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A B S T R A C T

The literature has recently proposed a new type of tests for the Efficient Market Hypothesis based on
Permanent-Transitory Component Models. We compare the power of these statistics with conventional
tests based on linear regressions. Simulation results suggest that the former dominate the latter for a wide
range of data generating processes. We propose an application to spot and forward interest rates. Empiri-
cal results show that the two types of tests can yield conflicting results which can be explained by the size
distortions and reduced power which affect the statistics based on linear regressions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A large number of studies builds on the idea that the price of
financial securities is driven by a common stochastic trend - which
can be thought of as the fundamental value - and transient disequi-
librium terms. For instance, Campbell and Shiller (1987) emphasize
how there is only one non-stationary common driving force which
can be interpreted as something exogenous to the system of the term
structure.1 The presence of common stochastic trends in financial
securities has been traditionally modelled through the concept of co-
integration.2 This last has become a convenient frame within which
tests for the Efficient Market Hypothesis (EMH) can be carried out.
For instance, considering forward and spot rates, the EMH is eval-
uated by estimating linear regressions between levels of the two
rates (levels regressions), or between excess forward returns and
forward premia (forward-spot regressions), and by testing that the
parameter attached to the regressor is equal, respectively, to one and
zero (see, e.g., Cuthberson, 1996; Fama & Bliss, 1987). However, a

� I am grateful to Enzo Dia, Giorgio Fazio and two anonymous referees for their
useful comments.

E-mail address: fabrizio.casalin@newcastle.ac.uk.
1 Similarly, in Mussa’s (1982) sticky-price model exchange rates are represented as

a combination of fundamental and transient disequilibrium terms.
2 See Granger (1986) for a comprehensive coverage of the topic.

well-known limitation of these approaches is that - being the EMH a
joint hypothesis of rational expectation (RE) and constant term pre-
mia (TP) - they cannot decompose the relative contribution of the
two factors to the invalidation of the hypothesis. Moreover, the pres-
ence of serial correlation in the disturbance term of levels regressions
may induce estimation bias and invalidate asymptotic inference (see
Li & Maddala, 1997).

Recently, an important strand of research has documented the
presence of different forms of non-linearities in interest rate move-
ments, and shown that these last can affect the finite sample per-
formances of tests for the EMH.3 For instance, Clarida, Sarno, Taylor,
and Valente (2006), and Bansal and Zhou (2002) use different tests
for EMH and document how their outcome depends on the abil-
ity of empirical models to properly detect regime shifts in interest
rates series, thus suggesting that the presence of these last might be
an important source of misspecification. Popular modelling strate-
gies were to enable regime shifts in specific parameters featuring
univariate or multivariate models with error correction, as well as
in the parameters governing the term premia component or con-
ditional volatility. Regime shifts, in turn, have been traditionally
modelled through Markov-switching processes - therefore enabling

3 Non-linear dynamics can be induced by factors such as business cycle expansions
and contractions, asymmetric transaction costs or infrequent trading.
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for multiple switchings - or single structural breaks (see, e.g. Gray
(1996) and Brooks and Rew (2002)).

In the last decade, a number of scholars has modelled
co-integration by following an alternative approach based on
Permanent-Transitory Component Models (PTCMs). For instance,
Iyer (2000) applies PTCMs to spot and forward interest rates whereas
Hai, Mark, and Wu (1997) use the same modelling strategy to study
the forward discount bias in foreign exchange markets. Recently,
Casalin (2013) has proposed a PTCMs representation of spot and
forward rates which makes it possible the identification of spe-
cific restrictions for the EMH and rational expectations which can
be tested by means of standard Likelihood Ratio (LR) statistics. By
making use of the moving average representation of spot and for-
ward rates, the author shows that the above statistics are linked to
conventional tests based on levels and forward-spot regressions.

This paper aims to advance the understanding of the finite sam-
ple properties of the LR statistics based on PTCMs by comparing
their power with that of conventional tests based on linear regres-
sions. We carry out the empirical analysis for a large spectrum
of data-generating processes (DGPs) featuring normal disturbance
terms, volatility clustering, misspecification of term premia, multiple
regime shifts, and integrated versus near-integrated series for for-
ward and spot rates. Empirical results suggest that LR tests for the
null of EMH present approximately correct size and stronger power
than their counterparts based on forward-spot and levels regres-
sions. Moreover, conventional tests based on levels regressions are
affected by size distortions which lead to over rejections of the null.
All in all, our simulation exercises suggest that LR statistics based
on PTCMs perform better than conventional tests based on linear
regressions over a wide range of DGPs. The power of the above statis-
tics tend to weaken for DGPs that depart from the benchmark case
of normal disturbance terms. More specifically, the presence of near-
integrated series as well as misspecified term premia are the two
elements with the strongest power reducing effect, whereas both
volatility clustering and regime shifts present negligible impacts. We
propose an application of the above tests to series for three-month
Eurodollar and Sterling Libor spot and forward interest rates. When
applied to the two datasets, the tests for EMH agree in rejecting the
null at standard significance levels. Similarly, tests for rational expec-
tations consistently reject the null when applied to Sterling series.
However, the same tests deliver inconsistent results when applied
to Eurodollar series. More specifically, conventional tests based on
linear regressions soundly reject the null of rational expectations,
whereas statistics based on PTCMs fail to reject the same null at
the 10% level. The conflict between the two competing tests can be
resolved by recurring to our simulation results which show that, con-
ditional on the data-generating process which characterizes spot and
forward series, the former is affected by significant size distortions
whereas the latter presents approximately correct size and stronger
power.

The rest of the paper is organized as follows. Section 2 sets out
the baseline relationship on which tests based on PTCMs are built,
and it highlights the link between these last and conventional tests
based on linear regressions. Section 3 illustrates the design of the
simulation experiments. Section 4 compares size and power of tests
based on PTCMs with their counterparts based on linear regres-
sions. Section 5 checks the robustness of the above results when spot
and forward rates evolve as stationary highly persistent processes.
Section 6 proposes an application of the above tests to actual data.
Section 7 concludes the paper.

2. Tests based on linear regressions and PTCMs

Defining Sm(t) the m-period spot rate and Fi+m
i (t) the m-period

futures rate, i.e. the rate at trade date t prevailing between periods

(t + i) and (t + i + m), we can specify the baseline relationships for
spot and forward rates as follows:

Fi+m
i (t) = Et[Sm(t + i)] + 1 + c(t) (1)

Sm(t + i) = Et[Sm(t + i)] + eSm (t + i) (2)

where Et[Sm(t + i)] denotes the expected spot rate at time t, 1 and
c(t) denote the constant and time-varying component of the term
premium and eSm (t + i) is a random forecast error orthogonal to the
information set available at time t.4 Conventional tests based on lin-
ear regressions can be constructed by estimating the following two
relationships:

Fi+m
i (t) − Sm(t + i) = a0 + b0

[
Fi+m

i (t) − Sm(t)
]

+ e(t + i) (3)

Fi+m
i (t) = a1 + b1Sm(t + i) + n(t + i) (4)

where the validity of the EMH implies b0 = 0 and b1 = 1. The
above restrictions are tested through the statistics t0 = b̂0/se

(
b̂0

)
and t1 =

(
b̂1 − 1

)
/se

(
b̂1

)
.

Tests based on PTCMs exploit Stock and Watson’s (1993) obser-
vation that co-integrated variables can be expressed as a linear
combination of I(1) common stochastic trends and I(0) components.
By applying this result to spot and forward rates, it becomes possible
to write:

Fi+m
i (t) = lFi+m

i
(t)+xFi+m

i
(t), lFi+m

i
(t) = lFi+m

i
(t−1)+4Fi+m

i
(t) (5)

Et[Sm(t + i)] = lSm (t), lSm (t) = lSm (t − 1) + 4Sm (t) (6)

where lFi+m
i

(t) and lSm (t) are random walk processes, 4Fi+m
i

(t) and
4Sm (t) are independently distributed white noise disturbances and
xFi+m

i
(t) is a transient deviation from the stochastic trend.5 By using

Eqs. (2) and (6) to specify the observable spot rate at time (t + i) and
assuming co-integration, spot and forward rates can be specified as
follows:

Fi+m
i (t) = k2,1 • l∗(t) + xFi+m

i
(t) (7)

Sm(t + i) = l∗(t) + eSm (t + i) (8)

l∗(t) = l∗(t − 1) + 4(t) (9)

where k2,1 is a constant parameter, 4(t) ∼ iid N
(

0,s2
l

)
and

eSm (t + i) ∼ iid N
(
0,s2

S

)
. Eqs. (7)–(9) are the PTCMs representation of

spot and forward rates. This last shows that the two rates are driven
by the same stochastic trend l∗(t), a stationary “omnibus” term mod-
elled by xFi+m

i
(t), and a forecast error eSm (t + i) which encompasses

all the residual forces which affect the two rates.
The rational expectations leg of the EMH is modelled through the

parameter k2,1. More specifically, when k2,1 equals 1, then expecta-
tions are formed “correctly”, i.e. the forward rate at time t will match,
in conditional expectations, the future spot rate. In this case, any dif-
ference between the two rates is driven by a term premium plus a

4 For series of spot and forward rates in stock, foreign exchange and commodity
markets m is set equal to 1, whereas for series in bond markets m ≥ 1.

5 In line with Stock and Watson (1993), no restrictions are imposed on the stochas-
tic properties of xFi+m

i
(t) beyond being ARMA stationary.
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random noise which are modelled through the term xFi+m
i

(t) + eSm

(t + i). The hypothesis of constant term premium is then encom-
passed in the condition that the transient component xFi+m

i
(t) is

constant.
By assuming that the process xFi+m

i
(t) evolves as an ARMA(1,1) as

follows:

(1 − 0L)xFi+m
i

(t) = 1 + (1 − hL)eFi+m
i

(t) (10)

with eFi+m
i

(t)~iid N
(
0,s2

F

)
and exploiting the moving average repre-

sentation of Eqs. (7)–(9), it can be shown that the population value
of b0 is as follows:

b0 =
(1 − k2,1)s2

l [(1 − k2,1)(T − m) + m)] + 1+h2−2h0
1−02 s2

F

s2
l

[
(1 − k2,1)2(T − m) + m

]
+ 1+h2−2h0

1−02 s2
F + s2

S

(11)

whereas the population value of b1 converges to the following
expression:

lim
T→∞

k2,1Ts2
l

k2
2,1Ts2

l + 1+h2−20h
1−02 s2

F

=
1

k2,1
(12)

where T is the number of observations used to estimate Eqs. (3) and
(4) (see Casalin (2013)). Eqs. (11) and (12) shed light on the link
between tests based on PTCMs and their counterparts based on lin-
ear regressions. On the one hand, the baseline case of EMH, which
is tested through the null H0 : b0 = 0 in forward-spot regres-
sions, is equivalent to the null H0 : k2,1 = 1 ∩ sF = 0 when tested
through PTCMs. Departures from the EMH can be modelled through
the following data-generating processes:

i - Departures from RE and time varying TP: k2,1 �= 1 ∩ sF > 0
ii - Departures from RE and constant TP: k2,1 �= 1 ∩ sF = 0

iii - RE and time varying TP: k2,1 = 1 ∩ sF > 0

In the first case the population value of the parameter b0 takes
the general specification of Eq. (11), whereas in the last two cases it
assumes restricted specifications which depend on whether k2,1 = 1
or sF = 0. On the other hand, when spot and forward rates are
co-integrated, the parameter b1 detects only departures from ratio-
nal expectations, since the variability induced by time varying term
premia vanishes as the number of observations increases. Thus, the
baseline case of rational expectations, which is tested through the
null H0 : b1 = 1, is equivalent to the null H0 : k2,1 = 1 when tested
with PTCMs.

The PTCMs representation of spot and forward rates of Eqs. (7)–
(9) can be estimated by means of Kalman Filter and Maximum
Likelihood (ML). The null hypotheses of EMH and rational expecta-
tions can be specified as H0 : k2,1 = 1 ∩ sF = 0 and H0 : k2,1 = 1,
and tested by means of Likelihood Ratio (LR) tests. Throughout the
paper the two statistics will be denoted, respectively, by LR0 and
LR1. Given that the null of EMH implies that one parameter value(
i.e. s2

F

)
is placed on the boundary of the parameter space, the

asymptotic distribution of the statistic LR0 can be approximated by a
mixture of central chi-square distributions known as chi-bar square,
and defined as w̄2

(2) = 0.5w2
(1) + 0.5w2

(2) (see Shapiro (1985), Self and

Liang (1987)).6 However, as pointed out by Stoel, Garre, Dolan, and
van den Wittenboer (2006), the chi-bar square specification holds
exactly as long as the empirical distribution of the parameters under

6 Thus, the conventional w2
(2) distribution has too heavy a tail, leading to too-

conservative hypothesis tests.

constraint is symmetrical. When the condition of symmetry does not
hold then the combination of weights departs from 0.5–0.5 and the
above specification becomes only an approximation. Conventional
tests for the null of EMH and rational expectations are carried out
by means of the statistics t0 and t1. Since the latter is based on co-
integrating regressions, inference is made by applying Fully Modified
OLS (FM-OLS) (see Phillips & Hansen, 1990).

3. Simulation design

Simulated series for future spot and forward rates are obtained
through the following DGP:

Fi+m, j
i (t) = k2,1 • l∗j(t) + x j

Fi+m
i

(t) (13)

S j
m(t + i) = l∗j(t) + e j

Sm
(t + i) (14)

l∗j(t) = ql∗j(t − 1) + 4 j(t) (15)

4 j(t) = s
j
l (t)zj(t) (16)

s
2, j
l (t) = a + a′ SWj

t + b42, j(t − 1) + cs
2, j
l (t − 1) (17)

0(L)x j

Fi+m
i

(t) = y + y′SWj
t + h(L)e j

Fi+m
i

(t) (18)

where j = 1, .., 1, 999, and SWt is a first-order Markov switching state
variable that takes on values 0 or 1, such that P(SWt = 0|SWt−1 =
0) = p00 and P(SWt = 1|SWt−1 = 1) = p11. Thus, the DGP of
Eqs. (13)–(18) accounts for integrated and near-integrated forward
and spot series, volatility clustering, as well as multiple regime shifts
in the levels of the transitory component xFi+m

i
(t) and conditional

variance of the common trend l∗(t). The modelling of volatility and
regime shifts is in line with the strand of literature which documents
the regime switching behavior of nominal interest rates. More specif-
ically, we follow Bansal and Zhou (2002), and Gray (1996) by setting
two alternative regimes, the former characterized by low volatility,
small term premia and transition probability p00 equal to 0.975, and
the latter by high volatility, larger term premia and transition proba-
bility p11 equal to 0.90.7 We also set the switching parameters y′ and
a′ to 0.1 and 0.25 respectively.

Simulations are carried out by drawing the scalar sequence[
zj(t), e j

Fi+m
i

(t), e j
Sm

(t + i)
]T

t=1
from normal distributions with mean 0

and variances equal respectively to unity, s2
F and s2

S . The sequences

of observations
[(

l∗j(t), x j

Fi+m
i

(t), e j
Sm

(t + i)
)]T

t=1
are then generated

and combined according to Eqs. (13)–(18) to construct series for the
spot and forward rates with i = 1 and m = 1. To fully specify the
empirical model of Eqs. (7)–(10) we assume that the process xFi+m

i
(t)

evolves as an AR(2), whereas simulated series for the same process
are generated through ARMA(2,2) with parameters 01, 02, h1 and h2.
Values for the LR statistics are then computed by fitting the PTCM of
Eqs. (7)–(9) to the computer-generated series with and without the
restrictions implied by the null of EMH and rational expectations.8

Similarly, values for the statistics t0 and t1 are obtained by fitting
Eqs. (3) and (4) to simulated spot and forward rates. The above sim-
ulations are carried out for different sets of parameters q, k2,1, s2

F ,

7 With such transition probabilities the average number of shifts over 1999 simula-
tions is 2.6 for T = 100, and 10.5 for T = 400.

8 Empirical estimates of PTCMs are worked out by using the BFGS (Broyden,
Fletcher, Goldfarb, Shanno) algorithm in Gauss.
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01, 02, h1, h2, a, b, c, p00 and p11. The only parameters kept constant
across the different simulation exercises are the switching parame-
ters, as well as the constant term y which is set to zero to ease the
computational burden.9

In the first simulation exercise we set q = 1, a = 1, b = c =
h1 = h2 = 0, p00 = 1 and p11 = 0 in order to measure the size
and power of the above statistics under the assumption that for-
ward and spot series are driven by a common I(1) stochastic trend
with homoscedastic disturbance terms, a term premium component
which evolves as an AR(2), and no regime shifts. We then evaluate
the resilience of the four statistics to departures from the above DGPs
by incorporating fat tails, misspecification in the term premia, as well
as regime shifts as previously set out.10 We do so by carrying out a
second simulation exercise where we set q = 1, a = 0.25, b = 0.3
and c = 0.45, h1 = h2 = 0.3, p00 = 1 and p11 = 0 to measure the
finite sample performances of the above statistics in the presence of
volatility clustering and misspecified term premia.11 . We then con-
duct a third empirical exercise by setting q = 1, a = 0.25, b = 0.3
and c = 0.45, h1 = h2 = 0.0, p00 = 0.975, p11 = 0.9 to eval-
uate the performances under volatility clustering and regime shifts.
Finally, we carry out a last exercise where we amend the previous set
of parameters by setting h1 = h2 = 0.3 to gauge the impact of mis-
specified term premia, on top of the volatility clustering and regime
shifts effects already considered. We then repeat the above analy-
sis by setting q = 0.975, i.e. under the assumption that spot and
forward rates are driven by a stationary - yet highly persistent - com-
mon stochastic trend. Empirical results for the two types of analysis
are set out in the next two sections.

4. Power with I(1) spot and forward rates

We begin our analysis by investigating whether the statistics LR0

and LR1 under the null H0 : k2,1 = 1 ∩ sF = 0 and H0 : k2,1 = 1
can be approximated, respectively, by the mixture of chi-square dis-
tributions w̄2

(2), and by a standard w2
(1) distribution, as the asymptotic

theory suggests. We then carry out a similar exercise to ascertain
whether the statistics t0 and t1 under the respective null are well
approximated by Student-t(T−2) and N(0,1) distributions. Simulated
series for spot and forward rates are generated under the null of EMH
by following the procedure set out in the previous section and by set-
ting T = 400.12 Empirical values of the statistics LR0, LR1, t0 and t1

under the respective null are obtained by simulating independently
100 times series for forward and future spot rates. By denoting with
qi the 100i-th quantile of the null distribution of the above statistics,
an estimate of this last is provided by the 100i-th ordered statistic
in the sequence of 100 replications. Such sequence is then simulated
20 times for a total of 2000 simulations. The mean and standard
deviation of qi are then used to assess the true, null distribution of
the statistics for i = (0.05, 0.25, 0.5, 0.75, 0.90, 0.95, 0.975). The top
panel of Table 1 reports sample means (standard deviations) of the
quantiles qi for the empirical distributions of the four statistics under
the respective null for the benchmark case of disturbance terms
drawn from normal distributions. The mid-top, mid-lower and lower

9 The initial values of l*j(t) and SWj
t are set equal to 0 in all j repetitions.

10 In this sense, our simulation strategy follows closely other studies that carried out
power comparisons among existing and newly proposed statistical tests (see, e.g., Kim
(1996), and Wright (2000)).
11 Such set of parameters specifies GARCH processes with unconditional variance

and kurtosis equal to 1 and 5.
12 Since this last hypothesis encompasses the null of rational expectations, the same

simulated series are used to construct the empirical pdfs of the four statistics under
scrutiny. The series are generated through the DGPs of Eqs. (13)–(18) under the four
cases of normal disturbance terms, volatility clustering with misspecified term pre-
mia, with regime shifts, and with both misspecified term premia and regime shifts,
and by setting the remaining parameters as follows: 01 = 02 = 0 and s2

R = 0.5.

panels report the same figures for the three alternative DGPs charac-
terized by volatility clustering with misspecified term premia, with
regime shifts, and with both misspecified term premia and regime
shifts. Confidence intervals for each quantile qi can be constructed by
using the respective sample means and standard deviations. Empir-
ical results suggest that such confidence intervals encompass the
theoretical cumulated pdf of w̄2

(2), w
2
(1) and N(0,1) for a wide range of

cumulated values, and for the four types of DGPs under scrutiny.
We then proceed by comparing the power in finite samples of the

above statistics as a function of two parameters T and k = s2
l /s

2
F

where the assumed null are H0 : k2,1 = 1 ∩ sF = 0 or H0 : k2,1 = 1.
The parameter k captures the variability induced by the common
trend relative to the time varying term premium. Simulations are
carried out for T equal to 100 and 400 observations and for k =
(0.1, 0.5, 1, 2, 10, ∞).13 In the first four columns of Table 2 we inves-
tigate the power of the statistics LR0 and t0 by simulating series for
spot and forward rates under rational expectations and time vary-
ing term premia. This is equivalent to generate the above series by
imposing on Eqs. (13)–(18) the restrictions {k2,1 = 1 ∩ 01 = 02 =
0.3} and {k2,1 = 1 ∩ 01 = 02 = 0}. The special case when k → ∞
implies DGPs with constant term premia, and it enables a further
evaluation of the size of both the statistics under the null of EMH.

The four panels of the same table report the empirical results
when the simulated forward and spot series are generated under the
benchmark case of normal distributions with zero mean and variances
s2
l ,s2

F and s2
R (top panel), as well as under the three alternative DGPs

characterized by volatility clustering with misspecified term premia
(mid-top), with regime shifts (mid-lower), and with both misspecified
term premia and regime shifts (lower). Empirical results suggest that
for a given T, both the statistics present strong size-adjusted power
for values of k ≤ 2. For values greater than 2 the statistic LR0 loses
power only marginally, whereas the loss of the statistic t0 is far more
severe, with a drop as large as 85% for T = 100. Thus, the stronger
the co-integrating relationship between forward and spot rates, the
lower the power of the statistic t0. Moreover, for fixed values of k,
power increases with T which is presumably a reflection of the con-
sistency of the tests. Such increases are stronger for the statistic LR0.
Thus, for values of k> 2 tests based on PTCMs become preferable
to conventional tests based on forward-spot regressions. By setting
k → ∞ it becomes possible to evaluate the size of the two statis-
tics under the null of EMH. Empirical results suggest that the statistic
LR0 is affected by small size distortions, whereas t0 presents approxi-
mately correct size. The empirical levels of the statistic LR0, however,
do not differ significantly from the nominal size. As pointed out by
Stoel et al. (2006), such differences can be explained by the departures
of the empirical distributions of the parameter s2

F under constraint
from the condition of symmetry. Such departures, in turn, imply that
the chi-bar square specification becomes only an approximation for
the distribution of the statistic under the null.

In the subsequent four columns we evaluate the power of the
same statistics under the alternative of departures from rational
expectations and time varying term premia, i.e. when the DGPs are
specified as {k2,1 = 0.95 ∩ 01 = 02 = 0.3} and {k2,1 = 0.95 ∩ 01 =
02 = 0}. These DGPs are equivalent to the case of deviations from
rational expectations with either white noise or ARMA term pre-
mia. For a given T, both the statistics present strong size-adjusted
power for k ≤ 2. However, also in this case the statistic t0 tends
to lose power for k> 2, whereas the power of LR0 remains close
to unity. For instance, the case k → ∞ specifies DGPs where the
EMH is rejected solely because of departures from rational expec-
tations. In this special case the power of t0 decreases by more than
90% for T = 100. For fixed values of k the power improves with T,

13 The values of k are computed by setting s2
l = 1 and s2

F = (10, 5, 1, 0.5, 0.1, 0.0).
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Table 1
Simulated quantiles of LR0, LR1, t0 and t1 probability distribution functions and theoretical w̄2

(2), w
2
(1) and N(0,1) counterparts when spot and forward rates are integrated processes.

q0.05 q0.25 q0.5 q0.75 q0.90 q0.95 q0.975

Normal disturbance terms
LR0

a 0.004 0.114 0.473 1.299 2.672 3.654 4.381
(0.004) (0.060) (0.164) (0.269) (0.708) (0.864) (1.124)

LR1
b 0.005 0.111 0.452 1.250 2.470 3.443 4.537

(0.007) (0.059) (0.164) (0.379) (0.709) (0.933) (1.766)
t0

c −1.645 −0.59 0.045 0.702 1.281 1.630 1.854
(0.241) (0.133) (0.123) (0.131) (0.152) (0.213) (0.236)

t1
d −1.862 −0.756 −0.037 0.590 1.280 1.532 1.884

(0.242) (0.149) (0.128) (0.146) (0.236) (0.238) (0.310)

Volatility clustering & misspecified term premia
LR0

a 0.006 0.115 0.464 1.375 2.673 3.757 4.499
(0.009) (0.061) (0.214) (0.502) (0.549) (1.005) (1.240)

LR1
b 0.006 0.105 0.460 1.361 2.628 3.525 4.627

(0.007) (0.068) (0.173) (0.392) (0.659) (0.884) (1.710)
t0

c −1.707 −0.682 0.045 0.619 1.203 1.525 1.751
(0.246) (0.121) (0.099) (0.139) (0.157) (0.180) (0.234)

t1
d −1.835 −0.783 −0.074 0.664 1.211 1.568 1.888

(0.213) (0.176) (0.082) (0.129) (0.219) (0.197) (0.221)

Volatility clustering & regime shifts
LR0

a 0.006 0.238 0.923 2.250 4.052 5.673 6.732
(0.005) (0.249) (0.735) (1.389) (2.157) (2.886) (4.128)

LR1
b 0.009 0.145 0.526 1.587 3.282 4.344 5.763

(0.010) (0.069) (0.206) (0.497) (1.041) (1.289) (2.089)
t0

c −1.581 −0.519 0.112 0.819 1.386 1.752 1.991
(0.231) (0.114) (0.126) (0.139) (0.175) (0.207) (0.273)

t1
d −2.217 −0.931 −0.120 0.801 1.119 1.980 2.554

(0.324) (0.200) (0.179) (0.138) (0.228) (0.253) (0.343)

Volatility clustering & misspecified term premia & regime shifts
LR0

a 0.005 0.126 0.495 1.526 3.093 4.284 5.698
(0.005) (0.072) (0.145) (0.406) (0.914) (1.084) (1.794)

LR1
b 0.006 0.135 0.580 1.559 3.246 4.400 5.841

(0.006) (0.052) (0.143) (0.361) (0.965) (1.266) (1.874)
t0

c −1.578 −0.579 0.107 0.789 1.397 1.708 1.969
(0.216) (0.112) (0.140) (0.146) (0.185) (0.180) (0.213)

t1
d −2.170 −0.943 −0.108 0.844 1.159 2.012 2.383

(0.267) (0.170) (0.183) (0.201) (0.191) (0.192) (0.292)

Theoretical quantiles
w̄2

(2) 0.015 0.250 0.870 2.090 3.810 5.140 6.845
w2

(1) 0.004 0.102 0.454 1.323 2.710 3.841 5.023
N(0, 1)c −1.646 −0.675 0.000 0.675 1.282 1.646 1.962

Notes: Simulations of four statistics carried out by generating series for forward F2
1 (t) and spot S1(t + 1) under the null of EMH for T = 400 through the DGPs of Eqs. (13)–(18)

with parameters q = 1, k2,1 = 1, 01 = 02 = 0, y=0, y′ = 0.1, a′ = 0.25 and s2
R = 0.25. The remaining parameters are set as follows: a = 1, b = c = h1 = h2 = 0 and q11 = 1

(top panel), a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.3 and q11 = 1 (mid top panel), a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.0, q11 = 0.975 and q22 = 0.9 (mid lower
panel), and a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.3, q11 = 0.975 and q22 = 0.9 (lower panel). Number of replications equal to 2000. qi are 100i-th quantiles of simulated
distributions with standard deviation in parentheses. Theoretical quantiles for w̄2

(2), w
2
(1) and N(0,1) reported in the bottom panel.

a LR statistic for H0 : k2,1 = 1 ∩ sF = 0.
b LR statistic for H0 : k2,1 = 1.
c t-Statistic for H0 : b0 = 0.
d t-Statistic for H0 : b1 = 0.

yet remaining substantially lower than the power of LR0. All in all,
the above empirical results suggest that for values of k> 2 the LR0

tests become preferable to conventional tests based on forward-spot
regressions, whereas for k ≤ 2 the two statistics are equivalent.

We then proceed by evaluating the power of the statistics LR1

and t1 when the DGPs are {k2,1 = 1 ∩ 01 = 02 = 0.3} and {k2,1 =
0.95 ∩ 01 = 02 = 0.3}. The ninth and tenth columns of Table 2
report the performances of both the statistics when the DGPs are
equivalent to the case of rational expectations and time varying term
premia. This enables the investigation of the size of the two statis-
tics. Moreover, the special case of k → ∞ enables to gauge the size
under the null of EMH. Empirical results suggest that the statistic LR1

has approximately correct size for the entire range of parameters k

and T, whereas the results for the statistic t1 deserve a more careful
analysis. In fact, the presence of time varying term premium can
induce serial correlation in the error terms driving the co-integrating
relationships. In this case, conventional large sample theory might

provide a poor approximation for the distribution of the statistic in
small samples (see Li & Maddala, 1997). Empirical results suggest
that the statistic t1 is actually oversized for values of k which range
from 0.1 to 10, with distortions that tend to reduce for larger values
of k. The statistic achieves approximately correct size in the special
case of k → ∞ with no regime shifts, i.e. when the variability of the
term premia becomes negligible.14

The last two columns report the performances of the two statis-
tics when the DGPs are equivalent to the case of departures from
rational expectations and time varying term premia. For a given

14 We supplement the above analysis by evaluating the power of the Dynamic OLS
(D-OLS) estimator of the statistics t1 (see Saikkonen, 1991; Stock & Watson, 1993).
Empirical results suggest that such estimator is affected by even stronger size distor-
tions. Such results are not reported to save space but are available from the author
upon request.
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Table 2
Size and power of the statistics LR0, LR1, t0 and t1 when spot and forward rates are integrated processes.

T k DGP: k2,1 = 1 DGP: k2,1 = 1 DGP: k2,1 = 0.95 DGP: k2,1 = 0.95 DGP: k2,1 = 1 DGP: k2,1 = 0.95
01 = 02 = 0.3 01 = 02 = 0.0 01 = 02 = 0.3 01 = 02 = 0.0 01 = 02 = 0.3 01 = 02 = 0.3

Normal disturbance terms
LR0

a t0
c LR0

a t0
c LR0

a t0
c LR0

a t0
c LR1

b t1
d LR1

b t1
d

100 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.079 0.235 0.121 0.068
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.068 0.223 0.299 0.053
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.065 0.219 0.425 0.145
2 0.999 0.998 0.999 0.941 0.999 0.998 0.999 0.997 0.066 0.208 0.547 0.206
10 0.763 0.409 0.627 0.157 0.999 0.428 0.999 0.346 0.085 0.169 0.701 0.503
∞ 0.023 0.047 0.028 0.048 0.999 0.066 0.999 0.074 0.088 0.083 0.941 0.913

400 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.061 0.202 0.459 0.252
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.065 0.208 0.826 0.409
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.059 0.199 0.921 0.556
2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.052 0.188 0.972 0.690
10 0.995 0.710 0.990 0.523 0.999 0.821 0.999 0.976 0.058 0.133 0.999 0.941
∞ 0.023 0.061 0.029 0.049 0.999 0.619 0.999 0.634 0.058 0.070 0.999 0.996

Volatility clustering & misspecified term premia
LR0

a t0
c LR0

a t0
c LR0

a t0
c LR0

a t0
c LR1

b t1
d LR1

b t1
d

100 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.054 0.201 0.056 0.058
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.088 0.189 0.134 0.049
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.057 0.214 0.211 0.06
2 0.999 0.999 0.999 0.997 0.999 0.999 0.999 0.995 0.07 0.208 0.323 0.094
10 0.952 0.728 0.646 0.365 0.968 0.726 0.968 0.405 0.079 0.204 0.593 0.241
∞ 0.031 0.051 0.026 0.051 0.957 0.077 0.957 0.089 0.077 0.095 0.962 0.860

400 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.047 0.145 0.451 0.146
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.057 0.170 0.827 0.224
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.045 0.160 0.924 0.281
2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.062 0.183 0.978 0.409
10 0.994 0.951 0.999 0.620 0.999 0.971 0.999 0.792 0.048 0.171 0.999 0.771
∞ 0.031 0.058 0.026 0.045 0.999 0.234 0.999 0.240 0.051 0.053 0.999 0.999

Volatility clustering & regime shifts
LR0

a t0
c LR0

a t0
c LR0

a t0
c LR0

a t0
c LR1

b t1
d LR1

b t1
d

100 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.076 0.239 0.093 0.073
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.081 0.232 0.205 0.081
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.075 0.209 0.282 0.162
2 0.999 0.997 0.999 0.989 0.999 0.997 0.999 0.990 0.087 0.223 0.363 0.178
10 0.772 0.402 0.583 0.268 0.950 0.448 0.902 0.336 0.086 0.171 0.600 0.534
∞ 0.056 0.050 0.024 0.051 0.817 0.091 0.822 0.081 0.060 0.127 0.840 0.804

400 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.055 0.189 0.333 0.169
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.056 0.191 0.671 0.522
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.054 0.189 0.876 0.706
2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.049 0.188 0.932 0.856
10 0.999 0.937 0.986 0.809 0.999 0.992 0.999 0.972 0.047 0.169 0.999 0.993
∞ 0.085 0.053 0.023 0.058 0.999 0.687 0.999 0.663 0.082 0.122 0.999 0.999

Volatility clustering & misspecified term premia & regime shifts
LR0

a t0
c LR0

a t0
c LR0

a t0
c LR0

a t0
c LR1

b t1
d LR1

b t1
d

100 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.064 0.199 0.067 0.059
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.042 0.213 0.123 0.050
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.084 0.202 0.178 0.074
2 0.999 0.999 0.999 0.995 0.999 0.999 0.999 0.995 0.050 0.208 0.231 0.064
10 0.953 0.711 0.586 0.340 0.981 0.723 0.886 0.383 0.049 0.198 0.454 0.251
∞ 0.055 0.052 0.051 0.054 0.804 0.089 0.836 0.085 0.056 0.110 0.862 0.860

400 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.031 0.109 0.145 0.089
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.027 0.122 0.405 0.216
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.025 0.140 0.601 0.360
2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.031 0.160 0.929 0.535
10 0.999 0.999 0.999 0.885 0.999 0.999 0.999 0.986 0.049 0.188 0.999 0.928
∞ 0.045 0.055 0.025 0.058 0.999 0.683 0.999 0.626 0.083 0.124 0.999 0.999

Notes: Simulations of four statistics carried out by generating series for forward F2
1 (t) and spot S1(t + 1) through the DGPs of Eqs. (13)–(18) with parameters k2,1, 01, 02, k set to

values reported in the header of columns from 3 to 14 and column 2, and a = 1, b = c = h1 = h2 = 0 and q11 = 1 (top panel), a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.3
and q11 = 1 (mid top panel), a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.0, q11 = 0.975 and q22 = 0.9 (mid lower panel), and a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.3,
q11 = 0.975 and q22 = 0.9 (lower panel). The remaining parameters are set as follows: q = 1, y=0, y′ = 0.1, a′ = 0.25 and s2

R = 0.25. Number of replications equal to 1999.
Size-adjusted power at 5% level.

a LR statistic for the null H0 : k2,1 = 1 ∩ sF = 0.
b LR statistic for the null H0 : k2,1 = 1.
c t-Statistic for the null H0 : b0 = 0.
d t-Statistic for the null H0 : b1 = 1.

T, the statistic LR1 presents low power for values of k equal to
0.1. This last, however, quickly increases towards the unity when
k ≥ 0.5, i.e. when the variability induced by the common stochastic

trend dominates the variability of term premia. The special case of
k → ∞ specifies DGPs characterized by departures from rational
expectations and term premia either constant or affected by shifts
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Table 3
Simulated quantiles of LR0, LR1, t0 and t1 probability distribution functions when spot and forward rates are highly persistent processes.

q0.05 q0.25 q0.5 q0.75 q0.90 q0.95 q0.975

Normal disturbance terms
LR0

a 0.005 0.095 0.428 1.343 2.672 3.564 4.454
( 0.007 ) ( 0.052 ) ( 0.155 ) ( 0.385 ) ( 0.747 ) (0.969) (1.476)

LR1
b 0.006 0.105 0.480 1.304 2.730 3.737 4.628

( 0.007 ) ( 0.051 ) ( 0.153 ) ( 0.402 ) ( 0.784 ) ( 1.135 ) ( 1.555 )
t0

c −1.640 −0.621 0.048 0.705 1.267 1.573 1.781
( 0.253 ) ( 0.136 ) ( 0.142 ) ( 0.146 ) ( 0.186 ) ( 0.169 ) ( 1.888 )

t1
d −1.925 −0.890 −0.189 0.497 1.258 1.494 1.844

( 0.232 ) ( 0.157 ) ( 0.104 ) ( 0.116 ) ( 0.126 ) ( 0.157 ) ( 0.226 )

Volatility clustering & misspecified term premia
LR0

a 0.006 0.102 0.465 1.412 2.604 3.567 4.466
( 0.013 ) ( 0.055 ) ( 0.182 ) ( 0.399 ) ( 0.691 ) ( 1.015 ) ( 1.364 )

LR1
b 0.007 0.117 0.480 1.406 2.791 3.828 4.827

( 0.01 ) ( 0.079 ) ( 0.147 ) ( 0.394 ) ( 0.816 ) ( 1.125 ) ( 1.542 )
t0

c −1.624 −0.606 0.005 0.675 1.279 1.623 1.812
( 0.189 ) ( 0.132 ) ( 0.123 ) ( 0.145 ) ( 0.161 ) ( 0.206 ) ( 0.23 )

t1
d −1.947 −0.897 −0.215 0.541 1.263 1.456 1.785

( 0.204 ) ( 0.128 ) ( 0.113 ) ( 0.117 ) ( 0.177 ) ( 0.221 ) ( 0.265 )

Volatility clustering & regime shifts
LR0

a 0.003 0.106 0.389 1.362 2.683 3.444 4.379
( 0.004 ) ( 0.056 ) ( 0.163 ) ( 0.446 ) ( 0.843 ) ( 1.151 ) ( 1.507 )

LR1
b 0.008 0.166 0.617 1.759 3.496 4.782 5.942

( 0.009 ) ( 0.078 ) ( 0.211 ) ( 0.421 ) ( 1.012 ) ( 1.215 ) ( 1.649 )
t0

c −1.538 −0.475 0.16 0.83 1.428 1.754 1.953
( 0.211 ) ( 0.138 ) ( 0.115 ) ( 0.166 ) ( 0.172 ) ( 0.198 ) ( 0.228 )

t1
d −2.138 −0.995 −0.197 0.656 1.111 1.783 2.243

( 0.225 ) ( 0.141 ) ( 0.167 ) ( 0.173 ) ( 0.268 ) ( 0.300 ) ( 0.323 )

Volatility clustering & misspecified term premia & regime shifts
LR0

a 0.005 0.118 0.468 1.398 2.482 3.643 4.614
( 0.008 ) ( 0.058 ) ( 0.178 ) ( 0.413 ) ( 0.582 ) ( 1.000 ) ( 1.541 )

LR1
b 0.011 0.167 0.642 1.798 3.553 5.095 6.171

( 0.014 ) ( 0.097 ) ( 0.254 ) ( 0.469 ) ( 1.062 ) ( 1.675 ) ( 2.037 )
t0

c −1.557 −0.562 0.09 0.78 1.414 1.765 1.973
(0.170) (0.134) ( 0.131 ) ( 0.128 ) ( 0.132 ) ( 0.196 ) ( 0.249 )

t1
d −2.171 −0.904 −0.057 0.718 1.135 1.789 2.251

( 0.219 ) ( 0.184 ) ( 0.141 ) (0.160) ( 0.210 ) ( 0.198 ) ( 0.329 )

Notes: Simulations of four statistics carried out by generating series for forward F2
1 (t) and spot S1(t + 1) under the null of EMH for T = 400 through the DGPs of Eqs. (13)–(18)

with parameters q = 0.975, k2,1 = 1, 01 = 02 = 0, y=0, y′ = 0.1, a′ = 0.25 and s2
R = 0.25. The remaining parameters are set as follows: a = 1, b = c = h1 = h2 = 0

and q11 = 1 (top panel), a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.3 and q11 = 1 (mid top panel), a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.0, q11 = 0.975 and q22 = 0.9
(mid lower panel), and a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.3, q11 = 0.975 and q22 = 0.9 (lower panel). Number of replications equal to 2000. qi are 100i-th quantiles of
simulated distributions with standard deviation in parentheses. Theoretical quantiles for w̄2

(2), w
2
(1) and N(0,1) reported in Table 1.

a LR statistic for H0 : k2,1 = 1 ∩ sF = 0.
b LR statistic for H0 : k2,1 = 1.
c t-Statistic for H0 : b0 = 0.
d t-Statistic for H0 : b1 = 0.

in levels. Empirical results suggest that also in this case the power
of LR1 remains close to unity. Moreover, for a given k, the above
statistic gains substantial power when T increases. A similar pattern
occurs when we evaluate the size-adjusted power of the statistic
t1. However, the statistic LR1 retains consistently stronger power
over the entire range of values taken by k and T. The above pattern
of results holds across the four broad classes of DGPs considered,
with the size-adjusted power of the four statistics which tends to
decrease when departures from the benchmark case of normal dis-
turbance terms occur. The presence of misspecified term premia is
the element which deploys the strongest impact, whereas volatil-
ity clustering and regime shifts show less severe power reducing
effects.

5. Power with highly persistent spot and forward rates

The main premise of the PTCM previously set out is that spot and
forward rates are I(1) stochastic processes. In finance, there is large
consensus that foreign exchange rates as well as share prices evolve

as I(1) processes. It follows that the above statistics can be readably
applied to test for EMH and rational expectations on these markets.
However, when the above hypotheses are tested on bond markets,
the evidence of I(1) processes is less clear. In fact, many existing
studies have modelled interest rates as mean-reverting highly per-
sistent processes. It is, for example, difficult to imagine explosive
interest rates even with the evidence of hyper inflation in the data. In
this section we investigate the size and power of LR and t-statistics
when spot and forward rates are stationary processes which are
treated as I(1). More specifically, we replicate the analysis conducted
in Section 4 where simulations of spot and forward rates are carried
out by replacing the I(1) common stochastic trend with a stationary -
yet highly persistent - process. In Table 3 we evaluate the empirical
pdfs of the statistics LR0, LR1, t0 and t1 under the null H0 : k2,1 =
1 ∩ s2

F = 0 and H0 : k2,1 = 1. In Table 4 we compare the power of
the same statistics as a function of the parameters T and k under the
same DGPs previously considered. The above simulation exercises
are carried out by setting q = 0.975 in Eq. (15).

We begin our analysis by investigating whether the four statis-
tics under the respective null can be approximated by the w̄2

(2), w
2
(1),
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Table 4
Size and power of the statistics LR0, LR1, t0 and t1 when spot and forward rates are stationary highly persistent processes.

T k DGP: k2,1 = 1 DGP: k2,1 = 1 DGP: k2,1 = 0.95 DGP: k2,1 = 0.95 DGP: k2,1 = 1 DGP: k2,1 = 0.95
01 = 02 = 0.3 01 = 02 = 0.0 01 = 02 = 0.3 01 = 02 = 0.0 01 = 02 = 0.3 01 = 02 = 0.3

Normal disturbance terms
LR0

a t0
c LR0

a t0
c LR0

a t0
c LR0

a t0
c LR1

b t1
d LR1

b t1
d

100 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.069 0.236 0.073 0.052
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.066 0.219 0.102 0.092
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.062 0.224 0.116 0.094
2 0.999 0.997 0.999 0.993 0.999 0.998 0.999 0.995 0.073 0.202 0.196 0.142
10 0.741 0.415 0.627 0.282 0.888 0.389 0.893 0.260 0.084 0.153 0.437 0.420
∞ 0.023 0.050 0.033 0.059 0.845 0.055 0.829 0.053 0.091 0.084 0.950 0.856

400 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.043 0.203 0.212 0.074
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.055 0.198 0.758 0.180
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.046 0.200 0.906 0.286
2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.062 0.196 0.991 0.455
10 0.999 0.946 0.991 0.831 0.999 0.696 0.999 0.523 0.060 0.131 0.998 0.955
∞ 0.030 0.047 0.021 0.047 0.999 0.052 0.999 0.063 0.059 0.058 0.999 0.999

Volatility clustering & misspecified term premia
LR0

a t0
c LR0

a t0
c LR0

a t0
c LR0

a t0
c LR1

b t1
d LR1

b t1
d

100 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.066 0.188 0.067 0.055
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.061 0.210 0.085 0.052
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.072 0.213 0.101 0.049
2 0.999 0.999 0.999 0.996 0.999 0.999 0.999 0.993 0.070 0.212 0.133 0.047
10 0.963 0.727 0.628 0.345 0.973 0.707 0.876 0.339 0.093 0.202 0.285 0.180
∞ 0.024 0.047 0.024 0.056 0.779 0.048 0.785 0.045 0.080 0.100 0.919 0.854

400 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.039 0.118 0.103 0.035
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.054 0.142 0.295 0.042
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.051 0.157 0.468 0.064
2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.046 0.179 0.695 0.124
10 0.999 0.959 0.995 0.641 0.999 0.942 0.999 0.664 0.060 0.185 0.977 0.588
∞ 0.027 0.054 0.031 0.053 0.999 0.069 0.998 0.064 0.063 0.064 0.999 0.999

Volatility clustering & regime shifts
LR0

a t0
c LR0

a t0
c LR0

a t0
c LR0

a t0
c LR1

b t1
d LR1

b t1
d

100 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.08 0.243 0.083 0.054
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.078 0.238 0.118 0.067
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.031 0.222 0.13 0.096
2 0.999 0.995 0.999 0.990 0.999 0.995 0.999 0.983 0.074 0.209 0.188 0.155
10 0.796 0.406 0.596 0.271 0.853 0.373 0.85 0.252 0.088 0.182 0.393 0.416
∞ 0.069 0.046 0.028 0.049 0.682 0.048 0.704 0.045 0.07 0.117 0.751 0.736

400 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.05 0.196 0.089 0.073
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.052 0.189 0.252 0.161
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.044 0.215 0.383 0.292
2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.064 0.189 0.62 0.509
10 0.999 0.934 0.999 0.794 0.999 0.954 0.999 0.854 0.077 0.164 0.953 0.946
∞ 0.021 0.055 0.025 0.043 0.999 0.133 0.999 0.118 0.098 0.119 0.999 0.999

Volatility clustering & misspecified term premia & regime shifts
LR0

a t0
c LR0

a t0
c LR0

a t0
c LR0

a t0
c LR1

b t1
d LR1

b t1
d

100 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.079 0.220 0.086 0.054
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.076 0.213 0.093 0.046
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.073 0.222 0.094 0.043
2 0.999 0.999 0.999 0.996 0.999 0.999 0.999 0.993 0.077 0.219 0.131 0.064
10 0.963 0.730 0.634 0.330 0.947 0.673 0.802 0.329 0.058 0.207 0.279 0.207
∞ 0.075 0.05 0.058 0.047 0.683 0.051 0.729 0.05 0.059 0.124 0.763 0.782

400 0.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.045 0.124 0.066 0.035
0.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.062 0.134 0.151 0.063
1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.053 0.166 0.282 0.063
2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.050 0.179 0.411 0.109
10 0.999 0.998 0.999 0.884 0.999 0.999 0.999 0.911 0.054 0.187 0.97 0.673
∞ 0.059 0.054 0.036 0.053 0.999 0.131 0.999 0.120 0.090 0.101 0.999 0.999

Notes: Simulations of four statistics carried out by generating series for forward F2
1 (t) and spot S1(t + 1) through the DGPs of Eqs. (13)–(18) with parameters k2,1, 01, 02, k set to

values reported in the header of columns from 3 to 14 and column 2, and a = 1, b = c = h1 = h2 = 0 and q11 = 1 (top panel), a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.3
and q11 = 1 (mid top panel), a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.0, q11 = 0.975 and q22 = 0.9 (mid lower panel), and a = 0.25, b = 0.3, c = 0.45, h1 = h2 = 0.3,
q11 = 0.975 and q22 = 0.9 (lower panel). The remaining parameters are set as follows: q = 0.975, y=0, y′ = 0.1, a′ = 0.25 and s2

R = 0.25. Number of replications equal to
1999. Size-adjusted power at 5% level.

a LR statistic for the null H0 : k2,1 = 1 ∩ sF = 0.
b LR statistic for the null H0 : k2,1 = 1.
c t-Statistic for the null H0 : b0 = 0.
d t-Statistic for the the null H0 : b1 = 1.

Student-t(T−2) and N(0,1) distributions. Also in this case, the series
for spot and forward rates are generated by following the procedure
reported in Section 3, and their empirical distributions are assessed

by computing the mean (standard deviation) of the 100i-th quantile.
In line with the evidence previously reported, the quantile confi-
dence intervals for LR0 and LR1 encompass the theoretical cumulated
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Fig. 1. Left panel: Three-month spot (solid line) and forward (dotted line) Eurodollar interest rates for the period 1987:01–2013:08. Right panel: Three-month spot (solid line)
and forward (dotted line) Sterling Libor interest rates for the period 1987:01–2013:08.

pdfs of w̄2
(i,2) and w2

(i,1) for large sets of values of the index i. Similar

evidence is obtained for both the statistics t0 and t1. The above pat-
tern of results holds when simulations are carried out under the four
broad classes of DGPs featuring normal disturbance terms, volatil-
ity clustering, misspecified term premia and regime shifts. Thus,
also in this case departures of various nature from the benchmark
case of normality do not have any sizeable impact on the empirical
distribution of the four statistics.

We then proceed by comparing the power in finite samples of the
four statistics where the assumed null are H0 : k2,1 = 1 ∩ sF = 0
or H0 : k2,1 = 1. The first four columns of Table 4 report the power
of the LR0 and t0 statistics when the DGPs are {k2,1 = 1 ∩ 01 =
02 = 0.3} and {k2,1 = 1 ∩ 01 = 02 = 0}. For a given T, both the
statistics present strong power for values of k ≤ 2, whereas they
tend to lose power for values of k greater than 2. The loss of power,
however, is much more severe for the statistic t0. Thus, also in the
case of highly persistent spot and forward rates, the statistic t0 tends
to lose power when the variability induced by the common trend
dominates the variability of term premia. It follows that for values of
k> 2 tests based on PTCMs become preferable to conventional tests
based on forward-spot regressions. Moreover, for fixed values of k,
power increases with T. The size of the two statistics can be evalu-
ated when k → ∞. Empirical results suggest that the statistic LR0 is
affected by small size distortions, whereas t0 presents approximately
correct size.15

The subsequent four columns report the power of the two statis-
tics when the DGPs are {k2,1 = 0.95 ∩ 01 = 02 = 0.3} and {k2,1 =
0.95 ∩ 01 = 02 = 0}. For a given T, the statistic LR0 presents power
close to unity for the entire range of the parameter k. On the contrary,
the statistic t0 drastically loses power for k> 2. In the limit case of
k → ∞, i.e. when the EMH is rejected solely because of departures
from rational expectations, the power collapses to levels as low as
4.5%. This last result suggests that when spot and forward rates are
stationary persistent processes mainly driven by fluctuations in the
common trend, then tests based on forward-spot regressions become
unable to reject the null of EMH.

We then proceed by evaluating the power of the statistics LR1

and t1 when the DGPs are {k2,1 = 1 ∩ 01 = 02 = 0.3} and
{k2,1 = 0.95 ∩ 01 = 02 = 0.3}. Empirical results reported in

15 Also in this case, such small size distortions can be explained by Stoel et al.’s
(2006) argument that when the empirical distributions of the parameter s2

F under
constraint depart from the condition of symmetry, then the w2

(2) specification
becomes only an approximation for the distribution of the statistic under the null.

the ninth and tenth columns suggest that the LR1 statistic presents
approximately correct size for the entire range of parameters k and T.
Similarly to the results of Section 4, the statistic t1 presents size dis-
tortions which gradually vanish as k increases. The statistic achieves
approximately correct size only in the special case of k → ∞ with
absence of regime shifts.16 The last two columns of the table report
the performance of the two statistics when the DGPs are equiva-
lent to the case of departures from rational expectations and time
varying term premia. For a given T, the statistic LR1 loses power
when compared to the figures reported in Table 2. For instance,
when k ≤ 0.1 the power drops by 50% or more. This last, however,
quickly increases towards the unity for values of k ≥ 1. More-
over, the statistic gains substantial power when T increases from
100 to 400 observations. A similar pattern occurs when we evalu-
ate the size-adjusted power of the statistic t1. However, the statistic
LR1 retains stronger than t1 for the full spectrum of parameter k

and T. The above pattern of results holds for the benchmark case of
normal disturbance terms, as well as for the alternative DGPs encom-
passing volatility clustering, misspecified term premia and regime
shifts. Thus, the better performance of LR statistics survives also in
the case of stationary - yet highly persistent - forward and spot
series.

6. Testing the EMH on Eurodollar and Sterling interest rates

We illustrate an application of the above statistics to monthly
series of 3-month spot and forward interest rates for Eurodollar and
Sterling Libor contracts over the period January 1987–August 2013.
The forward rates are the implicit rates extracted from the yield
curve by using the three- and six-month rates.17 Fig. 1 depicts the
four series under analysis.

In Table 5 we carry out a preliminary analysis to assess the
non stationarity of spot and forward rates by using ADF-GLS, Modi-
fied Phillips-Perron, Sargan-Barghava, Optimal and Modified Optimal
Point unit root tests as well as tests for bounded series with lower
bound at zero (see Cavaliere & Xu, 2011; Elliott, Rothenberg, & Stock,
1996; Ng & Perron, 2001).18 The eight statistics consistently fail to
reject the null of unit root at the 5% for the Eurodollar, and 1% level for

16 Also in this case, we investigate the size of the D-OLS estimator for the statistic t1,
finding even more severe distortions.
17 The dataset is obtained from the British Bankers’ Association.
18 We thank Cavaliere and Xu for kindly providing their Gauss code for bounded unit

root tests.
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Table 5
Unit root and co-integration tests for three-month spot and forward interest rates on
Eurodollar and Sterling markets.

Eurodollar Sterling

Forward Spot Forward Spot

DF-GLSa −2.083 −1.805 −2.939* −2.746
MZt

b −2.089 −1.811 −2.943* −2.788
MSBc 0.235 0.272 0.169 −0.179
MPTa

d 10.32 13.69 5.275* −5.867
ERSa

e 10.69 13.97 5.296* −5.909
MLNt

f −3.591 −3.555 −3.864* −3.964*
DF-OLSg −2.440 −1.911 −2.993 −2.733
MZt

g −2.497 −1.953 −3.393 −2.919
Traceh 31.99∗∗ 23.58∗∗

Eigenh 28.59∗∗ 22.17∗∗

Tracei 40.86∗∗ 28.89∗∗

E-G - Zt
j −4.071∗∗ −8.089∗∗

P-O - Zt
j −5.523∗∗ −5.845∗∗

G-H - Zt
k −6.702∗∗ −6.584∗∗

Notes: Sample periods span from 1987:01 to 2013:08 for Eurodollar and Sterling Libor
interest rates.

a Dickey-Fuller GLS de-trended test with critical values at 5 (1%) level equal to
−2.890 (−3.480).

b Ng and Perron (2001) Modified Phillips-Perron statistic with critical values at 5
(1%) level equal to −2.910 (−3.420).

c Modified Sargan-Barghava test with critical values at 5 (1%) level equal to 0.168
(0.143).

d Modified Optimal Point statistic with critical values at 5 (1%) level equal to 5.480
(4.030).

e Elliott et al. (1996) Optimal Point test with critical values at 5 (1%) equal to 5.636
(3.996). Statistics computed using spectral GLS de-trended AR kernel based on SIC.

f Lee & Strazicich’s (2003) Minimum LM test with critical values at 5% (1%) equal to
−3.842 (−4.545) for two endogeneous structural breaks in the level.

g Dickey-Fuller OLS de-trended and Modified Phillips-Perron unit root tests for
bounded series with lower bound at zero (see Cavaliere and Xu (2011)).

h Johansen’s (1988) Trace and Eigenvalue statistic with critical values at 5% (1%)
level equal to 15.41 (20.04) and 14.07 (18.63) for the null of no co-integrating
relationship.

i Johansen et al. (2000) Trace statistic with simulated critical values at 5% (1%) level
equal to 12.3 (16.9) for the null of zero co-integrating relationships with v1=0.8 for
the 2 datasets (see Table 1 in Giles and Godwin (2012)).

j Engle-Granger and Phillips-Ouliaris residual-based t statistics for the null of no
co-integration with critical values at 5% (1%) equal to −3.338 (−3.900).

k Gregory-Hansen residual-based z∗
t statistic for the null of no co-integration with

critical values at 5% (1%) equal to −4.610 (−4.340).
∗ Statistically significant at 5% level.

∗∗ Statistically significant at 1% level.

Sterling spot and forward series.19 We then test for co-integration by
using standard Trace and Max Eigenvalues statistics, a version of the
Trace statistic consistent with structural breaks, as well as residuals-
based tests for the null of no co-integration (see Johansen, Mosconi,
& Nielsen, 2000). These statistics are reported in the lower panel of
the same table. They consistently suggest the presence of one co-
integrating relationship between spot and forward rates. All in all,
the above results provide convincing evidence that spot and forward
Eurodollar and Sterling rates are non-stationary and co-integrated
processes.

We thus proceed by carrying out empirical estimates for the
PTCMs of Eqs. (7)–(9) as well as OLS (with Newey-West covariance
matrix) and FM-OLS estimates of Eqs. (3) and (4) so that LR tests as
well as conventional tests based on linear regressions for the null of
EMH and rational expectations can be computed. The top panel of
Table 6 sets out the empirical estimates for the Eurodollar market of
the unrestricted PTCM as well as of the same model with restrictions
for rational expectations and EMH.20 The asymptotic standard errors
are generally small relative to the point estimates, suggesting that

19 Specifications of the above unit root tests include both constant and trend.
20 We specify the term premia as AR(2) processes. To ensure stationarity we have

imposed appropriate restrictions on the autoregressive parameters 01 and 02.

the parameters are precisely estimated.21 The statistics LR1 and LR0

are used to test, respectively, the null of rational expectations and
EMH. Marginal significance levels (P-values) indicate that the for-
mer cannot be rejected even at the 10% significance level, whereas
the latter is soundly rejected at standard levels. These results suggest
that the only cause of rejection of the EMH would be the presence of
time varying term premium. However, conventional tests based on
linear regressions depict a quite different scenario. In fact, the OLS
point estimate is 0.354 with the statistic t0 equal to 2.27, whereas
the FM-OLS point estimate is 1.037 with the statistic t1 equal to 3.36.
Thus, according to the conventional tests based on linear regressions,
both the null of EMH and rational expectations should be rejected
at standard significance levels. While the LR0 and t0 statistics are
concordant in rejecting the null of EMH, the LR1 and t1 statistics
yield conflicting results. However, we can say something more on
the statistical reliability of the above tests by recalling the simulation
results of Table 2 which applies to the case of I(1) series. On the one
hand, given the value of the parameter k equal to 1.55, the statistics
LR0, t0 and LR1 present good size and power. On the other hand, the
statistic t1 is oversized with a tendency of having reduced power in
comparison to LR1. These results hold for four broad classes of DGPs
featuring normal disturbance terms, volatility clustering, misspeci-
fied term premia and regime shifts. Thus, in the choice between the
competing tests LR1 and t1 the researcher should opt for the former,
as the latter is affected by significant size distortions.

The bottom panel of Table 6 displays the empirical estimates
of the unrestricted and restricted PTCMs for the Sterling spot and
forward rates. Empirical estimates are similar to the previous case
where the Eurodollar market was considered. However, this time the
interpretation of the results seems more straight forward, as the two
types of tests are concordant in rejecting both the null of EMH and
rational expectations at standard significance levels.

To check the adequacy of the PTCM specifications used, Ljung-
Box portmanteau tests are applied to the vector of residuals of the
ARMA model, as proposed in Lütkepohl (p. 300 1993). Both Q(12)
and Q(24) suggest the presence of moderate serial correlation in the
residuals. Table 6 displays also the implied values as well as the
OLS and FM-OLS empirical estimates of the parameters b0 and b1.
The former are calculated by using the parameter estimates of the
unrestricted PTCMs and Eqs. (11) and (12). Together with the above
figures we also report in square brackets an interval for the implied
values as well as the 95% confidence interval for the empirical esti-
mates. The interval of implied values is calculated by substituting in
the same equations the combinations of the 95% confidence inter-
val upper and lower bounds which yield maximum width. Under the
“eyeball” metric, the PTCMs do quite a fair job of matching these two
types of interval. In fact, the overlapping between the two intervals
spans from 5% (Eurodollar) to 24% (Sterling) for the parameter b0,
and from 41% (Sterling) to 100% (Eurodollar) for the parameter b1.
Overall, these results suggest that the above PTCMs are reasonably
well specified.

7. Conclusions

We evaluate the small sample performances of a new type
of statistics based on Permanent-Transitory Components Models
(PTCMs) used to test for the Efficient Market Hypothesis (EMH) and
rational expectations in financial markets. A comparison between
these last and conventional tests based on linear regressions is car-
ried out under a wide range of different data-generating processes

21 We carry out a sensitivity analysis to check the robustness of the empirical results
by feeding the BFGS algorithm with different starting values as well as with the final
estimates in order to check that the algorithm delivers estimates consistent with those
obtained in previous stages.
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Table 6
Maximum likelihood estimates of the PTCM of Eqs. (7)–(9) for Eurodollar and Sterling Libor three-month spot and forward interest rates.

PTCM Implied Empirical

k2,1 sl 1 01 02 sF sR b0 b1 b0 b1

Eurodollar Libor
log Lik = 261.11

0.975 0.221 0.080 1.243 -0.386 0.227 0.077 0.682 1.027 0.354 1.037
(0.022) (0.010) (0.000) (0.059) (0.037) (0.013) (0.013) [0.633;1.274] [0.981;1.074] [0.022;0.666] [1.015;1.059]

Q(12)= 66.00 (0.018) Q(24)= 97.39 (0.330)
Restriction: k2,1 = 1
log Lik = 260.57

− 0.221 0.089 1.218 −0.371 0.226 0.078
(0.010) (0.000) (0.053) (0.032) (0.013) (0.013)

LR1
a = 1.08 (0.298)

Restrictions: k2,1 = 1 ∩ sF = 0
log Lik = 43.25

− 0.254 0.267 1.904 −0.907 − 0.497
(0.010) (0.033) (0.038) (0.036) (0.020)

LR0
b = 435.7 (0.000)

Sterling Libor
log Lik = 130.55

0.962 0.279 0.080 1.091 −0.297 0.332 0.032 0.668 1.039 0.466 1.075
(0.014) (0.012) (0.000) (0.054) (0.029) (0.018) (0.037) [0.636;0.882] [1.010;1.071] [0.146;0.786] [1.053;1.097]

Q(12)= 73.88 (0.003) Q(24)= 94.13 (0.418)
Restriction: k2,1 = 1
log Lik = 126.78

− 0.277 0.133 1.098 −0.301 0.333 0.039
(0.012) (0.095) (0.052) (0.029) (0.018) (0.031)

LR1
a = 7.540 (0.006)

Restrictions: k2,1 = 1 ∩ sF = 0
log Lik = 118.01

− 0.323 0.106 0.335 −0.005 − 0.674
(0.013) (0.039) (3.117) (0.018) (0.027)

LR0
b = 25.08 (0.000)

Notes: Dataset consists of future spot and three-month forward interest rates for the period 1987:01–2013:08. Asymptotic standard errors in parentheses.
Q(p) are p-th order Ljung-Box statistics for serial correlation. Q(12)∼ w2

(44) and Q(24)∼ w2
(92). P-values in parentheses. Implied values for b0 and b1 computed by substituting

in Eqs. (11)–(12) the combination of point estimates of the unrestricted PTCMs reported in first and fourth panels. Intervals reported in squared brackets constructed by using
combinations of upper and lower 95% confidence interval bounds that maximize width. Empirical estimates of b0 and b1 carried out by means of OLS (Newey-West standard
deviations) and FM-OLS estimates of Eqs. (3)–(4). 95% confidence intervals reported in squared brackets.

a LR test for the null H0 : k2,1 = 1. LR statistic distributed as w2
(1). P-values in parentheses.

b LR test for the null H0 : k2,1 = 1 ∩ sF = 0. LR statistic distributed as w̄2
(2). P-values in parentheses.

featuring integrated and near-integrated spot and forward rates,
volatility clustering, misspecified term premia, as well as multiple
regime shifts. Empirical results suggest that tests based on PTCMs
dominate over the full spectrum of data-generating processes con-
sidered, as they present either stronger power or better size. We
illustrate an application using Eurodollar and Sterling Libor spot
and forward interest rates. Empirical results for Sterling Libor rates
suggest that both types of tests are concordant in rejecting the
null of EMH and rational expectations. However, when applied to
Eurodollar rates the two types of tests yield results of more difficult
interpretation. On the one hand, tests based on linear regressions
soundly reject both the null. On the other hand, when tests based on
PTCMs are applied to the same data, the null of EMH is still rejected
whereas the null of rational expectations cannot be rejected at the
10% significance level. We resolve this conflicting result by recalling
the findings of our simulation exercises which show that, for inte-
grated spot and forward series, conventional tests based on linear
regressions are significantly over sized unlike tests based on PTCMs
which present approximately correct size and stronger power.

Some aspects of this study would benefit from further investiga-
tion. Firstly, the simulation exercises developed in the paper can be
expanded to explore how PTCM-based tests perform in comparison
to other tests available in the literature, such as the VAR-based tests
proposed by Campbell and Shiller (1991). Secondly, it would be inter-
esting to evaluate the finite sample performances of PTCMs-based
statistics under DGPs featuring breaks in the common stochastic
trend. We keep the above as possible avenues for future research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.irfa.2016.07.003
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