Ellsberg paradox situation.
Let us briefly summarize the novelties and possible advantages of
using a quantum-theoretic approach to model economic agents'
decisions under uncertainty. By introducing a more general quan-
tum probabilistic framework we are able both to reproduce the
typical pattern that is observed in an Ellsberg paradox situation,
and to model a real decision making experiment on this paradox-
ical situation. The representation of the decisionmaker's subjective
beliefs and probabilities by means of respectively a quantum state
vector and a quantum probability measure naturally capture the
presence of ambiguity in this type of situations. And, more impor-
tant, ambiguity aversion is accounted for by describing the deci-
sion maker's choice as the result of a contextual interaction with
the cognitive context. In this respect, ambiguity aversion is one of
the cognitive landscapes driving human decisions under uncer-
tainty, but other cognitive contexts may well be present, and
those can be modeled in our quantum framework. The latter re-
mark is important, and we think it deserves further explanation.
Please cite this article as: Haven, E., & Sozzo, S., A generalized probability f
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Firstly, our quantum-theoretic approach works well in the tradi-
tional Ellsberg experiment (‘single three-color urn’), but it perfect-
ly reproduces the other experiments considered by Ellsberg
(‘single four-color urn’, ‘double two-color urn’).
Secondly, our approach is general enough to cope with different
empirically based human attitudes towards ambiguity. Indeed,
many experiments were performed after Ellsberg and, while
most of them confirmed ambiguity aversion (Machina &
Siniscalchi, 2014), some experiments could be explained in terms
of ‘ambiguity neutrality’ and even ‘ambiguity attraction’
(Charness et al., 2013). This seems to confirm our insight that
other cognitive contextsmay play a role in driving humandecision
making in these situations.
It is worth mentioning, to conclude, that our quantum-theoretic
modeling is also sufficiently general to cope with various general-
izations of the Ellsberg paradox,which are problematic, such as the
Machina paradox and other similar ‘ambiguity laden’ situations
(Machina, 2009), (Aerts et al., 2012), (Baillon et al., 2011). In this
respect, the preferences in the Machina reflection example in
Section 3 can be described by assuming that the cognitive context,
mainly driven by ‘informational symmetry’, determines a change
in the state of the ‘cognitive Machina entity’. We have recently
worked out a quantum-theoretic model of the Machina paradox
situation where the state of the cognitive Machina entity is repre-
sented by a unit vector of the Hilbert spaceℂ4 – herewe have four
elementary events – and is bijectively associated with a subjective
probability distribution. In other words, also in the Machina para-
dox situation, the subjective probability changeswith the state and
is influenced by the cognitive context. Our quantum-theoretic
model in ℂ4 reproduces informational symmetry and perfectly
agrees with the data collected in (Aerts & Sozzo, 2015).
We are currently investigating the possibility of a contextual gen-
eralization of EUT and SEUT based on a quantum probability
framework, which would provide a normative status to our
approach.
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